Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.174 IF 3.174
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.48 CiteScore
    3.48
  • SNIP value: 1.078 SNIP 1.078
  • SJR value: 1.981 SJR 1.981
  • IPP value: 3.38 IPP 3.38
  • h5-index value: 42 h5-index 42
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 58 Scimago H
    index 58
Discussion papers
https://doi.org/10.5194/cp-2018-149
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/cp-2018-149
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 14 Dec 2018

Research article | 14 Dec 2018

Review status
This discussion paper is a preprint. It is a manuscript under review for the journal Climate of the Past (CP).

Simulating the Climate Response to Atmospheric Oxygen Variability in the Phanerozoic

David C. Wade1, Nathan Luke Abraham1,2, Alexander Farnsworth3, Paul J. Valdes3, Fran Bragg3, and Alexander T. Archibald1,2 David C. Wade et al.
  • 1Centre for Atmospheric Science, Department of Chemistry, Cambridge, UK
  • 2National Centre for Atmospheric Science, Department of Chemistry, Cambridge, UK
  • 3School of Geographical Sciences, University of Bristol, Bristol, UK

Abstract. The amount of dioxygen (O2) in the atmosphere may have varied from as little as 10 % to as high as 35 % during the Phanerozoic eon (541 Ma–Present). These changes in the amount of O2 are large enough to have lead to changes in atmospheric mass, which may alter the radiative budget of the atmosphere, leading to this mechanism being invoked to explain discrepancies between climate model simulations and proxy reconstructions of past climates. Here we present the first fully 3D numerical model simulations to investigate the climate impacts of changes in O2 during different climate states using the HadGEM3-AO and HadCM3-BL models. We show that simulations with an increase in O2 content result in increased global mean surface air temperature under conditions of a pre-industrial Holocene climate state, in agreement with idealised 1D and 2D modelling studies. We demonstrate the mechanism behind the warming is complex and involves trade-off between a number of factors. Increasing atmospheric O2 leads to a reduction in incident shortwave radiation at Earth's surface due to Rayleigh scattering, a cooling effect. However, there is a competing warming effect due to an increase in the pressure broadening of greenhouse gas absorption lines and dynamical feedbacks, which alter the meridional heat transport of the ocean, warming polar regions and cooling tropical regions.

Case studies from past climates are investigated using HadCM3-BL which show that in the warmest climate states, increasing oxygen may lead to a temperature decrease, as the equilibrium climate sensitivity is lower. For the Maastrichtian (72.1–66.0 Ma), increasing oxygen content leads to a better agreement with proxy reconstructions of surface temperature at that time irrespective of the carbon dioxide content. For the Asselian (298.9–295.0 Ma), increasing oxygen content leads to a warmer global mean surface temperature and reduced carbon storage on land, suggesting that high oxygen content may have been a contributing factor in preventing a Snowball Earth during this period of the early Permian. These climate model simulations reconcile the surface temperature response to oxygen content changes across the hierarchy of model complexity and highlight the broad range of Earth system feedbacks that need to be accounted for when considering the climate response to changes in atmospheric oxygen content.

David C. Wade et al.
Interactive discussion
Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement
David C. Wade et al.
David C. Wade et al.
Viewed  
Total article views: 427 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
360 62 5 427 2 5
  • HTML: 360
  • PDF: 62
  • XML: 5
  • Total: 427
  • BibTeX: 2
  • EndNote: 5
Views and downloads (calculated since 14 Dec 2018)
Cumulative views and downloads (calculated since 14 Dec 2018)
Viewed (geographical distribution)  
Total article views: 182 (including HTML, PDF, and XML) Thereof 182 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 25 Mar 2019
Publications Copernicus
Download
Short summary
The amount of O2 in the atmosphere may have varied from as little as 10 % to as high as 35 % during the last 541 Ma. These changes are large enough to have lead to changes in atmospheric mass, which may alter the radiative budget of the atmosphere. Here we present the first fully 3D numerical model simulations to investigate the climate impacts of changes in O2 during different climate states. We identify a complex new mechanism causing increases in surface temperature when O2 levels were higher.
The amount of O2 in the atmosphere may have varied from as little as 10 % to as high as 35 %...
Citation