Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.174 IF 3.174
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.48 CiteScore
    3.48
  • SNIP value: 1.078 SNIP 1.078
  • SJR value: 1.981 SJR 1.981
  • IPP value: 3.38 IPP 3.38
  • h5-index value: 42 h5-index 42
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 58 Scimago H
    index 58
Discussion papers
https://doi.org/10.5194/cp-2019-28
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-2019-28
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 14 Mar 2019

Research article | 14 Mar 2019

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Climate of the Past (CP).

Climate changes recorded by Hani Peat in Northeast China over the past 13.8 cal ka BP

Ge Shi1,2,3, Hong Yan1,2,4, Wenchao Zhang5, Haobai Fei1, Shuanshuan Cao1, Xiaolin Ma1, Chengcheng Liu1,3, Fengyan Lu1, John Dodson1,6, Henk Heijnis7, Weijian Zhou1, and Zhisheng An1 Ge Shi et al.
  • 1State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
  • 2CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China
  • 3University of Chinese Academy of Sciences, Beijing, 100049, China
  • 4Open Studio for Oceanic-Continental Climate and Environment Changes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China
  • 5Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, and College of Marine Geosciences, Ocean University of China, Qingdao, 266100, China
  • 6School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, 2500, Australia
  • 7Institute for Environmental Research, Australian Nuclear Science and Technology, New South Wales, 2234, Australia

Abstract. The Hani peatland is one of the few that remain well-preserved in northeast China, which makes it a valuable site for paleoclimate research. Here, two sediment cores, which cover the past 13.8 ka, were collected, and loss on Ignition (LOI550°C) and X-ray Fluorescence Scanning (XRF) were carried out to build organic matter content and Rb/Sr ratio profiles, in order to assess the climate changes and associated East Asian Summer Monsoon (EASM) evolution since the last deglaciation. The results show that organic content and the chemical weathering index increased from the early to mid Holocene, possibly reflecting increased precipitation and an enhanced EASM. During the mid to late Holocene, the organic content and the chemical weathering index values decreased, implying that the EASM weakened. The variations of monsoon intensity during the Holocene derived from the Hani peat are consistent with the EASM reconstructions from the Gonghai, Daihai, Qinghai Lake, Hexiazi Island and the Yulin loess-paleosol section. Thus the Hani and other published EASM records from northern China demonstrate that the evolution of EASM during the Holocene was likely to be dominated by the combination of the influences from changing solar insolation and northern hemisphere ice volumes. In addition, a 0.5–2 ka band filtering analysis of LOI550°C data show that millennial scale climate changes in northeast China were teleconnected with the North Atlantic ice-rafted debris and solar irradiance records, indicating that both North Atlantic climate changes and solar activity probably affected EASM variations.

Ge Shi et al.
Interactive discussion
Status: open (until 09 May 2019)
Status: open (until 09 May 2019)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
Ge Shi et al.
Ge Shi et al.
Viewed  
Total article views: 144 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
109 34 1 144 0 0
  • HTML: 109
  • PDF: 34
  • XML: 1
  • Total: 144
  • BibTeX: 0
  • EndNote: 0
Views and downloads (calculated since 14 Mar 2019)
Cumulative views and downloads (calculated since 14 Mar 2019)
Viewed (geographical distribution)  
Total article views: 124 (including HTML, PDF, and XML) Thereof 124 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 20 Mar 2019
Publications Copernicus
Download
Citation