Preprints
https://doi.org/10.5194/cp-2019-75
https://doi.org/10.5194/cp-2019-75
22 Jul 2019
 | 22 Jul 2019
Status: this preprint has been withdrawn by the authors.

Enhanced western Mediterranean rainfall during past interglacials driven by North Atlantic pressure changes

Yama Dixit, Samuel Toucanne, Juan M. Lora, Christophe Fontanier, Virgil Pasquier, Lea Bonnin, Gwenael Jouet, and Aradhna Tripati

Abstract. There is increasing concern with anthropogenic greenhouse gas emissions that ocean warming, in concert with summer and winter precipitation changes, will induce anoxia in multiple ocean basins. In particular the Mediterranean Sea is susceptible to severe hydrological changes. Mediterranean hydroclimate is controlled primarily by two phenomena – the latitudinal migration of the Inter-Tropical Convergence Zone and the North Atlantic climatic processes. While the former brings about the African summer monsoon rainfall the latter drives the wintertime storm tracks into the western Mediterranean. Although the hydrological changes in the eastern Mediterranean are quite well constrained, evidence of past changes in temperature and rainfall in the western Mediterranean across the past interglacials is relatively scarce. In this study, we use trace element and stable isotope composition of planktonic foraminifera from a sediment core off Corsica at the mouth of Golo river in the western Mediterranean to reconstruct variations in sea surface temperature (SST) and sea surface salinities (SSS) during the Holocene and warm periods of the past two interglacials. Our data suggest that the warm periods of the last interglacials were characterised by high river discharge and lower SSS in the northern Tyrrhenian Sea, suggesting increased winter rainfall. We find evidence that enhanced winter rainfall during periods of precession minima and high seasonality across interglacials coincide with changes in the respective eccentricity maxima suggesting a causal link. Our model simulations for representative orbital configurations such as the mid-Holocene support increased south-westerly moisture transport into the western Mediterranean originating from the North Atlantic. We suggest that these hydrologic changes in the western and the northern Mediterranean borderlands were a contributing factor to basin-wide anoxia in the past. Our findings offer new insights into the cause and impact of winter rainfall changes in the Mediterranean during past warm periods.

This preprint has been withdrawn.

Yama Dixit, Samuel Toucanne, Juan M. Lora, Christophe Fontanier, Virgil Pasquier, Lea Bonnin, Gwenael Jouet, and Aradhna Tripati

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Yama Dixit, Samuel Toucanne, Juan M. Lora, Christophe Fontanier, Virgil Pasquier, Lea Bonnin, Gwenael Jouet, and Aradhna Tripati
Yama Dixit, Samuel Toucanne, Juan M. Lora, Christophe Fontanier, Virgil Pasquier, Lea Bonnin, Gwenael Jouet, and Aradhna Tripati

Viewed

Total article views: 1,523 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
1,133 339 51 1,523 165 61 57
  • HTML: 1,133
  • PDF: 339
  • XML: 51
  • Total: 1,523
  • Supplement: 165
  • BibTeX: 61
  • EndNote: 57
Views and downloads (calculated since 22 Jul 2019)
Cumulative views and downloads (calculated since 22 Jul 2019)

Viewed (geographical distribution)

Total article views: 1,367 (including HTML, PDF, and XML) Thereof 1,348 with geography defined and 19 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Latest update: 28 Mar 2024
Download

This preprint has been withdrawn.