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Abstract:  12 

The mid-Holocene period (MH) has long been an ideal target for the validation of Global 13 

Circulation Model (GCM) results against reconstructions gathered in global datasets. These 14 

studies aimed to test the GCM sensitivity mainly to the seasonal changes induced by the orbital 15 

parameters (precession). Despite widespread agreement between model results and data on the 16 

MH climate, some important differences still exist. There is no consensus on the continental 17 

size of the MH thermal climate response, which makes regional quantitative reconstruction 18 

critical to obtain a comprehensive understanding of the MH climate patterns. Here, we compare 19 

the annual and seasonal outputs from the most recent Paleoclimate Modelling Intercomparison 20 

Projects Phase 3 (PMIP3) models with an updated synthesis of climate reconstruction over 21 

China, including, for the first time, a seasonal cycle of temperature and precipitation. Our 22 

results indicate that the main discrepancies between model-data for MH climates are the annual 23 

and winter mean temperature. A warmer-than-present climate condition are derived from 24 

pollen data for both annual mean temperature (~0.7 K on average) and winter mean temperature 25 
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(~1 K on average), while most of the models provide a linear response driven by the seasonal 26 

forcing (a decreased annual mean temperature with a warmer summer and colder winter). By 27 

conducting simulations in BIOME4 and CESM version 1.0.5, we show that to capture the 28 

seasonal pattern reconstructed by data, it is critical to assess surface processes. These results 29 

pinpoint the crucial importance of including the non-linear of the surface water and energy 30 

balance to vegetation changes. 31 

 32 
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1.  Introduction 36 

   Much attention of paleoclimate study has been focused on the current interglacial (the 37 

Holocene), especially the mid-Holocene (MH, 6±0.5 ka). The major difference in the 38 

experimental configuration between the MH and pre-Industrial (PI) arises from the orbital 39 

parameters which brings about an increase in the amplitude of the seasonal cycle of insolation 40 

of the Northern Hemisphere and a decrease in the Southern Hemisphere (Berger, 1978). Thus, 41 

the MH provides an excellent case study on which to base an evaluation of the climate response 42 

to changes in the distribution of insolation. Great efforts are devoted by the modeling 43 

community to the design of the MH common experiments using similar boundary conditions 44 

(Joussaume and Taylor, 1995; Harrison et al., 2002; Braconnot et al., 2007a, b). In addition, 45 

much work has been done to reconstruct the paleoclimate change based on different proxies at 46 

global and continental scale (Guiot et al., 1993; Kohfeld and Harrison, 2000; Prentice et al., 47 

2000; Bartlein et al., 2011). The greatest progress in understanding the MH climate change and 48 
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variability has consistently been made by comparing large-scale analyses of data with 49 

simulations from global climate models (Joussaume et al., 1999; Liu et al., 2004; Harrison et al., 50 

2014).  51 

However, the source of discrepancies between model and data is still an open and stimulating 52 

question. Two types of inconsistencies have been identified: 1) where the model and data show 53 

opposite signs, for instance, paleoclimate evidence from data-records indicates an increase of 54 

about 0.5 K in global annual mean temperature during the MH compared with PI (Shakun et al. 55 

2012; Marcott et al. 2013), while there is a cooling trend in model simulations (Liu et al., 2014). 56 

2) where the same trend is displayed by both model and data but with different magnitudes. 57 

Previous studies have shown that while climate models can successfully reproduce the direction 58 

and large-scale patterns of past climate changes, they tend to consistently underestimate the 59 

magnitude of change in the monsoons of the Northern Hemisphere as well as the amount of the 60 

MH precipitation over northern Africa (Braconnot et al., 2012; Harrison et al., 2015). Moreover, 61 

significant spatial variability has been noted in both observations and simulations (Peyron et al. 62 

2000; Davis et al. 2003; Braconnot et al., 2007a; Wu et al. 2007; Bartlein et al. 2011), which 63 

makes regional quantitative reconstruction (Davis et al., 2003; Mauri et al., 2015) essential to 64 

obtain a comprehensive understanding of the MH climate patterns, and to act as a benchmark to 65 

evaluate climate models (Fischer and Jungclaus, 2011; Harrison et al., 2014;). 66 

China offers two advantages in respect to these issues. The sheer expanse of the country 67 

means that the continental response to insolation changes over a large region can be 68 

investigated. Moreover, the quantitative reconstruction of seasonal climate changes during the 69 

MH, based on the new pollen dataset, provides a unique opportunity to compare the seasonal 70 

cycles for models and data. Previous studies indicate that warmer and wetter than present 71 

conditions prevailed over China during the MH and that the magnitude of the annual 72 

temperature increases varied from 2.4-5.8 K spatially, with an annual precipitation increase in 73 
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the range of 34-267 mm (e.g., Sun et al., 1996; Jiang et al., 2010; Lu et al., 2012; Chen et al., 74 

2015). However, Jiang et al. (2012) clearly show a mismatch between multi-proxy 75 

reconstructions and model simulations. In terms of climate anomalies (MH-PI), besides the ~1 76 

K increase in summer temperature, 35 out of 36 Paleoclimate Modelling and Coupled 77 

Modelling Intercomparison Projects (PMIP) models reproduce annual (~0.4 K) and winter 78 

temperatures (~1.4 K) that are colder than the baseline, and a drier-than-baseline climate in 79 

some western and middle regions over China is depicted in models (Jiang et al. 2013).Jiang et 80 

al. (2012) were the first to point out the model-data discrepancy over China during the MH, 81 

but the lack of seasonal reconstructions in their study limits comparisons with simulations..   82 

  An important issue raised by Liu et al. (2014) is that the discrepancy at the annual level could 83 

be due to incorrect reconstructions of the seasonal cycle, a key objective in our paper. Moreover, 84 

it has been suggested that the vegetation change can strengthen the temperature response in 85 

high latitudes (O’Ishi et al., 2009; Otto et al., 2009), as well as alter the hydrological conditions 86 

in the tropics (Liu et al., 2007). However, compared to the substantial land cover changes in the 87 

MH derived from pollen datasets (Ni et al., 2010; Yu et al., 2000), the changes in vegetation 88 

have not yet been fully quantified and discussed in PMIP3 (Tylor et al., 2012).  89 

  In this study, for the reconstruction, we firstly used the quantitative method of biomization to 90 

reconstruct vegetation types during the MH based on a new synthesis of pollen datasets, and 91 

then used the Inverse Vegetation Model (Guiot et al. 2000; Wu et al. 2007) to obtain the annual, 92 

the mean temperature of the warmest month (MTWA) and the mean temperature of the coldest 93 

month (MTCO) climate features over China for the MH. In the case of PMIP3 models, we 94 

present a comprehensive evaluation of the state-of-the-art models based on the MH climate 95 

variables (vegetation, temperature and precipitation), using the simulations from the PMIP3. 96 

This is the first time that such progress towards a quantitative seasonal climate comparison for 97 

the MH over China has been made, thanks to the seasonal reconstruction and the PMIP3 results. 98 
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This point is crucial because the MH PMIP3 experiment is essentially one that looks at the 99 

response of the models to changes in the seasonality of insolation, and the attempt to derive 100 

reconstructions of both summer and winter climate to compare with the simulations will thus be 101 

able to answer the question posed by Liu et al. (2014) on the importance of seasonal 102 

reconstruction.   103 

2.  Data and Methodology 104 

2.1 Data 105 

In this study, we collected 159 pollen records, covering most of China, for the MH period 106 

(6000±500 
14

C yr BP) (Fig. 1). Of these, 65 were from the Chinese Quaternary Pollen Database 107 

(CQPD, 2000), three were original datasets obtained in our study, and the others were digitized 108 

from pollen diagrams in published papers with a recalculation of pollen percentages based on 109 

the total number of terrestrial pollen types. These digitized 91 pollen records were selected 110 

according to three criteria: (1) clearly readable pollen diagrams with a reliable chronology with 111 

the minimum of three independent age control points since the LGM; (2) including the pollen 112 

taxa during 6000±500 
14

C yr BP period with a minimum sampling resolution of 1000 years per 113 

sample; (3) abandon the pollen records if the published paper mentions the influence of human 114 

activity. The age-depth model for the pollen records was estimated by linear interpolation 115 

between adjacent available dates or by regression. Using ranking schemes from the 116 

Cooperative Holocene Mapping Project, the quality of dating control for the mid-Holocene was 117 

assessed by assigning a rank from 1 to 7. And 70% of the records fell into the first and second 118 

classes (see Table 1 for detailed information) according to the Webb 1-7 standards (Webb, T. 119 

III, 1985). Vegetation type was quantitatively reconstructed using biomization (Prentice et al., 120 

1996), following the classification of plant functional types (PFTs) and biome assignment in 121 
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China by the Members of China Quaternary Pollen Data (CQPD, 2000), which has been widely 122 

tested in surface sediment. The new sites (91 digitized data and three original data) added to our 123 

database improved the spatial coverage of pollen records, especially in the northwest, the 124 

Tibetan Plateau, the Loess Plateau and southern regions, where the data in the previous 125 

databases are very limited. 126 

Modern monthly mean climate variables, including temperature, precipitation and cloudiness 127 

(means the cloud area fraction) have been collected for each modern pollen site based on the 128 

datasets (1951-2001) from 657 meteorological observation stations over China (data source: 129 

China Climate Bureau, China Ground Meteorological Record Monthly Report, 1951-2001). 130 

Soil properties were derived from the digital world soil map produced by the Food and 131 

Agricultural organization (FAO) (FAO, 1991), and, because of a lack of paleosol data, soil 132 

characteristics were assumed to have been the same during the MH. Atmospheric CO2 133 

concentration for the MH was taken from ice core records (EPICA community members 2004), 134 

and set at 270 ppmv. 135 

A 3-layer back-propagation (BP) artificial neural network technique (ANN) was used for 136 

interpolation on each pollen site (Caudill and Butler, 1992). Five input variables (latitude, 137 

longitude, elevation, annual precipitation, annual temperature) and one output variable (biome 138 

scores) have been chosen in ANN for the modern vegetation. The ANN has been calibrated on 139 

the training set, and its performance has been evaluated on the verification set (20%, randomly 140 

extracted from the total sets). After a series of training run, the lowest verification error is 141 

obtained with 5 neurons in the hidden layer after 10000 iterations. The anomalies between past 142 

(6ka) and modern vegetation indices (biome scores) was then interpolated to the 0.2×0.2° grid 143 

resolution by applying the ANN. After that, the modern grid values are added to the values of 144 

the grid of palaeo-anomalies to provide gridded paleo-biome indices. Finally, the biome with 145 

the highest index is attributed to each grid point. This ANN method is more efficient than many 146 
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other techniques on condition that the results are validated by independent data sets, and 147 

therefore, it has been widely applied in paleoclimatology (Guiot et al., 1996; Peyron et al., 148 

1998).  149 

2.2 Climate models   150 

    PMIP, a long-standing initiative, is a climate-model evaluation project which provides an 151 

efficient mechanism for using global climate models to simulate climate anomalies in the past 152 

periods and to understand the role of climate feedback. In its third phase (PMIP3), the models 153 

were identical to those used in the Climate Modelling Intercomparison Project 5 (CMIP5) 154 

experiments. The experimental set-up for the mid-Holocene simulations in PMIP3 followed the 155 

PMIP protocol (Braconnot et al. 2007a, b, 2012). The main forcing between the MH and PI in 156 

PMIP3 are the orbital configuration and CH4 concentration. More precisely, the orbital 157 

configuration in the MH climate has an increased summer insolation and a decreased winter 158 

insolation in the Northern Hemisphere compared to the PI climate (Berger, 1978). Meantime, 159 

the CH4 concentration is prescribed at 650 ppbv in the MH, while it is set at 760 ppbv in PI 160 

(Table 2).  161 

    All 13 models (Table 3) from PMIP3 that have the MH simulation have been included in 162 

our study, including eight ocean-atmosphere (OA) models and five 163 

ocean-atmosphere-vegetation (OAV) models. Means for the last 30 years were calculated from 164 

the archived time-series data on individual model grids for climate variables: near surface 165 

temperature and precipitation flux, which were bi-linearly interpolated to a uniform 2.5° grid, 166 

in order to get the bioclimatic variables (e.g. MAT, MAP, MTWM, MTCO, July precipitation) 167 

onto a common grid for comparison with the reconstruction results.  168 
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2.3 Vegetation model  169 

The vegetation model, BIOME4 is a coupled biogeography and biogeochemistry model 170 

developed by Kaplan et al. (2003). Monthly mean temperature, precipitation, sunshine 171 

percentage (–an inverse measure of cloud area fraction), absolute minimum temperature, 172 

atmospheric CO2 concentration and subsidiary information about the soil’s physical properties 173 

like water retention capacity and percolation rates are the main input variables for the models. It 174 

incorporates 13 plant functional types (PFTs), which have different bioclimatic limits.  The 175 

PFTs are based on physiological attributes and bioclimatic tolerance limits such as heat, 176 

moisture and chilling requirements and resistance of plants to cold. These limits determine the 177 

areas where the PFTs could grow in a given climate. A viable combination of these PFTs 178 

defines a particular biome among 28 potential options. These 28 biomes can be further 179 

classified into 8 megabiomes (Table S1). BIOME4 has been widely utilized to analyze the past, 180 

present and potential future vegetation patterns (e.g. Bigelow et al., 2003; Diffenbaugh et al., 181 

2003; Song et al., 2005). In this study, we conducted 13 PI and the MH biome simulations using 182 

PIMP3/CMIP5 climate fields (temperature, precipitation and sunshine) as inputs. The climate 183 

fields, obtained from PMIP3/CMIP5, are the monthly mean data of the last 30 model years.  184 

2.4 Statistics and interpolation for vegetation distribution 185 

    To quantify the differences between simulated (by the climate-model output) and 186 

reconstructed (from pollen) between megabiomes, a map-based statistic (point-to-point 187 

comparison with observations) called ∆V (Sykes et al., 1999; Ni et al., 2000) was applied to 188 

our study. ∆V is based on the relative abundance of different plant life forms (e.g. trees, grass, 189 

bare ground) and a series of attributes (e. g. evergreen, needle-leaf, tropical, boreal) for each 190 

vegetation class. The definitions and attributes of each plant form follow naturally from the 191 

BIOME4 structure and the vegetation attribute values in the ∆V computation were defined for 192 
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BIOME4 in the same way as for BIOME1 (Sykes et al., 1999). The abundance and attribute 193 

values are given in Table 4 and Table 5, which describe the typical floristic composition of the 194 

biomes. Weighting the attributes is subjective because there is no obvious theoretical basis for 195 

assigning relative significance. Transitions between highly dissimilar megabiomes have a 196 

weighting of close to 1, whereas transitions between less dissimilar megabiomes are assigned 197 

smaller values. The overall dissimilarity between model and data megabiome maps was 198 

calculated by averaging the ∆V for the grids with pollen data, while the value was set at 0 for 199 

any grid without data. ΔV values < 0.15 can be considered to point to very good agreement 200 

between simulated and actual distributions, 0.15-0.30 is good, 0.30-0.45 fair, 0.45-0.60 poor, 201 

and > 0.80 very poor (adjusted from Zhang et al., 2010). For spatial pattern comparison, we 202 

compared the simulated vegetation distribution from BIOME4 from each model with the 203 

interpolated pattern. 204 

2.5 Inverse vegetation model 205 

Inverse Vegetation Model (Guiot et al., 2000; Wu et al. 2007), highly dependent on the 206 

BIOME4 model, is applied to our reconstruction. The key concept of this model can be 207 

summarized in two points: firstly, a set of transfer functions able to transform the model output 208 

into values directly comparable with pollen data is defined. There is not full compatibility 209 

between the biome typology of BIOME4 and the biome typology of pollen data. A transfer 210 

matrix (Table S2) was defined in our study where each BIOME4 vegetation type is assigned a 211 

vector of values, one of each pollen vegetation type, ranging from 0 (representing an 212 

incompatibility between BIOME4 type and pollen biome type) to 15 (corresponding to a 213 

maximum compatibility). Secondly, using an iterative approach, a representative set of climate 214 

scenarios compatible with the vegetation records is identified among the climate space, 215 

constructed by systematically perturbing the input variables (e.g. ΔT, ΔP) of the model (Table 216 

S3).  217 
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Inverse Vegetation Model (IVM) provides a possibility, for the first time, to reconstruct both 218 

annual and seasonal climates for the MH over China. Moreover, it offers a way to consider the 219 

impact of CO2 concentration on competition between PFTs as well as on the relative abundance 220 

of taxa, and thus make reconstruction from pollen records more reliable. More detailed 221 

information about IVM can be found in Wu et al. (2007).  222 

We applied the inverse model to modern pollen samples to validate the approach by 223 

reconstructing the modern climate at each site and comparing it with the observed values. The 224 

high correlation coefficients (R=0.75–0.95), intercepts close to 0 (except for the mean 225 

temperature of the warmest month), and slopes close to 1 (except for the July precipitation) 226 

demonstrated that the inversion method worked well for most variables in China (see Table 6). 227 

3.  Results 228 

3.1 Comparison of annual and seasonal climate changes at the MH  229 

In this study, we collected 159 pollen records, broadly covering the whole of China (Fig. 1). 230 

To check the reliability of the collected data, we first categorized our pollen records into 231 

megabiomes in line with the standard tables developed for the BIOME6000 (Table S1), and 232 

compared them with the BIOME6000 dataset (Fig.2). The match between collected data and 233 

the BIOME6000 is more than 90% for both the MH and PI.  234 

Based on pollen records, the spatial pattern of climate changes over China during the MH, 235 

deduced from IVM, are presented in Fig. 3 (left panel, points), alongside the results from 236 

PMIP3 models (shaded in Fig. 3). For temperature, a warmer-than-present annual climate 237 

condition (~0.7 K on average) is derived from pollen data (the points in Fig. 3a), with the 238 

largest increase occurring in the northeast (3-5 K) and a decrease in the northwest and on 239 

Tibetan Plateau. On the other hand, the results from a multi-model ensemble (MME) indicate a 240 

colder annual temperature generally (~-0.4 K on average), with significant cooling in the south 241 
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and slight warming in the northeast (shaded in Fig. 3a). Of the 13 models, 11 simulate a cooler 242 

annual temperature compared with PI as MME. However, two models (HadeGEM2-ES and 243 

CNRM-CM5) present the same warmer condition as was found in the reconstruction (Fig. 3d). 244 

Compared to the reconstruction, the annual mean temperature during the MH is largely 245 

underestimated by most PMIP3 models, which depict an anomaly ranging from ~-1.4 to ~0.5 K. 246 

Detailed information of reconstructed climate change derived from IVM at each pollen site can 247 

be found in Table S4.  248 

Concerning seasonal change, during the MH, MTWA from the data is ~0.5 K higher than PI, 249 

with the largest increase in the northeast and a decrease in the northwest. From model outputs, 250 

an average increase of ~1.2 K is reproduced by MME, with a more pronounced warming at high 251 

latitudes which is consistent with the insolation change (Berger, 1978). Fig. 3e shows that all 13 252 

models reproduce the same warmer summer temperatures as the data, and that HadGEM2-ES 253 

and CNRM-CM5, reproduce the largest increases among the models. Although the warmer 254 

MTWA is consistent between the models and data, there is a discrepancy between them on 255 

MTCO. In Fig. 3c, the data show an overall increase of ~1 K, with the largest increase occurring 256 

in the northeast and a decrease of opposite magnitude on the Tibetan Plateau. Inversely, MME 257 

reproduces a decreased MTCO with an average amplitude of ~-1.3 K, the coolest areas being 258 

the southeast, the Loess Plateau and the northwest. Similarly to the MME, all 13 models 259 

simulate a colder-than-present climate with amplitudes ranging from ~-2.0 K (CCSM4 and 260 

FGOALS-g2) to ~-0.7 K (HadGEM2-ES and CNRM-CM5).  261 

Concerning annual change in precipitation, the reconstruction shows wetter conditions 262 

during the MH across almost the whole of China with the exception of part of the northwest. 263 

The southeast presents the largest increase in annual precipitation. All but 2 models depict 264 

wetter conditions with an amplitude of ~10 mm to ~70 mm. The reconstruction and MME 265 

results also indicate an increased annual precipitation during MH (Fig.4a), with a much larger 266 
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magnitude visible in the reconstruction (~30 mm, ~230 mm respectively). The main 267 

discrepancy in annual precipitation between simulations and reconstruction occurs in the 268 

northeast, which is depicted as drier by the models and wetter by the data.  With regard to 269 

seasonal change, the reconstruction shows an overall increase in July rainfall (~50 mm on 270 

average), with a decrease in the northwestern regions and east monsoon region at Yangtze 271 

River valley. In line with the reconstruction, the MME also shows an overall increase in rainfall 272 

(~13 mm on average), with a decrease in the northwest for July (Fig.4b).  Notably, a much 273 

larger increase is simulated for the south and the Tibetan Plateau by the models, while the 274 

opposite pattern emerges along the eastern margin from both models and data. More detailed 275 

information about the geographic distribution of simulated temperature and precipitation for 276 

each model can be found in Fig. S1-S6. 277 

 278 

3.2 Comparison of vegetation change at the MH 279 

The use of the PMIP3 database is clearly limited by the different vegetation inputs among the 280 

models for the MH period (Table S5). Only HadGEM2-ES and HadGEM2-CC use a dynamic 281 

vegetation for the MH, and the other 11 models are prescribed to PI with or without interactive 282 

LAI, which would introduce a bias to the role of vegetation-atmosphere interaction in the MH 283 

climates. To evaluate the model results against the reconstruction for the MH vegetation, we 284 

conducted 13 biome simulations in BIOME4 using PIMP3 climate fields, and the megabiome 285 

distribution for each model during the MH is displayed in Fig. 5 (see Fig. S7 for PI vegetation 286 

comparison). To quantify the model-data dissimilarity between megabiomes, a map-based 287 

statistic called ∆V (Sykes et al., 1999; Ni et al., 2000) was applied here (detailed information is 288 

in the methodology section).  289 

Fig. S8 shows the dissimilarity between simulations and observations for megabiomes 290 

during the MH, with the overall values for ∆V ranging from 0.43 (HadGEM2-ES) to 0.55 291 
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(IPSL-CM5A-LR). According to the classification of ∆V (see in the methodology section) for 292 

the 13 models, 12 (all except HadGEM2-ES) showed poor agreement with the observed 293 

vegetation distribution. Most models poorly simulate the desert, grassland and tropical forest 294 

areas for both periods, but perform better for warm mixed forest, tundra and temperate forest. 295 

However, this statistic is based on a point-to-point comparison and so the ∆V calculated here 296 

cannot represent an estimation of full vegetation simulation due to the uneven distribution of 297 

pollen data and the potentially huge difference in area of each megabiome. For instance, tundra 298 

in our data for PI is represented by only 4 points, which counts for a small contribution to the 299 

∆V since we averaged it over a total of 159 points, but this calculation could induce a 300 

significant bias if these 4 points cover a large area of China. 301 

So, we used the biome scores based on the artificial neural network technique as described by 302 

Guiot et al. (1996) for interpolation (the plots in red rectangle in Fig. 5), and compared the 303 

simulated vegetation distribution from BIOME4 for each model with the interpolated pattern. 304 

During the MH, most models are able to capture the tundra on the Tibetan Plateau as well as the 305 

combination of warm mixed forest and temperate forest in the southeast. However, all models 306 

fail to simulate or underestimate the desert area in the northwest compared to reconstructed data. 307 

The main model-data inconsistency in the MH vegetation distribution occurs in the northeast, 308 

where data show a mix of grassland and temperate forest, and the models show a mix of 309 

grassland and boreal forest.  310 

The area statistic carried out for simulated vegetation changes (Fig. 6) reveals that the main 311 

difference during the MH, compared with PI, is that grassland replaced boreal forest in large 312 

tracts of the northeast (Fig. 5, Fig. S7). No other significant difference in vegetation distribution 313 

between the two periods was derived from models. Unlike in models, three main changes in 314 

megabiomes during the MH are depicted by the data. Firstly, the megabiomes converted from 315 

grassland to temperate forest in the northeast. Secondly, a large area of temperate forest was 316 



 

14 
 

replaced in the southeast by a northward expansion of warm mixed forest. Thirdly, in the 317 

northwest and at the northern margin of the Tibetan Plateau, part of the desert area changed into 318 

grassland. However, none of the models succeed in capturing these features, especially the 319 

transition from grassland into forest in the northeast during the MH. Therefore, this failure to 320 

capture vegetation changes between the two periods will lead to a cumulating inconsistency in 321 

the model-data comparison for climate anomalies because of the vegetation-climate feedbacks.  322 

4.  Conclusion and Discussion  323 

   In response to the seasonal insolation change prescribed in PMIP3 for the MH, all models 324 

produce similar large-scale patterns for seasonal temperature and precipitation (higher than 325 

present July precipitation and MTWA, lower than present MTCO), with either an over- or 326 

underestimate of the climate changes when compared to the data. The main discrepancy 327 

emerging from the model-data comparison occurs in the annual and MTCO, where data show 328 

an increased value and most models simulate the opposite except CNRM-CM5 and 329 

HadGEM2-ES reproduced the higher-than-present annual temperature during MH as data 330 

showed. Besides the qualitative consistency among models, caused by the protocol of –PMIP3 331 

experiments (Table 2), a variability in the magnitude of anomalies between models is clearly 332 

illustrated by the column bars (Fig.3 and Fig.4). These disparities in value or even pattern 333 

among models reflect the obvious differences in the response by the climate models to the MH 334 

forcing which raises on the question of the magnitude of feedbacks among models.  335 

As positive feedbacks between climate and vegetation are important to explain regional 336 

climate changes, the failure to capture or the underestimation of the amplitude and pattern of 337 

the observed vegetation differences among models (see Section 3.2) could amplify and partly 338 

account for the model-data disparities in climate change, mainly due to variations in the albedo. 339 

Because the HadGEM2-ES and HadGEM2-CC are the only two models in PMIP3 with 340 
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dynamic vegetation simulation for the MH, we thus focused on them to examine the variations 341 

in vegetation fraction in the simulations. The main vegetation changes during the MH 342 

demonstrated by HadGEM2-ES are increased tree coverage (~15%) and a decreased bare soil 343 

fraction (~6%), while HadGEM2-CC depicts a ~3% decrease in tree fraction and a ~1% 344 

increase in bare soil (Fig. S9). We made a rough calculation of albedo variance caused solely by 345 

vegetation change for both two models and for our reconstruction, based on the area fraction 346 

and albedo value of each vegetation type (Betts, 2000; Bonfils et al., 2001; Oguntunde et al., 347 

2006; Bonan, 2008).  348 

Reconstruction showed vegetation changes during the MH leading to a ~1.8% decrease in 349 

albedo when snow-free, with a much larger impact (~4.2% decrease) when snow-covered. The 350 

results from HadGEM2-ES are highly consistent with the albedo changes from the 351 

reconstruction, featuring a ~1.4% (~6.5%) decrease without (with) snow, while HadGEM2-CC 352 

produces an increased albedo value during the MH (~0.22% for snow-free, ~1.9% with 353 

snow-cover), depending on its vegetation simulation. Two ideas could be inferred from this 354 

calculation, 1) HadGEM2-ES is much better in simulating the MH vegetation changes than 355 

HadGEM2-CC. 2) the failure by models to capture these vegetation changes will result in a 356 

much larger impact on winter albedo (with snow) than summer albedo (without snow).  357 

These surface albedo changes due to vegetation changes could have a cumulative effect on 358 

the regional climate by modifying the radiative fluxes. For instance, the spread of trees into the 359 

grassland biome in the northeast during the MH, revealed by the reconstruction in our study, 360 

should act as a positive feedback to climate warming by increasing the surface net shortwave 361 

radiation associated with reductions in albedo due to taller and darker canopies (Chapin et al., 362 

2005). Previous studies show that cloud and surface albedo feedbacks on radiation are major 363 

drivers of differences between model outputs for past climates. Moreover, the land surface 364 

feedback shows large disparities among models (Braconnot and Kageyama, 2015).  365 
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  We used a simplified approach (Taylor et al., 2007) to quantify the feedbacks and to compare 366 

model behavior for the MH, thus justifying the focus on surface albedo and atmospheric 367 

scattering (mainly accounting for cloud change). Surface albedo and cloud change are 368 

calculated using the simulated incoming and outgoing radiative fluxes at the Earth’s surface 369 

and at the top of atmosphere (TOA), based on data for the last 30 years averaged from all 370 

models. Using this framework, we quantified the effect of changes in albedo on the net 371 

shortwave flux at TOA (Braconnot and Kageyama, 2015), and further investigated the 372 

relationship between these changes and temperature change. Fig.7 shows that most models 373 

produced a negative cloud cover and surface albedo feedback on the annual mean shortwave 374 

radiative forcing. Concerning seasonal change, the shortwave cloud and surface feedback in 375 

most models tend to counteract the insolation forcing during the boreal summer, while they 376 

enhance the solar forcing during winter. A strong positive correlation between albedo feedback 377 

and temperature change is depicted, with a large spread in the models owing to the difference in 378 

albedo in the 13 models. In particular, CNRM-CM5 and HadGEM2-ES capture higher values 379 

of cloud and surface albedo feedback, which could be the reason for the reversal of the 380 

decreased annual temperature seen in other models (Fig. 3d). 381 

However, the vegetation patterns produced by BIOME4 in Fig. 5 are not used in PMIP3 382 

experiment setup, it’s actually determined by the input variables from models. To better 383 

quantify the vegetation-climate feedback, two experiments were conducted in CESM version 384 

1.0.5, including a mid-Holocene (MH) experiment (6 ka) with original vegetation setting 385 

(prescribed as PI vegetation for MH) and a MH experiment with reconstructed vegetation (6 386 

ka_VEG). Fig. 8 shows the climate anomalies (6 ka_VEG minus 6 ka) between two 387 

simulations, for both annual and seasonal scale. For temperature, it's clear that the 6 ka_VEG 388 

simulation reproduces the warmer annual (~0.3 K on average) and winter temperature (~0.6 K 389 

on average), especially the winter temperature. For precipitation, the reconstructed vegetation 390 
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leads to higher annual and seasonal precipitation, which can also reconcile the discrepancy of 391 

increase amplitude for precipitation during MH between model-data (data reproduced larger 392 

amplitude than model, revealed by our study). So the mismatch between model-data in MH 393 

vegetation could partly account for the discrepancy of climate due to the interaction between 394 

vegetation and climate through radiative and hydrological forcing with albedo. These results 395 

pinpoint the value of building a new generation of models able to capture not only the 396 

atmosphere and ocean response, but also the non-linear responses of vegetation and hydrology. 397 

Moreover, besides the vegetation influence, to which extent this model-data discrepancy is 398 

related to rough topography, soil type and other possible factors should be investigated in the 399 

future work.  400 

Besides the uncertainties in the models, IVM, from the data perspective, relies heavily on 401 

BIOME4, and since BIOME4 is a global vegetation model, it is possible that the spatial 402 

robustness of regional reconstruction could be less than that of global reconstruction due to the 403 

failure to simulate local features (Bartlein et al., 2011). China, located in the Asian monsoon 404 

area, has some specialized vegetation types which call for an improved ability to simulate 405 

regional vegetation in BIOME4. Moreover, the output of the model is not directly compared to 406 

the pollen data, the conversion of BIOME4 biomes to pollen biomes by the transfer matrix 407 

may add the source of uncertainty in reconstruction. All these bias in reconstruction should 408 

also be considered in the discrepancy between model-data for climate change during MH over 409 

China. Of course, more reconstruction studies using multiple proxies and reliable methods are 410 

also required to narrow the discrepancies between data and model results. 411 

Data availability  412 

The PMIP3 output is publicly available at website (http://pmip3.lsce.ipsl.fr/) by the climate 413 

modelling groups, the 65 pollen biomization results are provided by Members of China 414 
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Quaternary Pollen Data Base, Table 1 shows the information (including references) of the 91 415 

collected pollen records and 3 original ones in our study. All the reconstructed climate values 416 

at each pollen site from IVM are provided in Table S4. The full datasets of pollen are 417 

available upon the request to the corresponding author. 418 
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Table 1. Basic information of the pollen dataset used in this study 963 

Site Lat Lon Alt Webb 1-7 Source 

Sujiawan  35.54  104.52  1700  2 original data (Zou et al., 

2009) 

Xiaogou 36.10  104.90  1750  2 original data (Wu et al., 

2009) 

Dadiwan 35.01  105.91  1400  1 original data (Zou et al., 

2009) 

Sanjiaocheng 39.01  103.34  1320  1 Chen et al., 2006 

Chadianpo 36.10  114.40  65  2 Zhang et al., 2007 

Qindeli 48.08  133.25  60  2 Yang and Wang, 2003 

Fuyuanchuangye 47.35  133.03  56  3 Xia, 1988 

Jingbo Lake 43.83  128.50  350  2 Li et al., 2011 

Hani Lake 42.22  126.52  900  1 Cui et al., 2006 

Jinchuan 42.37  126.43  662  5 Jiang et al., 2008 

Maar Lake 42.30  126.37  724  1 Liu et al., 2009 

Maar Lake 42.30  126.37  724  1 Liu et al., 2008 

Xie Lake SO4 37.38  122.52  0  1 Zhou et al., 2008 

Nanhuiheming Core 31.05  121.58  7  2 Jia and Zhang, 2006 

Toushe 23.82  120.88  650  1 Liu et al., 2006 

Dongyuan Lake 22.17  120.83  415  2 Lee et al., 2010 

Yonglong CY 31.78  120.44  5  3 Zhang et al., 2004 

Hangzhou HZ3 30.30  120.33  6  4 Liu et al., 2007 

Xinhua XH1 32.93  119.83  2  3 Shu et al., 2008 

ZK01 31.77  119.80  6  2 Shu et al., 2007 

Chifeng 43.97  119.37  503  2 Xu et al., 2002 

SZK1 26.08  119.31  9  1 Zheng et al., 2002 

Gucheng 31.28  118.90  6  4 Yang et al., 1996 

Lulong 39.87  118.87  23  2 Kong et al., 2000 

Hulun Lake 48.92  117.42  545  1 Wen et al., 2010 

CH-1 31.56  117.39  5  2 Wang et al., 2008 

Sanyi profile 43.62  117.38  1598  4 Wang et al., 2005 

Xiaoniuchang 42.62  116.82  1411  1 Liu et al., 2002 

Haoluku 42.87  116.76  1333  2 Liu et al., 2002 

Liuzhouwan 42.71  116.68  1410  7 Liu et al., 2002 

Poyang Lake 103B 28.87  116.25  16  4 Jiang and Piperno, 1999 

Baiyangdian 38.92  115.84  8  2 Xu et al., 1988 

Bayanchagan 42.08  115.35  1355  1 Jiang et al., 2006 

Huangjiapu 40.57  115.15  614  7 Sun et al., 2001 

Dingnan 24.68  115.00  250  2 Xiao et al., 2007 

Guang1 36.02  114.53  56  1 Zhang et al., 2007 

Angulinao 41.33  114.35  1315  1 Liu et al., 2010 

Yangyuanxipu 40.12  114.22  921  6 Wang et al., 2003 
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Shenzhen Sx07 22.75  113.78  2  2 Zhang and Yu, 1999 

GZ-2 22.71  113.51  1  7 Wang et al., 2010 

Daihai99a 40.55  112.66  1221  2 Xiao et al., 2004 

Daihai 40.55  112.66  1221  2 Sun et al., 2006 

Sihenan profile 34.80  112.40  251  1 Sun and Xia, 2005 

Diaojiaohaizi 41.30  112.35  2015  1 Yang et al., 2001 

Ganhaizi 39.00  112.30  1854  3 Meng et al., 2007 

Jiangling profile 30.35  112.18  37  1 Xie et al., 2006 

Helingeer 40.38  111.82  1162  3 Li et al., 2011 

Shennongjia2 31.75  110.67  1700  1 Liu et al., 2001 

Huguangyan Maar Lake 

B 

21.15  110.28  59  2 Wang et al., 2007 

Yaoxian 35.93  110.17  1556  2 Li et al., 2003 

Jixian 36.00  110.06  1005  6 Xia et al., 2002 

Shennongjia Dajiu Lake 31.49  110.00  1760  2 Zhu et al., 2006 

Qigai nuur 39.50  109.85  1300  1 Sun and Feng, 2013 

Beizhuangcun 34.35  109.53  519  1 Xue et al., 2010 

Lantian 34.15  109.33  523  1 Li and Sun, 2005 

Bahanniao 39.32  109.27  1278  1 Guo et al., 2007 

Midiwan 37.65  108.62  1400  1 Li et al., 2003 

Jinbian 37.50  108.33  1688  2 Cheng, 2011 

Xindian 34.38  107.80  608  1 Xue et al., 2010 

Nanguanzhuang 34.43  107.75  702  1 Zhao et al., 2003 

Xifeng 35.65  107.68  1400  3 Xu, 2006 

Jiyuan 37.13  107.40  1765  3 Li et al., 2011 

Jiacunyuan 34.27  106.97  1497  2 Gong, 2006 

Dadiwan 35.01  105.91  1400  1 Zou et al., 2009 

Maying 35.34  104.99  1800  1 Tang and An, 2007 

Huiningxiaogou 36.10  104.90  1750  2 Wu et al., 2009 

Sujiawan 35.54  104.52  1700  2 Zou et al., 2009 

QTH02 39.07  103.61  1302  1 Li et al., 2009 

Laotanfang 26.10  103.20  3579  2 Zhang et al., 2007 

Hongshui River2 38.17  102.76  1511  1 Ma et al., 2003, 

Ruoergai 33.77  102.55  3480  1 Cai, 2006 

Hongyuan 32.78  102.52  3500  2 Wang et al., 2006 

Dahaizi 27.50  102.33  3660  1 Li et al., 1988 

Shayema Lake 28.58  102.22  2453  1 Tang and Shen, 1996 

Luanhaizi 37.59  101.35  3200  5 Herzschuh et al., 2006 

Lugu Lake 27.68  100.80  2692  1 Zheng et al., 2014 

Qinghai Lake 36.93  100.73  3200  2 Shen et al., 2004 

Dalianhai 36.25  100.41  2850  3 Cheng et al., 2010 

Erhai ES Core 25.78  100.19  1974  1 Shen et al., 2006 

Xianmachi profile 25.97  99.87  3820  7 Yang et al., 2004 
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TCK1 26.63  99.72  3898  1 Xiao et al., 2014 

Yidun Lake 30.30  99.55  4470  4 Shen et al., 2006 

Kuhai lake 35.30  99.20  4150  1 Wischnewski et al., 2011 

Koucha lake 34.00  97.20  4540  2 Herzschuh et al., 2009 

Hurleg 37.28  96.90  2817  2 Zhao et al., 2007 

Basu 30.72  96.67  4450  3 Tang et al., 1998 

Tuolekule 43.34  94.21  1890  1 An et al., 2011 

Balikun 43.62  92.77  1575  1 Tao et al., 2010 

Cuona 31.47  91.51  4515  3 Tang et al., 2009 

Dongdaohaizi2 44.64  87.58  402  1 Li et al., 2001 

Bositeng Lake 41.96  87.21  1050  1 Xu, 1998 

Cuoqin 31.00  85.00  4648  4 Luo, 2008 

Yili 43.86  81.97  928  2 Li et al., 2011 

Bangong Lake 33.75  78.67  4241  1 Huang et al., 1996 

Shengli 47.53  133.87  52  2 CQPD, 2000 

Qingdeli 48.05  133.17  52  1 CQPD, 2000 

Changbaishan 42.22  126.00  500  2 CQPD, 2000 

Liuhe 42.90  125.75  910  7 CQPD, 2000 

Shuangyang 43.27  125.75  215  1 CQPD, 2000 

Xiaonan 43.33  125.33  209  1 CQPD, 2000 

Tailai 46.40  123.43  146  5 CQPD, 2000 

Sheli 45.23  123.31  150  4 CQPD, 2000 

Tongtu 45.23  123.30  150  7 CQPD, 2000 

Yueyawan 37.98  120.71  5  1 CQPD, 2000 

Beiwangxu 37.75  120.61  6  1 CQPD, 2000 

East Tai Lake1 31.30  120.60  3  1 CQPD, 2000 

Suzhou 31.30  120.60  2  7 CQPD, 2000 

Sun-Moon Lake 23.51  120.54  726  2 CQPD, 2000 

West Tai Lake 31.30  119.80  1  1 CQPD, 2000 

Changzhou 31.43  119.41  5  1 CQPD, 2000 

Dazeyin 39.50  119.17  50  7 CQPD, 2000 

Hailaer 49.17  119.00  760  2 CQPD, 2000 

Cangumiao 39.97  118.60  70  1 CQPD, 2000 

Qianhuzhuang 40.00  118.58  80  6 CQPD, 2000 

Reshuitang 43.75  117.65  1200  1 CQPD, 2000 

Yangerzhuang 38.20  117.30  5  7 CQPD, 2000 

Mengcun 38.00  117.06  7  5 CQPD, 2000 

Hanjiang-CH2 23.48  116.80  5  2 CQPD, 2000 

Hanjiang-SH6 23.42  116.68  3  7 CQPD, 2000 

Hanjiang-SH5 23.45  116.67  8  2 CQPD, 2000 

Hulun Lake 48.90  116.50  650  1 CQPD, 2000 

Heitutang 40.38  113.74  1060  1 CQPD, 2000 

Zhujiang delta PK16 22.73  113.72  15  7 CQPD, 2000 
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Angulitun 41.30  113.70  1400  7 CQPD, 2000 

Bataigou 40.92  113.63  1357  1 CQPD, 2000 

Dahewan 40.87  113.57  1298  2 CQPD, 2000 

Yutubao 40.75  112.67  1254  7 CQPD, 2000 

Zhujiang delta K5 22.78  112.63  12  1 CQPD, 2000 

Da-7 40.52  112.62  1200  3 CQPD, 2000 

Hahai-1 40.17  112.50  1200  5 CQPD, 2000 

Wajianggou 40.50  112.50  1476  4 CQPD, 2000 

Shuidong Core A1 21.75  111.07  -8  2 CQPD, 2000 

Dajahu 31.50  110.33  1700  2 CQPD, 2000 

Tianshuigou 34.87  109.73  360  7 CQPD, 2000 

Mengjiawan 38.60  109.67  1190  7 CQPD, 2000 

Fuping BK13 34.70  109.25  422  7 CQPD, 2000 

Yaocun 34.70  109.22  405  2 CQPD, 2000 

Jinbian 37.80  108.60  1400  4 CQPD, 2000 

Dishaogou 37.83  108.45  1200  2 CQPD, 2000 

Shuidonggou 38.20  106.57  1200  5 CQPD, 2000 

Jiuzhoutai 35.90  104.80  2136  7 CQPD, 2000 

Luojishan 27.50  102.40  3800  1 CQPD, 2000 

RM-F 33.08  102.35  3400  2 CQPD, 2000 

Hongyuan 33.25  101.57  3492  1 CQPD, 2000 

Wasong 33.20  101.52  3490  1 CQPD, 2000 

Guhu Core 28 27.67  100.83  2780  7 CQPD, 2000 

Napahai Core 34 27.80  99.60  3260  2 CQPD, 2000 

Lop Nur 40.50  90.25  780  7 CQPD, 2000 

Chaiwobao1 43.55  87.78  1100  2 CQPD, 2000 

Chaiwobao2 43.33  87.47  1114  1 CQPD, 2000 

Manasi 45.97  84.83  257  2 CQPD, 2000 

Wuqia 43.20  83.50  1000  7 CQPD, 2000 

Madagou 37.00  80.70  1370  2 CQPD, 2000 

Tongyu 44.83  123.10  148  5 CQPD, 2000 

Nanjing 32.15  119.05  10  2 CQPD, 2000 

Banpo 34.27  109.03  395  1 CQPD, 2000 

QL-1 34.00  107.58  2200  7 CQPD, 2000 

Dalainu 43.20  116.60  1290  7 CQPD, 2000 

Qinghai 36.55  99.60  3196  2 CQPD, 2000 
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Table 2. Earth’s orbital parameters and trace gases as recommended by the PMIP3 969 

project 970 

Simulation Orbital 

parameters 

  Trace gases   

 Eccentricity Obliquity(°) Angular precession(°) CO2(ppmv) CH4(ppbv) N2O(ppbv) 

PI 0,0167724 23,446 102,04 280 760 270 

MH 0,018682 24,105 0,87 280 650 270 

 971 

 972 

Table 3. PMIP3 model characteristics and references 973 

Model Name Modelling centre Type Grid Reference 

BCC-CSM-1-1 BCC-CMA (China) AOVGCM Atm: 128×64×L26; Ocean: 

360×232×L40 

Xin et al. (2013) 

CCSM4 NCAR (USA) AOGCM Atm: 288 × 192×L26; Ocean: 

320×384×L60 

Gent et al. (2011) 

CNRM-CM5 CNRM&CERFACS 

(France) 

AOGCM Atm: 256 × 128×L31; Ocean: 

362×292×L42 

Voldoire et al. (2012) 

CSIRO-Mk3-6-0 QCCCE, Australia AOGCM Atm: 192 × 96×L18; Ocean: 

192×192×L31 

Jeffrey et al. (2013) 

FGOALS-g2 LASG-IAP (China) AOVGCM Atm: 128 × 60×L26; Ocean: 

360×180×L30 

Li et al. (2013) 

FGOALS-s2 LASG-IAP (China) AOVGCM Atm: 128 × 108×L26; Ocean: 

360×180×L30 

Bao et al. (2013) 

GISS-E2-R GISS (USA) AOGCM Atm: 144 × 90×L40; Ocean: 

288×180×L32 

Schmidt et al. (2014a,b) 

HadGEM2-CC Hadley Centre (UK) AOVGCM Atm: 192 × 145×L60; Ocean: 

360×216×L40 

Collins et al. (2011) 

HadGEM2-ES Hadley Centre (UK) AOVGCM Atm: 192 × 145×L38; Ocean: 

360×216×L40 

Collins et al. (2011) 

IPSL-CM5A-LR IPSL (France) AOVGCM Atm: 96 × 96×L39; Ocean: 

182×149×L31 

Dufresne et al. (2013) 

MIROC-ESM Utokyo&NIES (Japan) AOVGCM Atm: 128×64×L80; Ocean: 

256×192×L44 

Watanabe et al. (2011) 

MPI-ESM-P MPI (Germany) AOGCM Atm: 196×98×L47; Ocean: 

256×220×L40 

Giorgetta et al. (2013) 

MRI-CGCM3 MRI (Japan) AOGCM Atm: 320 × 160×L48; Ocean: 

364×368×L51 

Yukimoto et al. (2012) 
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Table 4. Important values for each plant life form used in the ∆V statistical calculation 977 

as assigned to the megabiomes 978 

Megabiomes Life form   

 Trees Grass/grass Bare ground 

Tropical forest 1   

Warm mixed forest 1   

Temperate forest 1   

Boreal forest 1   

Grassland and dry shrubland 0.25 0.75  

Savanna and dry woodland 0.5 0.5  

Desert  0.25 0.75 

Tundra  0.75 0.25 

 979 

Table 5. Attribute values and the weights for plant life forms used by the ∆V statistic 980 

Life form Attribute    

Trees Evergreen Needle-leaf Tropical Boreal 

Tropical forest 1 0 1 0 

Warm mixed forest 0.75 0.25 0 0 

Temperate forest 0.5 0.5 0 0.5 

Boreal forest 0.25 0.75 0 1 

Grassland and dry shrubland 0.75 0.25 0.75 0 

Savanna and dry woodland 0.25 0.75 0 0.5 

weights 0.2 0.2 0.3 0.3 

Grass/Shrub Warm Arctic/alpine   

Grassland and dry shrubland 1 0   

Savanna and dry woodland 0.75 0   

Desert 1 0   

Tundra 0 1   

weights 0.5 0.5   

Bare Ground Arctic/alpine    

Desert 0    

Tundra 1    

weight 1    

 981 
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Table 6. Regression coefficients between the reconstructed climates by inverse 982 

vegetation models and observed meteorogical values 983 

Climate parameter Slope Intercept R ME RMSE 

MAT 0..82±0..02 0.92±0.18 0.89 0.16 3.25 

MTCO (jan) 0.81±0.01 -1.79±0.18 0.95 -0.17 3.19 

MTWA (jul) 0.75±0.03 4.57±0.60 0.75 -0.19 4.02 

MAP 1.15±0.02 32.90±18.41 0.94 138.01 263.88 

Pjan 1.01±0.02 0.32±0.47 0.94 0.52 8.89 

Pjul 1.30±0.03 -21.67±4.52 0.89 16.45 52.9 

The climatic parameters used for regression are the actual values. MAT annual mean 984 

temperature, MTCO mean temperature of the coldest month, MTWA mean temperature of the 985 

warmest month, MAP annual precipitation, RMSE the root-mean-square error of the residuals, 986 

ME mean error of the residuals, Pjan: precipitation of January, Pjul: precipitation of July, R is 987 

the correlation coefficient, ± stand error 988 
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 1003 

 1004 

Figure 1. Distribution of pollen sites during mid-Holocene period in China. Black circle is the 1005 

original China Quaternary Pollen Database, red circles are digitized ones from published 1006 

papers, green circles represent the three original pollen data used in this study. 1007 
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 1044 

Figure 2. Comparison of megabiomes for PI (first row) and the MH (second row): (a,b) 1045 

BIOME6000, (c,d) pollen data collected in this study. 1046 
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1052 
Figure 3. Model-data comparison for annual and seasonal (MTWA and MTCO) temperature 1053 

(K). For the left panel (a-c), points represent the reconstruction from IVM, shades show the 1054 

last 30-year means simulation results of multi-model ensemble (MME) for 13 PMIP3 models. 1055 

The grid mean value of temperature for each model, MME and reconstruction are also 1056 

displayed at the right panel (d-f). 1057 
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 1068 

Figure 4. Model-data comparison for annual and July precipitation (mm). For the left panel 1069 

(a,b), points represent the reconstruction from IVM, shades show the last 30-year means 1070 

simulation results of multi-model ensemble (MME) for 13 PMIP3 models. The grid mean 1071 

value of precipitation for each model, MME and reconstruction are also displayed at the right 1072 

panel (c,d). 1073 
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 1084 

Figure 5. Comparison of interpolated megabiomes distribution (plot in red rectangle) with the 1085 

simulated spatial pattern from BIOME4 for each model during mid-Holocene. 1086 
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 1089 

 1090 

 1091 

Figure 6. Changes in the extent of each megabiome as a consequence of simulated climate 1092 

changes for each model, both expressed as change relative to the PI extent of same 1093 

megabiome.  1094 
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 1099 

 1100 

Figure 6. Changes in the extent of each megabiome as a consequence of simulated climate 1101 

changes for each model, both expressed as change relative to the PI extent of same 1102 

megabiome. 1103 
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 1132 

 1133 

 1134 

 1135 

 1136 

Figure 7. Scatter plots showing temperature, cloud cover feedback and surface albedo 1137 

feedback changes during the MH. The values shown are the simulated 30-year mean anomaly 1138 

(MH-PI) for the 13 models. a, annual mean temperature relative to the annual mean cloud 1139 

cover feedback and d, annual surface albedo feedback. b, Summer (JJA) mean temperature 1140 

relative to the summer mean cloud cover feedback and e, Summer surface albedo feedback.  1141 

c, Winter (DJF) mean temperature relative to the summer mean cloud cover feedback and f, 1142 

Winter surface albedo feedback. The horizontal and vertical lines in plots represent the value 1143 

of 0. 1144 
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 1146 

Figure 8. Climate anomalies between the two experiments (6 ka and 6 ka_VEG) conducted in 1147 

CESM version 1.0.5. The anomalies (6 ka_VEG-6 ka) of temperature and precipitation at 1148 

both annual and seasonal scale are presented, and all these climate variables are calculated as 1149 

the last 50-year means from two simulations. 1150 
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