Enhanced Mediterranean water cycle explains increased humidity during MIS 3 in North Africa - Response to reviewers

We thank the two anonymous Reviewers of our draft manuscript for their detailed and constructive reviews, and are extremely pleased that they find our work both interesting and worthy of publication. We fully concur that the interpretation of the data we present is complicated by structure of the dataset, and we are happy both reviewers agree with us that the data itself is so unique as to make a pressing case for publication and, that our analysis of it is fair, balanced and reasonable.

Below, we respond to the reviewers in order (first Reviewer 1, then Reviewer 2). The location code given for each comment and response represents the page the comment occurs in, followed by paragraph and lines (C#, #, #).

Anonymous Reviewer 1

C2, 2, 3-4: “…..however, the clarity of the manuscript could be improved by changing the structure, especially the Discussion section.”

and C2, 2, 6-10: “…..the current structure of the manuscript makes it hard for the reader to follow the arguments........... and the factors influencing the stable isotopic composition of rainfall that need to be clarified / included.”

Response: obviously, we set out to make the draft manuscript as clear as possible, but we are happy to clarify further through editing and re-structuring as recommended by this reviewer. This will include re-ordering the Discussion so that information arrives in the most useful order, and further improving the clarity of the figures. It is important to us to make our work as accessible as possible! The “few additional points” are discussed below.

C2, 3, 4-9 continuing to C3, 1, 1-5: “However, I disagree with some of the statements made in the paragraph starting in line 66........... A northward shift of the tropical monsoon belt to ~25oN would be sufficient for this.”

Response: The Reviewer’s concern is essentially that we have exaggerated the lack of agreement between empirical evidence of wet conditions between 30-35°N and models, which generally do not get the monsoon so far north. They are also concerned we neglect the role of water recycling in the region 25-35°N. We are very happy to improve the discussion by including the water recycling argument, which we do overlook. On the other hand, we consider that the uncertainty in reconciling the empirical and physical lines of evidence is interesting and unresolved, and deserves to be highlighted in the way we do.

C2, 3, 5-7: “I would also like to see a bit more detail about what the lake and vegetation records from the Sahara suggest for the actual time period covered by the speleothems.”

Response: Although beginning to be recognised as a humid period elsewhere in the Mediterranean basin (Langgut et al., 2018), MIS3 is not well expressed in the Sahara region. Consequently, there is limited pollen or lake constraints to develop our understanding from. Generally, the Libyan interior is considered arid or hyperarid throughout the last glaciation (Cancellieri E. et al., 2016). Recent re-evaluation of lake levels in southwest Egypt indicates a groundwater fed system was active around 41 ka (Nicoli, 2018), which is similar to dates for springline tufa systems at Kharga Oasis (Smith et
We are not aware of continental MIS3 pollen records from the region, but marine pollen from Tunisia indicates more arid conditions through the last glacial than during the Holocene (Brun, 1991). There is a triple peak in runoff from the Nile recorded in the marine sediment record, with maxima at ~60, ~55 and ~35ka, indicating higher rainfall within the upper Nile catchment (Revel et al., 2010). We will include a summary of this evidence in the introduction, to provide better context for our new data.

C2, 3, 10-12: “A short discussion of the effects of different boundary conditions and how it could affect northern African moisture should be included.”

Response: We agree this would be useful, although keeping it short is a challenge for this complex system! Very briefly, the boundary conditions on northern African atmospheric moisture supply are 1) the sea surface temperature of the Atlantic and Mediterranean, 2) the surface water δ18O of the same ocean regions, 3) land surface temperature of Africa and to a lesser extent southern Europe, 4) insolation (especially with respect to ITCZ position) and 5) the zonal pressure gradient across northern Africa.

C3, 1, 12-25: “I also think there should be a section in the introduction about the present day rainfall systems in the region………… [error in citation of Celle-Jeanton et al 2001]…………..How were they [the rainfall end members] defined?……..How were the averages in Figure 9 calculated?”

Response: First – apologies for the error in the citation – the reference given in the References section is correct.

We agree that including more detail about the modern rainfall system in the Introduction would be helpful. We also agree that we can improve description and definition of the end members. The Bet Dagan and Tunisian datasets we use are shown in Figure 5a, and do indeed have different meteoric water lines and D-excess characteristics. The sub-categories of rainfall within the Sfax dataset occupy different positions on the same meteoric water line (Celle-Jeanton et al., 2001). We have checked, and confirm that the same is true for the Bet Dagan data.

The moisture sources used for the Bet Dagan site is taken from the regional meteorology (Black et al., 2010; Gat et al., 2003). Moisture sources for Tunisia are as defined by Celle-Jeanton et al (2001), and we refer readers to this primary reference. Averages are arithmetic means, as this better reflects behaviour over time within systems where water throughput in and out of the karst system is likely very rapid compared to speleothem growth – we do not expect to be able to resolve synoptic events in this record.

C3, 1, 25-27: “What synoptic processes were involved in the formation of rain clouds – convection, advection? What circumstances lead to convective rainfall in the region?”

Response: Convective systems, cyclones, upper-level troughs and static instabilities can all drive rainfall patterns in the Mediterranean basin and these modes are reviewed in (Dayan et al., 2015). Convection essentially reflects the relatively high SST of the Mediterranean during the winter, but rising air masses generally also need significant advection of moisture to drive significant rainfall. Upper level troughs reflect large-scale circulation (e.g. Red Sea Trough) or reflect lee effects downstream of mountains in the western Mediterranean, and promote rainfall in their regions of formation. The dominant cyclogenic centre is in the Gulf of Genoa, and secondary centres are placed in south Italy, Crete and Cyprus. Cyclonic systems can also penetrate from the Atlantic, where the high SST of the winter Mediterranean tends to sustain and amplify them, in close analogy to convection forcing. The key static instability is the penetration of the tropical air mass into the
subtropical Mediterranean, forming a ‘Saharan Cloud Band’ at middle and upper atmospheric levels. These originate from within the ITCZ. As Libya is very sparsely instrumented, there is no literature we can find to specifically identify the synoptic processes involved in cloud formation precisely over our site. However, the Levant region is very well instrumented. Here, most rainfall falls under winter, low pressure conditions, and is convective (Peleg and Morin, 2012). The responsible low pressure systems can relate to transient, shallow lows over northern Israel, or less frequently more long-lasting Cyprus Lows or Red Sea Trough systems (Peleg and Morin, 2012).

C3, 1, 27-29 continuing to C4, 1, 1-2: “Further adding to the point above, it seems that the discussion of factors influencing stable isotopic reconstruction of rainfall is focussed on only the effects of rainfall amounts, temperature and moisture source. These are important factors, but I think one important factor is missing and that is the effect of cloud formation processes on the stable isotopic composition of rainfall”.

And C4, 1, 9-11: “The cloud formation processes of these winter storms and convection will affect the isotopic composition of the resulting rainfall…….”

Response: This is indeed an aspect we neglect, and deserves some further discussion. The high level of agreement between the absolute values of the fluid inclusion data and modern precipitation isotope data make it likely that similar condensation process are responsible for the MIS3 rainfall as are responsible today, making source effects the first order control on composition. Moreover, the modern precipitation and meteoric water lines derived from them already encompass the range of different condensation styles found in the modern Mediterranean. There are undoubtedly considerable further advances to be made from northern African speleothem fluid inclusion research, and we expect these nuances to be delineated by these future studies.

C4, 2, 3-7: “I think the arguments made for the mixing of the different end members would be much more clear if the discussion of the stable isotopic composition and the d-excess would be combined including clear definitions of the values for the three depositional phases of the speleothem and the modern rainfall end members”.

Response: If the Reviewer feels this will make our work more accessible, we will be very happy to follow their guidance.

C4, 3, 1-5 continuing to C5, 1, 1-7: “There seems to be a discrepancy between some of the statements in the manuscript with regards to the Atlantic rainfall source……. I think this needs to be clarified……. First it is stated that increased convection during phases with a low precession parameter must be related to a northward shift of the ITCZ, then the convection is attributed to enhance internal convection.”

Response: We do not see the core discrepancy that troubles the Reviewer on this point. We can provide little positive evidence for Atlantic-sourced water in our record, and it is likely that other sites on the Mediterranean margin may show the same. Equally, it is undeniably true that to alter the Mediterranean freshwater budget the water must be external – and both the winter westerlies and the monsoon source much of that water from the Atlantic. We conclude that the key water responsible for Mediterranean freshening is likely to be arriving as runoff, not direct rainfall (which is not controversial – (Grant et al., 2016)). Primarily, we are aiming to warn colleagues working in the Mediterranean terrestrial sphere that their evidence of wet / dry changes may not relate directly to fresh / salty conditions in the Mediterranean Sea. Hopefully, this will become clearer with the restructuring this Reviewer recommends.
The suggestion that recycled water from the Sahara could be important is interesting. Water re-evaporated from rainfall in northern Africa should be isotopically light, reflecting this relatively depleted source. We do not see a population of depleted fluid inclusions that sit outside of the modern rainfall system that would suggest there is a substantial contribution from such a source.

CS, 4, 1-3: “The last paragraph of the section starting in line 123 is not really about ‘the central North African speleothem record’…… and should maybe be in its own chapter”.

Response: agreed.

CS, 6, 1-3 (repeated in CS, 9, 1-2): “The speleothems carbonate stable isotopic composition were published, so the sentence……. can be removed”

Response: Agreed.

CS, 7, 1-3: “I think this section should include a clear definition of the three depositional phases, giving the range of fluid inclusion stable isotopes and d-excess. This would make the comparison much easier.”

Response: Agreed.

CS, 11, 1-2 continued to C6, 1, 1-8: “Technical corrections”.

Response: Agreed – these changes should be made.

C6 continued into C7: “Figures” (presentational and formatting considerations for figures1, 4, 5, 6, 7 and 8).

Response: Agreed – these changes should be made.

Anonymous Reviewer 2

C2, 2, 6-10: “What I would like to see in the ms is an assessment of the extent to which the fluid inclusion isotope data are in isotopic equilibrium with the calcite.............. While isotope equilibrium is not a given for many speleothems, at least some consistency is to be expected between d18Occ and d18Ofi.”

Response: We concur with the reviewer’s sentiment that difficulties in the correlation of the time-series are “uncomfortable”, and this is why we approach the data by analysing large groups of datapoints rather than using a time-series approach. We are extremely pleased that this reviewer also feels that collection of the fluid inclusion dataset is “technically sound” (C1, 2, 7), and that the general accuracy of the dataset is supported by our quantitative analysis of it compared to modern rainfall isotopes (C2, 1, 1-2). It can only be concluded that these data are a good representation of this isotopic system, even though they look unusual.

We suggest that the apparently poor correlation of time-series likely arises from aliasing of a complicated signal in the fluid inclusions, and emphasise that it is unlikely the data presented are sufficiently resolved to demonstrate the two datasets actually have different structure. The correlation of the datasets is therefore ambiguous, rather than disproven. Sadly, the at least order-of-magnitude increase in the size of the fluid inclusion dataset needed to resolve this point is not realistic: indeed, this Reviewer notes that this dataset is already “comparatively large” (C1, 2, 1). The most appropriate way forward in this situation is to minimise the interpretation of the temporal
structure of the fluid inclusion data we present, and this is what we have done. We are pleased that despite their discomfort, this Reviewer supports publication of this “interesting study” (C3, 3, 13-17).

A conventional equilibrium test is difficult to perform for this dataset, as each measurement comprises a mixture of inclusions with different compositions from each layer, and therefore an unknown position on the mixing line between these end members. Should we compute mean values (arithmetic or volume weighted); or extrapolate end members, and test for equilibrium of both? All these judgements require assumptions we are not in a position to make. Consequently, we are only able to test for equilibrium in the subset of samples where the end members are sufficiently close together for the analysis to be fully “duplicable” (the subset shown in Figure 6). Modern mean winter temperature in Dernah (the nearest city to Susah Cave) is 11.9°C, with maximum 17.7°C and minimum 7.1°C. These fluid inclusions are therefore certainly at least close to isotopic equilibrium with the carbonate hosting them.

Table R1

<table>
<thead>
<tr>
<th>Duplicated Sample</th>
<th>Mean δ¹⁸Ofi</th>
<th>Mean δ²Hfi</th>
<th>Distance From Base (mm)</th>
<th>Age</th>
<th>Δ¹⁸Ooc</th>
<th>Temperature (°C)</th>
<th>Growth Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>-4.35</td>
<td>-21.51</td>
<td>15-20</td>
<td>66394-66388</td>
<td>-3.78</td>
<td>13.3</td>
<td>I</td>
</tr>
<tr>
<td>11</td>
<td>-5.69</td>
<td>-19.95</td>
<td>56-61</td>
<td>66493-64393</td>
<td>-3.96</td>
<td>8.7</td>
<td>I</td>
</tr>
<tr>
<td>18</td>
<td>-5.92</td>
<td>-21.75</td>
<td>109-118</td>
<td>63487-63302</td>
<td>-3.98</td>
<td>7.9</td>
<td>I</td>
</tr>
<tr>
<td>23</td>
<td>-5.45</td>
<td>-25.62</td>
<td>260-267</td>
<td>59106-58490</td>
<td>-4.51</td>
<td>11.8</td>
<td>I</td>
</tr>
<tr>
<td>25</td>
<td>-5.38</td>
<td>-25.54</td>
<td>395-400</td>
<td>51687-51648</td>
<td>-5.21</td>
<td>15.0</td>
<td>II</td>
</tr>
<tr>
<td>33</td>
<td>-4.70</td>
<td>-26.72</td>
<td>556-561</td>
<td>37260-37221</td>
<td>-4.37</td>
<td>14.3</td>
<td>III</td>
</tr>
<tr>
<td>29</td>
<td>-5.08</td>
<td>-22.72</td>
<td>597-602</td>
<td>36957-36921</td>
<td>-4.6</td>
<td>13.7</td>
<td>III</td>
</tr>
<tr>
<td>35</td>
<td>-5.03</td>
<td>-21.37</td>
<td>652-657</td>
<td>36581-36284</td>
<td>-3.82</td>
<td>10.8</td>
<td>III</td>
</tr>
<tr>
<td>7</td>
<td>-4.96</td>
<td>-23.74</td>
<td>767-772</td>
<td>35688-35647</td>
<td>-4.32</td>
<td>13.1</td>
<td>III</td>
</tr>
</tbody>
</table>

C2, 2, 17-19: “It would perhaps be useful if the authors discuss that a bit more in the context of the interpretation of their record”.

Response: Agreed.

C3, 1, 5-10: “Bringing a third water source in, as is suggested in the ms, cannot really be supported by the data from my perspective........... One could perhaps argue that slight isotope changes within each of these moisture sources can cause similar isotope patterns?”

Response: The Reviewer agrees with our analysis that the data does show a mixing pattern of western and eastern Mediterranean sources (C3, 1, 4-5). So, we assume the ‘third source’ mentioned above is therefore the Atlantic external water we argue for, and find in relatively small amounts. We happily agree this is the most speculative part of our analysis. However, we also note

that finding no Atlantic moisture at all in this dataset is a rather more startling interpretation than our suggestion that we find only a little. Atlantic-sourced moisture contributes to rainfall in central northern Africa today, and this mode of rainfall has previously been argued to be greater in past humid phases (Toucanne et al., 2015). We therefore find this point of speculation actually rather conservative in its nature.

C4, 2, 1-2: “I’d like to know where your duplicable samples from Fig. 6 are located in the stalagmite (stratigraphically). All in one period, or distributed all over?”

Response: See Table 1. All three Growth Phases are represented by at least one fully duplicated sample.

C4, 2, 2-4: “Do you have a better correlation with the d18O values of the carbonate when you consider the duplicable dataset only?”

Response: Beyond the differences between the three phases (see next response), it is difficult to judge whether there is true correlation between the reduced fluid inclusion dataset and the calcite isotope dataset, because the former is rather small. To make interpretations based on such a “correlation” would seem to us rather speculative. We are safer limiting the discussion of the time series.

C4, 2, 4-5: “Further, I’d like to see if, based on the duplicable set only, one can still observe clear differences between the three wet intervals.”

Response: The sample from Phase II is more depleted both in δ18Ofi and δ18Occ than any of the samples from Phases I and III, which show similar compositions. Our interpretation that the water driving this middle growth phase is different to the other two is therefore supported by this additional analysis.

C4 paragraphs 3, 4 and 5: “Figures”

Response: See response to Reviewer 1.

C4, 6, 1-2: Error in text.

Response: Correction will be made.

C4, 7, 1-5: “It would be interesting to know......... could you have any sea spray effect?”

Response: Given that we find no clear signal (or indeed, no variance beyond measurement uncertainty) in the Sr isotope record, these points cannot alter the interpretation and we are consequently unclear about their relevance (?).

C4, 8, 1-2 continued to C5, 1, 1-5: “Towards the end of the discussion, d13Ccc plays an important role. These data, however, are not shown........Shouldn’t d18Ofi do the same as d2Hfi if your claim is correct?”

Response: δ13Ccc is actually shown, within Figure 8b. We do make greater use of δ2Hfi towards the end of the discussion, because we are attempting to use the fluid inclusion data to better understand the carbonate isotope datasets, and hydrogen cannot be measured in carbonate and therefore provides valuable independent evidence of changes. As the fluid inclusion isotopes do correlate, it is indeed true that the δ18Ofi shows a similar pattern.

C5, 2, 1: “Your statement in line 392 to 394 is not clear to me.
Response: We have clarified that statement.

References

Enhanced Mediterranean water cycle explains increased humidity during MIS 3 in North Africa

Mike Rogerson

Yuri Dublyansky

Dirk L. Hoffmann

Marc Luetscher

Christoph Spötl

Paul Töchterle

1 School of Environmental Sciences, University of Hull, Cottingham Road, Hull, HU6 7RX, UK.

2 Institute of Geology, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria.

3 Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany

4 Swiss Institute for Speleology and Karst Studies (ISSKA), Serre 68, CH-2300 La Chaux-de-Fonds
Abstract

We report a new fluid inclusion dataset from Northeast Libyan speleothem SC-06-01, which is the largest speleothem fluid inclusion dataset for North Africa to date. The stalagmite was sampled in Susah cave, a low altitude coastal site, in Cyrenaica, on the northern slope of the Jebel Al-Akhdar. Speleothem fluid inclusions from latest Marine Isotope Stage (MIS) 4 and throughout MIS 3 (~67 to ~30 ka BP) confirm the hypothesis that past humid periods in this region reflect westerly rainfall advected through the Atlantic storm track. However, most of this moisture was sourced from the Western Mediterranean, with little direct admixture of water evaporated from the Atlantic. Moreover, we identify a second moisture source likely associated with enhanced convective rainfall within the Eastern Mediterranean. The relative importance of the western and eastern moisture sources seems to differ between the humid phases recorded in SC-06-01. During humid phases forced by precession, fluid inclusions record compositions consistent with both sources, but the 52.5 – 50.5 ka interval forced by obliquity reveals only a western source. This is a key result, showing that although the amount of atmospheric moisture advections changes, the structure of the atmospheric circulation over the Mediterranean does not fundamentally change during orbital cycles. Consequently, an arid belt must have been retained between the Intertropical Convergence Zone and the mid-latitude winter storm corridor during MIS 3 pluvials.

Introduction

Atmospheric latent heat is a major component of global and regional climate energy budgets and changes in its amount and distribution are key aspects of the climate system (Pascale et al., 2011). Equally, in mid- and low-latitude regions, changes in the water cycle have more impact on landscapes and ecosystems than changes in sensible heat (Black et al., 2010). Rainfall in semi-arid regions is thus one of the key climate parameters that understanding future impact on human societies depends upon (IPCC, 2014), making constraining of mid-latitude hydrology a globally significant research priority. These regions, however, have a particularly sparse record of palaeoclimate due to typically poor preservation of surface sedimentary archives (Swezey, 2001). North Africa is a region that fully
exhibits these limitations, and large areas present either no pre-Holocene record or else they present highly discontinuous deposits indicating major reorganisation of the hydroclimate, which are challenging to date (Armitage et al., 2007). North Africa also fully exhibits the progress palaeoclimatologists have made in understanding continental hydrological change from its impact on the marine system; our understanding of past North African hydroclimate is disproportionately drawn from records from the Mediterranean Sea (Rohling et al., 2015) and the eastern Central Atlantic (Goldsmith et al., 2017; deMenocal et al., 2000; Adkins et al., 2006).

Past changes in North African hydroclimate

Marine-based evidence offers a coherent model in which changes in the spatial distribution of insolation alter atmospheric circulation on orbital timescales \((10^4 \text{ to } 10^5 \text{ years})\) and force major reorganisations of rainfall in semi-arid regions such as the Sahel and southern Saharan regions (Rohling et al., 2015; Goldsmith et al., 2017). This result is at least partially confirmed in climate modelling experiments (Bosmans et al., 2015; Tuenter et al., 2003) and provides a conceptual framework in which fragmentary evidence of hydrological change on the adjacent continent can be understood (Rowan et al., 2000). There is 1) strong geochemical evidence that runoff from the African margin initiated the well-known “sapropel” thermohaline crises of the eastern Mediterranean (Osborne et al., 2010; Osborne et al., 2008) and, 2) convincing evidence that the southern margin of the Mediterranean was more variable than the northern in terms of the relative magnitude of precipitation changes and the distribution of flora, fauna and hominid populations (Drake et al., 2011).

However, we emphasise the fact that this understanding is largely drawn from evidence from outside continental North Africa, and that this limits our knowledge about the nature and impact of hydrological changes in this region.

There is strong evidence for a more humid climate throughout the Sahara and Sahel regions during the early Holocene (Gasse and Campo, 1994; Gasse, 2002; Fontes and Gasse, 1991; Prentice and Jolly, 2000; Jolly et al., 1998; Collins et al., 2017), and in older interglacial periods (Drake et al.,
2008; Armitage et al., 2007; Vaks et al., 2013). This evidence has been interpreted to indicate that humid conditions extended from the modern Sahel (~15°N) to the Mediterranean coast (30-35°N). However, this only partially agrees with model results, which do indicate orbitally forced migration of the monsoon belt but not across such a large spatial scale as suggested by the empirical data. Model experiments indicate that monsoonal rainfall occurring within the Intertropical Convergence Zone (ITCZ) likely extended no further north than ~23°N (Harrison et al., 2015). This well-recognised lack of agreement between rainfall fields in model experiments for the past and reconstructed hydrographies from the distribution of lakes and vegetation (via pollen) (Peyron et al., 2006) remains a major research problem. While some models also suggest that during times of high Northern Hemisphere insolation, enhanced westerlies advected Atlantic moisture into the basin (Brayshaw et al., 2009; Tuenter et al., 2003; Bosmans et al., 2015), high-resolution regional modelling indicates that this primarily affected the northern Mediterranean margin only (Brayshaw et al., 2009). This result is consistent with evidence of enhanced runoff at these times from the southern margin of Europe (Toucanne et al., 2015). On the African coast east of Algeria, the southern limit of enhanced precipitation arising from increased westerly activity within model experiments essentially lies at the coastline (~32°N), and does not appear to drive terrestrial hydrological changes. Overall, there is therefore a striking mismatch between the apparent humidity of Africa between 23 and 32°N in the empirical record (a zonally oriented belt ~1000 km in width) and the climate models. This region encompasses southern Tunisia, in which multiple lines of evidence for distinct and widespread periods of increased humidity provide a highly secure basis for enhanced rainfall during Northern Hemisphere insolation maxima (Ballais, 1991; PETIT-MAIRE et al., 1991), the Fezzan basin, in which compelling evidence for multiple lake highstands exists (Drake et al., 2011) and western Egypt, where large tufa deposits attest to higher past groundwater tables (Smith et al., 2004).

An emerging picture of MIS 3 as a humid period within the Mediterranean basin is developing (Langgut et al., 2018), and the current study focusses on this time period. However, MIS3 is not well expressed in the Sahara region. The Libyan interior is considered arid or hyperarid throughout the last glaciation (Cancellieri E. et al., 2016). Recent re-evaluation of lake levels in southwest Egypt...
indicates a groundwater fed system was active around 41 ka (Nicoll, 2018), which is similar to dates for springline tufa systems at Kharga Oasis (Smith et al., 2007). We are not aware of continental MIS3 pollen records from the region, but marine pollen from Tunisia indicates more arid conditions through the last glacial than during the Holocene (Brun, 1991). There is a triple peak in runoff from the Nile recorded in the marine sediment record, with maxima at ~60, ~55 and ~35ka, indicating higher rainfall within the upper Nile catchment (Revel et al., 2010).

It is unlikely that significant further progress will be made in understanding the palaeoclimate of North Africa without new empirical evidence of regional hydrological changes from which atmospheric dynamics can be delineated.

The central North African speleothem record

Speleothem palaeoclimatology has high potential for North Africa, but is only recently becoming established through key records developed for Morocco (Wassenburg et al., 2013; Ait Brahim et al., 2017; Wassenburg et al., 2016). Until recently, the only speleothem record published from central North Africa was a single continuous record from 20 to 6 ka BP from northern Tunisia (Grotte de la Mine). This record shows a large deglacial transition in both δ^{13}C and δ^{18}O (Genty et al., 2006), with oxygen isotopes indicating a 2-step change from a relatively isotopically heavy (-5‰) LGM (20-16 ka BP), through an intermediate (-6 to -7‰) deglacial period (16-11.5 ka BP) to a relatively isotopically light early Holocene. The δ^{13}C record indicates cool periods exhibiting higher carbon isotope values, more clearly delineating the Bølling-Allerød / Younger Dryas oscillation than δ^{18}O. This is assumed to reflect higher soil respiration during warm periods (Genty et al., 2006). A major change in the carbon isotopic composition occurred across the transition from the relatively arid glacial to the more humid Early Holocene, and indicates a significant reorganisation of the regional hydroclimate.

However, it is difficult to interpret these data in isolation. A recently reported speleothem record (SC-06-01) indicates that conditions in northern Libya during Marine Isotope Stage 3 (MIS 3) were more humid than today, and shows isotopic evidence of a teleconnection between temperature in Greenland and rainfall at the southern Mediterranean margin (Hoffmann et al., 2016). The oxygen isotope record indicates that the water dripping into the cave during MIS 3 was isotopically too heavy for the
moisture to be sourced from within the monsoon system (Hoffmann et al., 2016). However, beyond ruling out a southern source $\delta^{18}O_{cc}$ values alone are not sufficient to determine the origin of atmospheric vapour. Three distinct humid phases within MIS3 are reported from this speleothem: 65-61 ka, 52.5-50.5 ka and 37.5-33 ka. Phases I and III occur during times of low precession parameter, when summer insolation on the northern hemisphere is relatively increased. Phase II represents the first evidence for high obliquity being able to cause a pluvial period in the north African subtropics in the same manner as precession (Hoffmann et al., 2016). In SC06-01, all three growth phases are fractured into multiple short periods of growth, and show a marked temporal coherence with Greenland Dansgaard-Oeschger interstadials (Hoffmann et al., 2016). Here, we report fluid inclusion data from this speleothem and discuss how this helps resolve some of the issues discussed above.

Fluid Inclusions

Speleothem fluid inclusions are small volumes of water that were enclosed between or within calcite crystals as they grew, ranging in size from less than 1 μm to hundreds of μm (Schwarcz et al., 1976). This water represents quantities of ancient drip-water that can be interrogated directly to ascertain the isotopic properties of the oxygen ($\delta^{18}O_h$) and hydrogen (δ^2H_h) it comprises. This powerful approach circumvents some of the uncertainty inherent in the interpretation of the stable isotopic values preserved in the calcite comprising the speleothem itself ($\delta^{18}O_{cc}$, $\delta^{13}C_{cc}$). Fluid inclusion isotopes have been used to demonstrate changes in air temperatures (Wainer et al., 2011; Meckler et al., 2015; Arienzo et al., 2015) and in the origin of the moisture from which precipitation was sourced (McGarry et al., 2004; Van Breukelen et al., 2008). Fluid inclusions from speleothems in Oman have also been used to identify monsoon-sourced precipitation during interglacial phases (Fleitmann et al., 2003), providing a rationale for similar investigation of fluid inclusion isotope behaviour in North Africa.

In the case of fluid inclusions from northeastern Libyan speleothems, the boundary conditions for atmospheric moisture supply are 1) the sea surface temperature of the Atlantic and Mediterranean, 2) the surface water $\delta^{18}O_{sw}$ of the same ocean regions, 3) land surface temperature of Africa and to a
lesser extent southern Europe, 4) insolation (especially with respect to ITCZ position) and 5) the zonal
pressure gradient across northern Africa.

Modern rainfall system

Modern rainfall in central North Africa is dominated by relatively wet winters, and summers with
little, if any, precipitation. Convective systems, cyclones, upper-level troughs and static instabilities
can all drive rainfall patterns in the Mediterranean basin and these modes are reviewed in (Dayan et
al., 2015). Convection essentially reflects the relatively high SST of the Mediterranean during the
winter, but rising air masses generally also need significant advection of moisture to drive significant
rainfall. Upper level troughs reflect large-scale circulation (e.g. Red Sea Trough) or reflect lee effects
downstream of mountains in the western Mediterranean, and promote rainfall in their regions of
formation. The dominant cyclogenic centre is in the Gulf of Genoa, and secondary centres are placed
in south Italy, Crete and Cyprus. Cyclonic systems can also penetrate from the Atlantic, where the
high SST of the winter Mediterranean tends to sustain and amplify them, in close analogy to
convection forcing. The key static instability is the penetration of the tropical air mass into the
subtropical Mediterranean, forming a ‘Saharan Cloud Band’ at middle and upper atmospheric levels.
These originate from within the ITCZ. Libya is very sparsely instrumented, so we assume that
synoptic processes are similar to the Levant region. Here, most rainfall falls under winter, low
pressure conditions, and is convective (Peleg and Morin, 2012). The responsible low pressure systems
can relate to transient, shallow lows north of the area in which rainfall is occurring, or less frequently
more long-lasting Cyprus Lows or Red Sea Trough systems (Peleg and Morin, 2012).

Material and Methods

SC-06-01 is a 93-cm long stalagmite from Susah Cave (Fig. 1, 32°53.419’ N, 21°52.485’ E), which
lies on a steep slope ~200 m above sea level in the Al Akhdar massif in Cyrenaica, Libya (Fig. 1). The
region is semi-arid today, with mean annual temperature ~20°C and receiving less than 200 mm
precipitation per year, mostly in the winter (October to April). The Al Akhdar massif has thin soil
cover and a Mediterranean “maquis” vegetation. Susah Cave is hydrologically inactive today, and all
formations are covered with dust. The chronology of the speleothem and the general features of its
growth and δ¹⁸Occ record are published elsewhere (Hoffmann et al., 2016), and this study focuses on
fluid inclusion isotopes, their impact on the interpretation of δ¹⁸Occ and to a lesser extent on δ¹³Ccc and
Sr isotopes.

Calcite isotopes were measured using a ThermoFisher Delta™XL isotope ratio mass spectrometer
(IRMS) equipped with a Gasbench II interface at the University of Innsbruck, according to standard
methods (Spötl, 2011). Fluid inclusions were examined in doubly-polished thick section (100 μm)
slides, using a Nikon Eclipse E400 POL microscope. The isotope composition of fluid inclusion water
was measured at the University of Innsbruck using a Delta V Advantage IRMS coupled to a Thermal
Combustion/Elemental Analyser and a ConFlow II interface (Thermo Fisher) using the line, crusher
and cryo-focussing cell described in Dublyansky and Spötl (2009). Samples were cut with a diamond
band saw along visible petrographic boundaries in the speleothem, and therefore represent specific
growth increments. Samples were analysed at least in duplicate, with the standard sampling protocol
used on the Innsbruck instrument (Dublyansky and Spötl, 2009). To exclude the possibility of post-
depositional diagenetic alteration, petrographic thin sections were investigated using transmitted-light
microscopy. Results are detailed in Supplemental Information 1.

Optical emission spectroscopy (OES) was used to measure a variety of elemental concentrations,
including Sr, along the main growth axis of SC-06-01. The low spatial resolution of trace elemental
analyses (every 10 mm) does not allow to investigate time series of elemental variation but was useful
to assess Sr contents of the samples for Sr isotope measurements by thermal ionisation mass
spectrometry (TIMS). The samples for TIMS analyses were drilled using a hand held micro drill with
a tungsten carbide drill bit. Sample sizes range between 2 and 4 mg, thus we achieved a minimum Sr
load of 100 ng on the Re filaments for TIMS. Chemical sample preparation and subsequent TIMS
measurement were done following standard protocols (Charlier et al., 2006). No spike was added to
the samples prior to chemical purification. The Sr isotope measurements were done on a Triton TIMS
housed at the Bristol Isotope Group laboratory, University of Bristol.
Results

Fluid inclusions

Petrographic analysis of the thick sections indicates that the distribution of fluid inclusions is highly variable, with macroscopically opaque “milky” calcite typical of rapidly growing intervals containing sometimes very abundant inclusions and the discoloured, translucent calcite of the slowly growing intervals being almost inclusion-free (Fig. 2). In most samples, two distinct populations of inclusions were identified with numerous small intra-crystalline inclusions and larger, but less frequent, inter-crystalline inclusions. Consequently, the volume of water analysed per sample was very variable (Fig. 3). Indeed, a significant proportion of individual fluid inclusion measurements had analyte volumes too small (<0.1 μL) to have confidence in the isotope results. A small number of analyses failed due to excessive water saturating the detector, and these have not been included in the datasets presented here. The major impact of the highly variable availability of inclusions in the speleothem is a significant bias in the analyses towards the most rapidly growing, and therefore probably humid, time periods. Three rapidly-growing phases are reported in SC-06-01, named Phase I (62-67ka), Phase II (53-50 ka) and Phase III (37-33 ka) (Hoffmann et al., 2016). Fluid inclusions for Phases I and II are isotopically similar (with δ¹⁸O₁ᵢ ranging from -7.5 ‰ to -3.8 ‰ and from -8.5 ‰ to -3.2‰ respectively and δ²H₁ᵢ ranging from -26.7 ‰ to -18.6 ‰ and from -29.4 ‰ to -16.1 ‰ respectively). However, compositions for Phase II are different, particularly with respect to deuterium (δ¹⁸O₂ᵢ ranging from -8.9 ‰ to -4.5 ‰ and δ²H₂ᵢ ranging from -38.3 ‰ to -25.1 ‰).

In most samples, achieving within-error replication (δ²H ±1.5‰, δ¹⁸O: ±0.5‰) of both δ¹⁸Oᵢ and δ²Hᵢ was difficult. This must reflect more than one population of inclusions with different properties being present within at least some samples, and each replicate analysis represents some proportion of mixing between these populations. This suggests significant short-term variability in the composition of the water stored in the presumably rather small soil/epikarst zone overlying the cave. Consequently, any given time interval risks being under-sampled with regard to variability at that time. Although there is some visual correspondence between the δ¹⁸Oᵢ, δ²Hᵢ and δ¹⁸Oₑ data series
It seems that the fluid inclusion time series risks aliasing changes seen in the calcite isotope time series. Consequently, the usefulness of interpretation that can be drawn from the episodic SC-01-06 fluid inclusion dataset when arranged as a time series is limited. We and we therefore largely limit our discussion to the properties of the population of waters as a full dataset. This approach minimises the impact the different populations can have on interpretation.

Figure 5 shows the SC-06-01 fluid inclusion dataset alongside Global Natural Network of Isotopes in Precipitation (GNIP) datasets from Tunis World Meteorological Office (WMO station 6071500), Sfax (6075000) and Bet Dagan (4017900) (locations in Fig. 1) and other published precipitation datasets. The Tunisian datasets fit within a trend typical of the Global Meteoric Water Line (GMWL) (δ^2H = $8\delta^{18}$O + 10). However, all this data lies along a single moisture evolution trend, and the Tunis and Sfax populations overlap. The data from Bet Dagan exhibits a trend which is extremely close to being parallel to the global trend dominating in Tunisia, but translated by +10‰ in δ^2H, reflecting greater deuterium excess. This is typical of the Mediterranean Meteoric Water Line (MMWL) (Ayalon et al., 1998; Gat et al., 2003), and reflects internal recycling of water with consequent deuterium enrichment in the eastern Mediterranean and its bordering continental areas.

The values of δ^2H and δ^{18}O fit within the range of values for modern precipitation, giving confidence that these measurements do reflect past precipitation composition despite the influence of multiple inclusion populations. The lack of apparent scatter towards positive δ^{18}O values both in the precipitation and fluid inclusion datasets further indicates that the data represent little-altered precipitation values, and that surface re-evaporation was minor at least during humid phases. However, the range of fluid inclusion values is inconsistent with either an exclusively Tunis-type or an exclusively Bet Dagan-type moisture source for precipitation in Cyrenaica during MIS 3. Even when all but the subset of fluid inclusion analyses who replicates are similar are excluded (Fig. 6), the population is split between the Tunisian and Israeli precipitation end-members.
Strontium isotopes

The $^{87}\text{Sr}/^{86}\text{Sr}$ signal in the SC-06-01 record is rather invariable (Fig. 7), with all analyses indicating values within analytical error. Mean values vary between 0.708275 and 0.708524 and although there is an apparent trend from maxima at 34 and 64 ka BP with a minimum at 52 ka BP, which mimics the precession history, this is too weak to be significant relative to the error.

Calcite carbon isotopes

Both $\delta^{13}\text{C}_{cc}$ and $\delta^{18}\text{O}_{cc}$ show similar trends throughout the record (Fig. 8), indicating that depleted oxygen isotopes coincide with depleted carbon isotope values. This does not appear to arise from fractionation on the speleothem surface (Hoffmann et al., 2016), and so represents changes in soil bioproductivity acting in concert with changes in precipitation.

Discussion

Moisture advection during Libyan humid phases

The range of values of both individual and replicated fluid inclusion measurements can only be reconciled with multiple moisture sources. Most of the fluid inclusion data cluster between the weighted mean value for precipitation collected at Sfax with a mixed source from the Atlantic and western Mediterranean, (“Sfax Mixed” $\delta^{18}\text{O}_{ppt} = -4.93 \%_o$, $\delta^2\text{H}_{ppt} = -26 \%_o$; Fig. 9) and High Precipitation events at Bet Dagan ($\delta^{18}\text{O}_{ppt} = -6.33 \%_o$, $\delta^2\text{H}_{ppt} = -21.46 \%_o$; Fig. 9). This value is representative of many of the largest individual precipitation events at Sfax in the period 1992-1999 associated with a Western Mediterranean moisture source (Celle-Jeanton et al., 2001). However, the fluid inclusion data cluster also extends to the end member reflecting pure western Mediterranean sources at Sfax ($\delta^{18}\text{O}_{ppt} = -3.99 \%_o$, $\delta^2\text{H}_{ppt} = -20.3 \%_o$; Fig. 9), indicating a third end member composition with higher $\delta^{18}\text{O}_{ppt}$. Consequently, we consider that this data reflects a dynamic balance of moisture sources contributing to rainfall in Cyrenaica which resembles modern precipitation in Tunisia and Israel in roughly equal proportions.
The weighted mean value for Atlantic-sourced precipitation events in Sfax ($\delta^{18}O_{ppt} = -6.7 \, \%_o$, $\delta^2H_{ppt} = -37.7 \, \%_o$) is distant from any observed fluid inclusion value (Fig. 9). Likewise, compositions similar to the high amount Atlantic-sourced rainfall events in Sfax ($\delta^{18}O_{ppt} = -8 \, \%_o$, $\delta^2H_{ppt} = -46 \, \%_o$) are not reflected in the fluid inclusion data in Figure 9 suggesting a relatively low admixture of water from this source. A simple 3-end-member unmixing of fluid inclusion isotope values using the quantitative approach of (Rogerson et al., 2011) indicates that Atlantic-sourced water supplied no more than 15 % of the mass for any given fluid inclusion analysis. However, the coherence of fluid inclusion isotope ratios with the weighted mean of “mixed” Atlantic and Mediterranean precipitation at Sfax suggests that this small Atlantic influence is nevertheless persistent, and this must reflect synoptic westerly storms (Celle-Jeanton et al., 2001).

The simplest interpretation of the Susah Cave fluid inclusion data is therefore that they reflect a dynamic balance of moisture sources contributing to rainfall in Cyrenaica which resembles modern precipitation in Tunisia and Israel in roughly equal proportions. An alternative way to explain the trend of some points towards enriched $\delta^{18}O$ values on the GMWL would be the temperature-dependent fractionation that would be caused by a shift to summertime precipitation. We do not favour this explanation, as it requires a more fundamental reorganisation of regional atmospheric circulation than our suggestion that the winter storms observed today penetrated further east in the past.

Within the data presented in Figure 9, the Phase II fluid inclusions are exceptional, because none show compositions consistent with a Bet Dagan source. Indeed, all the measurements for this period resemble GMWL compositions. This seems to reflect a fundamental difference between this period and Phases I and III, where all precipitation is drawn from synoptic westerly storms in the winter. Consequently, it would seem that during the Obliquity-forced period of humidity the Israeli-mode precipitation did not occur in the manner that it did during both Precession-forced periods of humidity.
Although the isotopic composition of Mediterranean water will have been more enriched during MIS 3 due to ice-volume effects and increased Mediterranean water residence time (Rohling and Bryden, 1994), the similar mean values of the SC-06-01 fluid inclusion waters compared to modern precipitation indicates the meteoric waterline at this time was not displaced to more enriched isotope values. This could reflect balancing of source water effects by changes in kinetic fractionation during evaporation (Goldsmith et al., 2017), which is controlled by normalised relative humidity. This would imply that the Mediterranean air masses were less saturated with moisture than today during MIS 3, which is consistent with the high deuterium excess $\delta^2H_{\text{excess}}$ values found in some fluid inclusion samples (Fig. 10), but is difficult to reconcile with the increased precipitation recorded in SC-06-01.

In addition, changes in cloud height and cloud formation processes could possibly alter the isotopic fractionation in the atmosphere. Alternatively, the source water effect may be countered by increased runoff from the margins of the Mediterranean supplying isotopically depleted water to evaporating surface water. Isotopic “residuals” consistent with this argument are identified throughout MIS 3 in the eastern Mediterranean marine core LC21 (Grant et al., 2016), and this is also consistent with higher rainfall in Cyrenaica. We therefore favour the latter explanation.

We conclude that our results likely reflect patterns of atmospheric transport in MIS3 comparable to today, it is possible that some moisture was drawn from re-evaporation of monsoon rain falling further south, with no modern analogue in the region (Aggarwal et al., 2016). This water would likely be extremely isotopically light, reflecting both monsoon-type compositions and further fractionation during secondary evaporation. Moreover, a shift to more southerly-sourced regions is inconsistent with Sr-isotope data from Susah Cave. Sr-isotopes are known to be sensitive to changes in transport of Saharan dust (Frumkin and Stein, 2004), but even considering the most slow-growing and most rapidly-growing parts of SC-06-01, no significant difference in $^{87}\text{Sr} / ^{86}\text{Sr}$ has been identified.

Although at times of extreme rainfall in the region, Saharan / Sahellian dust production is suppressed, this is not true during MIS3 (Collins et al., 2013). It seems that despite changes in the intensity of moisture transport during the period 65-30 ka BP, there is no large-scale change in atmospheric dust transport direction. This further supports our conclusion from the fluid inclusions that the Eastern
Mediterranean rainfall operating during precession parameter minima reflects enhanced internal convection rather than transport of moisture from the east or south with an atmospheric circulation pattern that prevails today.

Different sources at different times?

Phase II fluid inclusions are exceptional, because none show compositions consistent with a Bet Dagan source. This is most clearly reflected in the δ^2H$_{excess}$ values (Fig. 10), which show consistently low values across Phase II comparing well to the Western water end-member (\sim10 ‰) and not the Eastern water end-member (\sim30 ‰). The lack of Eastern water during Phase II seems to reflect a fundamental difference between this period and Phases I and III, as during this time all precipitation was drawn from synoptic westerly storms in the winter. Consequently, it would seem that during the Obliquity-forced period of humidity, the Israeli-mode precipitation did not occur in the manner that it did during both Precession-forced periods of humidity. This difference in the origin of the moisture feeding rainfall may explain the difference in average δ^{18}O$_{cc}$ during these different phases (Hoffmann et al., 2016), and why during some periods in Susah Cave show strong correlation with North Atlantic temperature, whereas others do not (Hoffmann et al., 2016).

Palaeoclimatological significance

Most of the precipitation supplied to Cyrenaica during MIS 3 was sourced from within the Mediterranean basin, which exhibited a similar meteoric water cycle to that observed today, albeit with more freshwater influence. This is a critical observation, as internally-cycled water cannot alter the basin-scale hydrological balance and therefore is a minor influence on deep convection in the Mediterranean Sea (Bethoux and Gentili, 1999). The precipitation feeding runoff must be externally sourced if it is to materially change Mediterranean functioning, as is observed during sapropel events (Rohling et al., 2015). As most of the precipitation identified in SC 06-01 is sourced internally to the Mediterranean, only the small, Atlantic-sourced portion of this water can be assumed to play a role in the internally-cycled water we report from Susah Cave cannot alter the basin-scale hydrological balance, and therefore is a minor influence on deep convection in the Mediterranean Sea (Bethoux and Gentili, 1999); put simply, this means evidence of increased rainfall in the coastal
Mediterranean freshening. This conclusion is likely transferable to any site on the continental margins of the Mediterranean, does not provide evidence for decreased net evaporation in the marine system. This observation is critical, as it decouples the processes of precipitation on the Mediterranean margins with sapropel formation, and consequent changes in momentum transfer to the North Atlantic (Rogerson et al., 2012). Consequently, we recommend that great care is taken to determine whether past precipitation peaks reflect significantly enhanced external water advection before any continental record can be used as a basis for inferring Mediterranean freshening.

Palaeoclimatological significance

The consistency of MIS 3 and modern precipitation isotope values permits comparison of fluid inclusion values and precipitation magnitude records at Sfax and Bet Dagan. Most of the water reaching Susah Cave seems to have been derived from large-magnitude rainfall sourced from the Western or Eastern Mediterranean surface water. The primary difference between these end-members is the level of D_{excess} with the Western water ~10 ‰ and Eastern water ~30 ‰. This difference allows the influence of these two sources to be compared between the three major humid phases (Hoffmann et al., 2016) recorded in SC-06-01 (Fig. 10). These phases reflect changes in the distribution of insolation as a consequence of changes in orbital tilt, with Phase I (65 to 61 ka BP) and Phase III (37.5 to 33.5 ka BP) associated with reflecting Northern Hemisphere heating during precession minima and Phase II (52.5 to 50.5 ka BP) which has been associated with a change in obliquity. In all cases, the peak in rainfall recorded by the speleothem leads the orbital peak by ~3 ka. Phases I and III both show very elevated D_{excess}, whereas no such values were found in Phase II. This provides further support to our conclusion that the Eastern Mediterranean source contributed significant moisture to Cyrenaica during precession-related humid events, but that it did not during the obliquity-related humid event. This difference in the origin of the moisture feeding rainfall may explain the difference in average δ^{18}O during these different phases (Hoffmann et al., 2016).

The varying balance between Eastern and Western precipitation is diagnostic of changing basin-scale atmospheric structure during the past. Despite the low level of Atlantic moisture contributing to rainfall in Libya in MIS 3, Eastern-sourced rainfall may occasionally relate to wintertime storms, as today.
The significant enhancement of the magnitude and regional significance of this convective rainfall observed at Susah Cave must reflect greater atmospheric convergence due to northward displacement of the annual average position of the ITCZ (Tuenter et al., 2003). Contrary to this, the Western-sourced moisture is transported ~1500 km eastwards to reach Cyrenaica, which must reflect the mid-latitude storm track (Brayshaw et al., 2009). Consequently, although it does not seem that Atlantic moisture is important to the climatology of Cyrenaica, the momentum derived from Atlantic winter storms predicted by regional climate modelling (Brayshaw et al., 2009) and observed on the northern Mediterranean margin (Toucanne et al., 2015) remains pivotal to supplying moisture to North Africa. Consequently, the North Atlantic heat budget provides an important control on northern African rainfall in the past. In contrast, this control cannot explain changes in the Eastern-sourced rainfall revealed by our analysis. Eastern-sourced rainfall may occasionally relate to wintertime storms, as today (Gat et al., 2003), but essentially reflects convective rainfall with relatively small advection distances. Within obliquity-forced phases, advective transport of moisture alone drives humidity. In contrast, we conclude that during precession-forced humid phases, the impact of advective transport of moisture from the Western to the Eastern Mediterranean basin occurs alongside strong convergence and convective rainfall within the eastern basin. The dilution of the advective signal by internal convective rainfall may be the reason why Dansgaard-Oeschger cycles in the North Atlantic are well reflected at Susah Cave during high precession (Hoffmann et al., 2016), whereas there is weaker correspondence of Cyrenaican rain and North Atlantic heat during low precession. It is likely this arises due to greater atmospheric convergence due to northward displacement of the annual average position of the ITCZ (Tuenter et al., 2003).

Further constraint on large-scale atmospheric advection can be provided by Sr isotopes, which are known to be sensitive to changes in transport of Saharan dust (Frumkin and Stein, 2004). Even considering the most slow-growing and most rapidly growing parts of SC-06-01, no significant difference in 87Sr/86Sr was identified. This is unexpected and significant, as climate-driven changes in 87Sr/86Sr have previously been reported from speleothems in the Mediterranean region (Frumkin and...
Palaeoclimatologically, our analysis reveals that 1) during northern hemisphere insolation peaks reflecting Precession, coastal Libya experiences greater westerly advection of water due to an increase in Atlantic heat and greater convective rainfall due to migration of the ITCZ whereas 2) insolation peaks reflecting obliquity show increased Atlantic heat and westerlies, but no comparable change in the ITCZ position.

It seems that despite changes in the intensity of moisture transport during the period 65-30 ka BP, there is no large-scale change in atmospheric dust transport direction. This further supports our conclusion from the fluid inclusions that the Eastern Mediterranean rainfall operating during precession minima reflects enhanced internal convection rather than transport of moisture from the east or south with an atmospheric circulation pattern that prevails today.

Implications for Susah Cave $\delta^{18}O_{\text{cc}}$

Aside from those data with high deuterium excess, which reflect influence from the Eastern Mediterranean source, much of the variance in the fluid inclusion dataset is captured by a two-end-member mixing system resembling modern rainfall in Tunisia. One end-member is the Western Mediterranean source of Celle-Jeanton et al. (2003, 2001), but the other is isotopically too heavy to be identified with the Atlantic source. Rather, it resembles the “Sfax Mixed” population defined by Celle-Jeanton et al. (2003, 2001), reflecting a mixed source of moisture from both the Western Mediterranean and Atlantic. Consequently, although quantitatively minor amounts of Atlantic water reached the site, changes in the moisture advection driven by westerly winds had a strong influence on $\delta^{18}O_{\text{dripwater}}$ trends in time. At Sfax today, this influence causes a prominent bimodal behaviour with two rainfall maxima with different $\delta^{18}O_{\text{ppr}}$, which eliminates a simple and quantitative rainfall amount control on precipitation, which can be observed at Tunis (WMO code 6071500, https://nucleus.iaea.org/wiser/gnip.php). Furthermore, addition of heavy rain events derived from the Eastern Mediterranean aliases the tendency towards depleted $\delta^{18}O_{\text{dripwater}}$, as this water is also more depleted than modern Western Mediterranean precipitation. In the Bet Dagan data, there is also a tendency to lower $\delta^{18}O_{\text{ppr}}$ with higher precipitation amount, but the relationship between rainfall amount and rainfall isotope composition is not identical to Tunis. Ultimately, it seems likely that
rainfall amount changes at Susah Cave do cause depleted (enriched) $\delta^{18}O_{cc}$ values to be associated with high (low) rainfall, but this is too complicated by independent changes increases (decreases) in westerly moisture advection and increases (decreases) in convergence. Qualitatively, all these parameters are expected symptoms of North African humid phases and so these trends remain a valuable expression of climatic variability. Quantitatively, more information is required to translate the trends into fully-functional palaeoclimatologies, and this analysis pivots on whether $\delta^{18}O_{cc}$ trends reflect changes in water deficit / surplus in Cyrenaica.

Although it is likely the oxygen isotope fractionation during calcite precipitation occurred close to isotope equilibrium (Hoffmann et al., 2016), there is a good degree of correspondence between positive and negative phases in $\delta^{18}O_{cc}$ and $\delta^{13}C_{cc}$ indicating a shared control. Indeed, $\delta^{13}C_{cc}$ has a markedly higher amplitude variability than $\delta^{18}O_{cc}$. More isotopically depleted carbon may represent increased incorporation of respired soil carbon, increased dominance of C3 over C4 plants, and/or decreased degassing of aquifer water (Baker et al., 1997). Today, the Susah Cave location on Jebel Malh has very thin soil cover, colonised by shrubby maquis vegetation. Soil respiration and colonisation by C3 plants is limited by the strong water deficit of the region, and aquifer water outgassing is enhanced by long residence times due to low water infiltration. Increased water availability will progressively deplete the $\delta^{13}C$ of dripwater by all three mechanisms described above. Consequently, all three of these processes promote correlation between $\delta^{13}C_{cc}$ and precipitation amount. Within the $\delta^{18}O_{cc}$ data series, peak growth rates occur both during relatively enriched and relatively depleted isotope stages. This is not the case for $\delta^{13}C_{cc}$, which more consistently shows depleted values during times of rapid growth (SC-06-01 growth phases shown in Fig. 11). We therefore consider it likely that $\delta^{13}C_{cc}$ indeed more accurately records rainfall amount than $\delta^{18}O_{cc}$ does.

Conclusions and Implications

A key feature of this combined dataset is the long-term sinusoidal trend in both the $\delta^{18}O_{cc}$ and $\delta^{2}H_{fi}$ reflecting the differing rainfall regimes dominant between Humid Phases I and III compared to Phase II. This is not developed in $\delta^{13}C_{cc}$ implying that the process forcing the long-term cycle in moisture
source is not impacting on carbon dynamics in the soil and epikarst. We therefore conclude that there is a mixed amount and source control on $\delta^{18}O$ and δ^2H in the SC-01-06 record, whereas $\delta^{13}C$ is dominantly controlled by water availability.

The fluid inclusions from SC-06-01 show that rainfall compositions in the southeast Mediterranean region during MIS 3 were comparable to modern rainfall compositions recorded in regional GNIP datasets. However, the diversity of compositions is impossible to explain with a single rainfall source, rather indicating that moisture derived from the Atlantic, the Western Mediterranean and the Eastern Mediterranean basins have all contributed to MIS 3 precipitation in Libya. This requires both enhanced westerly advection of moisture to this region, reflecting the Atlantic storm track, and enhanced convective rainfall within the Eastern Mediterranean basin. There is some indication that these two mechanisms differ in terms of their response to orbital forcing, with precession parameter minima enhancing westerly advection and internal convection, whereas obliquity minima enhance westerly advection without significantly altering internal convection.

Crucially, this picture is most consistent with atmospheric circulation over the Mediterranean remaining essentially unchanged during precession cycles. This is consistent with regional climate model experiments showing major enhancement of winter westerly storm activity, but it not consistent with the extreme migration of the ITCZ, where the monsoon belt approaches the North African coast. The strong implication is that a significant arid belt is retained between the Mediterranean and the ITCZ, even when northernmost Africa is experiencing significantly enhanced rainfall.

It is likely that rainfall amount played a role in controlling the isotopic composition of the calcite in this speleothem ($\delta^{18}O_{cc}$). However, the more depleted values reflecting higher rainfall are also consistent with different mixing between the end members identified by the fluid inclusion analysis. The structure of the $\delta^{13}C_{cc}$ record provides an independent means of assessing changes in water surplus / deficit, as more depleted values will reflect lower aquifer residence times, enhanced soil respiration and changes in vegetation structure, all of which are limited by water availability in this
semi-arid environment. Combined analysis of the proxies provides a powerful new demonstration that the northeast Libyan climate was more humid during millennial-scale warm periods in the North Atlantic realm, but quantification will be dependent on generating unambiguous independent evidence for water availability in the soil and epikarst.

Acknowledgements

We thank the Royal Geographical Society for the pump-priming investment that began this work (Thesiger-Oman International Fellowship 2009), the Natural Environment Research Council for providing the funds that made the analytical work on this project possible (NE/J014133/1) and The Leverhulme Trust for funding activities within the associated International Network (IN-2012-113).

References

The modern and Last Glacial Maximum hydrological cycles of the Eastern Mediterranean and the
European and North African δ13C stalagmite profiles
composition of air moisture over the Mediterranean Sea: An
isotope
strontium and uranium isotopes in a Jerusalem speleothem, Earth and Planetary Science Letters,
Design of a new crushing system and on
Palaeohydrology of the Fazzan Basin and surrounding regions: The last 7 million years,
Palaeogeography Palaeoclimatology Palaeoecology, 263, 131-145, 10.1016/j.palaeo.2008.02.005,
2009.
Drake, N. A., Blench, R. M., Armitage, S. J., Bristow, C. S., and White, K. H.: Ancient watercourses and
458-462, 10.1073/pnas.1012231108, 2011.
Dublyansky, Y. V., and Spötl, C.: Hydrogen and oxygen isotopes of water from inclusions in minerals:
Design of a new crushing system and on-line continuous-flow isotope ratio mass spectrometric
last 330,000 years in Northern Oman from fluid-inclusion evidence in speleothems, Quaternary
Fontes, J.-C., and Gasse, F.: PALHYDAF (Palaeohydrology in Africa) program: objectives, methods,
major results, Palaeogeography, Palaeoclimatology, Palaeoecology, 84, 191-215, 10.1016/0031-
strontium and uranium isotopes in a Jerusalem speleothem, Earth and Planetary Science Letters,
Gasse, F., and Campo, E. v.: Abrupt post-glacial climate events in west Asia and north Africa
Gasse, F.: Diatom inferred salinity and carbonate oxygen isotopes in Holocene waterbodies of the
western Sahara and Africa (Africa), Quaternary Science Reviews, 21, 737-767, 2002.
composition of air moisture over the Mediterranean Sea: An index of the air-sea interaction pattern,
Tellus, Series B: Chemical and Physical Meteorology, 55, 953-965, 10.1034/j.1600-
Genty, D., Blamart, D., Ghaleb, B., Plagnes, V., Causse, C., Bakalowicz, M., Zouari, K., Chkir, N.,
Hellstrom, J., Wainer, K., and Bourges, F.: Timing and dynamics of the last deglaciation from
European and North African 513C stalagmite profiles—comparison with Chinese and South
Hemisphere stalagmites, Quaternary Science Reviews, 25, 2118-2142, 2006.
Sabaoui, A., Spötl, C., Lohmann, G., Andreae, Meinrat
Letters, 375, 291
state of the North Atlantic Oscillation during the Medieval Warm Period, Earth and Planetary Science
Schneider, L., and Esper, J.: Moroccan speleothem and
Scholz, D., Jochum, K. P., Fohlmeister, J., Schröder
Wassenburg, J. A., Immenhauser, A., Richter, D. K., Niedermayr, A., Riechelmann, S., Fietzke, J.,
Quaternary Science Reviews, 30, 130
180
100, 2013.

Branchu, E., Thomas, L., van Calsteren, P., Quinif, Y., and Caillon, N.: Speleothem record of the last
Wainer, K., Genty, D., Blamart, D., Daëron, M., Bar
Science Letters, 275, 54

Frumkin, A.: Pliocene
Frumkin, A.: Pliocene–Pleistocene climate of the northern margin of Saharan–Arabian Desert

stalagmites reveals Holocene temperature and rainfall variation in Amazonia, Earth and Planetary

Wainer, K., Genty, D., Blamart, D., Daëron, M., Bar-Matthews, M., Vonhof, H., Dublyansky, Y., Pons-
Branchu, E., Thomas, L., van Calsteren, P., Quinif, Y., and Caillon, N.: Speleothem record of the last
180 ka in Villars cave (SW France): Investigation of a large 518O shift between MIS6 and MISS,
Wassenburg, J. A., Immenhauser, A., Richter, D. K., Niedermayr, A., Riechelmann, S., Fietzke, J.,
Scholz, D., Jochum, K. P., Fohlmeister, J., Schröder-Ritzrau, A., Sabaoui, A., Riechelmann, D. F. C.,
Schneider, L., and Esper, J.: Moroccan speleothem and tree ring records suggest a variable positive
state of the North Atlantic Oscillation during the Medieval Warm Period, Earth and Planetary Science
Sabaoui, A., Spötl, C., Lohmann, G., Andreade, Meinrat O., and Immenhauser, A.: Reorganization of

Geophysical Research reconstructions of annual rainfall in Africa 6000 years ago: Model
Peyron, O., Jolly, D., Braconnot, P., Bonnefille, R., Guiot, J., Wirrmann, D., and Chalie
de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de
terrasses alluviales en bordure du Grand Erg Oriental à l’extrême
and Gauthier
PET
synoptic patterns over the eastern Mediterranean, J. Geophys. Res. D Atmos., 117,
atmosphere
http://
freshwater contributions, Quaternary Science Reviews, 29, 2473
during Eemian sapropel S5: monitoring northerly (mid
Osborne, A. H., Marino, G., Vance, D., and Rohling, E. J.: Eastern Mediterra
the Sahara for the migration of early modern humans out of Africa 120,000 years ago, Proc. Natl.
Evron, M.: Evidence
humin interval at ~56–44 ka in the Levant and its potential link to modern humans dispersal
McGarry, S., Bar-Matthews, M., Matthews, A., Vaks, A., Schilman, B., and Ayalon, A.; Constraints on
hydrological and paleotemperature variations in the Eastern Mediterranean region in the last 140 ka
given by the δD values of speleothem fluid inclusions, Quaternary Science Reviews, 23, 919-934,
Meckler, A. N., Affolter, S., Dublyansky, Y. V., Krüger, Y., Vogel, N., Bernasconi, S. M., Frenz, M.,
Kipfer, R., Leuenberger, M., S.
Fleitmann, D.: Glacial–interglacial temperature change in the tropical West Pacific: A comparison of
stalagmite-based paleo-thermometers, Quaternary Science Reviews, 127, 90-116,
http://dx.doi.org/10.1015/2015.06.015, 2015.
Nicol, K.: A revised chronology for Pleistocene paleolakes and Middle Stone Age – Middle Paleolithic
the Sahara for the migration of early modern humans out of Africa 120,000 years ago, Proc. Natl.
during Eemian sapropel S5: monitoring northerly (mid-latitude) versus southerly (sub-tropical)
freshwater contributions, Quaternary Science Reviews, 29, 2473-2483,
http://dx.doi.org/10.1016/j.quascirev.2010.05.015, 2010.
atmosphere-ocean general circulation model and of FAMOUS, its low-resolution version, Climate
Peleg, N., and Morin, E.: Convective rain cells: Radar-derived spatiotemporal characteristics and
synoptic patterns over the eastern Mediterranean, J. Geophys. Res. D Atmos., 117,
PETIT-MAIRE, N., BUROLLET, P. F., A BALLAIS, J.-L., A FONTUGNE, M., A ROSSO, J.-C., A LAZAAR, A.,
and Gauthier-Villars, I.: Paléoclimats holocènes du Sahara septentrional. Dépôts lacustres et
terrasses alluviales en bordure du Grand Erg Oriental à l’extrême-Sud de la Tunisie, Comptes rendus
de l’Académie des sciences. Série 2, Mécanique, Physique, Chimie, Sciences de l’univers, Sciences de
reconstructions of annual rainfall in Africa 6000 years ago: Model-data comparison, Journal of
Geophysical Research-Atmospheres, 111, D24110
Artn d24110, 2006.

Figure Captions

Figure 1: Map showing the location of Susah Cave (filled circle) and GNIP sites used in the discussion (open circles). Blue stars indicate sources of marine water evaporation discussed in the text. Grey arrows indicate recent average winter wind direction.

Figure 2) Macroscopic structure of SC-06-01 speleothem, showing alternation of transparent and milky fabrics.

Figure 3) Variability of water content (µL) per unit mass of speleothem (g) in SC-06-01 fluid inclusion samples. Grey area shows working range of instrument.

Figure 4a) Fluid inclusion oxygen isotope values (δ18Ofi; blueblack crosses) compared to calcite oxygen isotope values (δ18Occ; blackblue circles and line); 4b) Fluid inclusion hydrogen isotope values (δ2Hfi; blueblack crosses) compared to δ18Occ (blackblue circles and line). Growth Phases I, II and III are shown as grey areas.

Figure 5a) Regional precipitation isotope data. Thick line represents Global Meteoric Water Line, dashed thick line represents Mediterranean Meteoric Water Line and thin lines representing expected range of deviation (±10‰ δ2Hppt) below GMWL and above MMWL. Bet Dagan, Tunis and Sfax GNIP datasets (http://www-naweb.iaea.org/napc/ih/ihS_resources_gnip.html). Sfax Atlantic and Mediterranean Rainfall are taken from Celle-Jeanton et al. (2003, 2001). Sb-d) Summarised precipitation isotopes, and fluid inclusion measurements for SC-06-01 for Phases I, II and III respectively.

Figure 6) Double-replicated fluid inclusion measurements from SC-06-01, and regional precipitation isotope trends.

Figure 7) 87Sr/86Sr record for SC-06-01, compared to calcite δ18Occ record (light grey line). Error bars are 2σ. Growth Phases I, II and III are shown as grey areas.

Figure 8) Carbon isotope (δ13Cc) record for SC-06-01 compared to oxygen isotope record (δ18Occ; Hoffmann et al., 2016)). Growth Phases I, II and III are shown as grey areas.
Figure 9) Fluid inclusion measurements relative to summarised precipitation data and the modern precipitation end members used in the discussion. Solid lines are the Meteoric Water Lines as in Fig. 5a. Precipitation and fluid inclusion measurements are as shown in Figure 5b. “Mean Atlantic”, “Sfax Mixed”, “Sfax Med” and “High Precip Atlantic” indicate the mean of measurements in Celle-Jeanton et al. (2001, 2003) originating from Atlantic moisture, mixed source, Mediterranean moisture and respectively. “Mean Bet Dagan” is the mean of GNIP measurements from this location, and “High Precip Bet Dagan” is the subset of high precipitation measurements as described in the Discussion.

Figure 10) Fluid inclusion deuterium excess (δ²H_{excess-FI}) relative to calcite δ¹⁸O_{cc}. Note some fluid inclusions (70 to 60 ka BP and 40 to 30 ka BP) show high δ²H_{excess-FI} indicative of an Eastern Mediterranean source. Growth Phases I, II and III are shown as grey areas.