Interactive comment on “Enhanced Mediterranean water cycle explains increased humidity during MIS 3 in North Africa” by Mike Rogerson et al.

Mike Rogerson et al.
m.rogerson@hull.ac.uk

Received and published: 29 January 2019

We thank the two anonymous Reviewers of our draft manuscript for their detailed and constructive reviews, and are extremely pleased that they find our work both interesting and worthy of publication. We fully concur that the interpretation of the data we present is complicated by structure of the dataset, and we are happy both reviewers agree with us that the data itself is so unique as to make a pressing case for publication and, that our analysis of it is fair, balanced and reasonable.

Below, we respond to the comments in order. The location code given for each comment and response represents the page the comment occurs in, followed by paragraph and lines (C, , -). Anonymous Reviewer 2

C1

C2, 2, 6-10: “What I would like to see in the ms is an assessment of the extent to which the fluid inclusion isotope data are in isotopic equilibrium with the calcite. ………………… While isotope equilibrium is not a given for many speleothems, at least some consistency is to be expected between d18Occ and d18Ofi.” Response: We concur with the reviewer’s sentiment that difficulties in the correlation of the time-series are “uncomfortable”, and this is why we approach the data by analysing large groups of datapoints rather than using a time-series approach. We are extremely pleased that this reviewer also feels that collection of the fluid inclusion dataset is “technically sound” (C1, 2, 7), and that the general accuracy of the dataset is supported by our quantitative analysis of it compared to modern rainfall isotopes (C2, 1, 1-2). It can only be concluded that these data are a good representation of this isotopic system, even though they look unusual.

We suggest that the apparently poor correlation of time-series likely arises from aliasing of a complicated signal in the fluid inclusions, and emphasise that it is unlikely the data presented are sufficiently resolved to demonstrate the two datasets actually have different structure. The correlation of the datasets is therefore ambiguous, rather than disproven. Sadly, the at least order-of-magnitude increase in the size of the fluid inclusion dataset needed to resolve this point is not realistic: indeed, this Reviewer notes that this dataset is already “comparatively large” (C1, 2, 1). The most appropriate way forward in this situation is to minimise the interpretation of the temporal structure of the fluid inclusion data we present, and this is what we have done. We are pleased that despite their discomfort, this Reviewer supports publication of this “interesting study” (C3, 3, 13-17).

A conventional equilibrium test is difficult to perform for this dataset, as each measurement comprises a mixture of inclusions with different compositions from each layer, and therefore an unknown position on the mixing line between these end members. Should we compute mean values (arithmetic or volume weighted); or extrapolate end members, and test for equilibrium of both? All these judgements require assumptions
we are not in a position to make. Consequently, we are only able to test for equilib-
rium in the subset of samples where the end members are sufficiently close together
for the analysis to be fully “duplicable” (the subset shown in Figure 6). Modern mean
winter temperature in Dernah (the nearest city to Susah Cave) is 11.9°C, with maxi-
mum 17.7°C and minimum 7.1°C. These fluid inclusions are therefore certainly at least
close to isotopic equilibrium with the carbonate hosting them.

Table R1 (see attached)

C2, 2, 17-19: “It would perhaps be useful if the authors discuss that a bit more in the
context of the interpretation of their record”. Response: Agreed.

C3, 1, 5-10: “Bringing a third water source in, as is suggested in the ms, cannot really
be supported by the data from my perspective. ……… One could perhaps argue that
slight isotope changes within each of these moisture sources can cause similar isotope
patterns?” Response: The Reviewer agrees with our analysis that the data does show
a mixing pattern of western and eastern Mediterranean sources (C3, 1, 4-5). So,
we assume the ‘third source’ mentioned above is therefore the Atlantic external water
we argue for, and find in relatively small amounts. We happily agree this is the most
speculative part of our analysis. However, we also note that finding no Atlantic moisture
at all in this dataset is a rather more startling interpretation than our suggestion that
we find only a little. Atlantic-sourced moisture contributes to rainfall in central northern
Africa today, and this mode of rainfall has previously been argued to be greater in
past humid phases (Toucanne et al., 2015). We therefore find this point of speculation
actually rather conservative in its nature.

C4, 2, 1-2: “I’d like to know where your duplicable samples from Fig. 6 are located in
the stalagmite (stratigraphically). All in one period, or distributed all over?” Response:
See Table 1. All three Growth Phases are represented by at least one fully duplicated
sample.

C4, 2, 2-4: “Do you have a better correlation with the d18O values of the carbonate
carbonate
carbonates when you consider the duplicable dataset only?” Response: Beyond the differences
between the three phases (see next response), it is difficult to judge whether there
is true correlation between the reduced fluid inclusion dataset and the calcite isotope
dataset, because the former is rather small. To make interpretations based on such a
“correlation” would seem to us rather speculative. We are safer limiting the discussion
of the time series.

C4, 2, 4-5: “Further, I’d like to see if, based on the duplicable set only, one can still ob-
serve clear differences between the three wet intervals.” Response: The sample from
Phase II is more depleted both in δ18O and δ2H than any of the samples
from Phases I and III, which show similar compositions. Our interpretation that the wa-
ter driving this middle growth phase is different to the other two is therefore supported
by this additional analysis.

C4 paragraphs 3, 4 and 5: “Figures” Response: See response to Reviewer 1.

C4, 6, 1-2: Error in text. Response: Correction will be made.

C4, 7, 1-5: “It would be interesting to know…………. could you have any sea spray
effect?” Response: Given that we find no clear signal (or indeed, no variance be-
yond measurement uncertainty) in the Sr isotope record, these points cannot alter the
interpretation and we are consequently unclear about their relevance (?).

C4, 8, 1-2 continued to C5, 1, 1-5: “Towards the end of the discussion, δ13CC plays
an important role. These data, however, are not shown…………Shouldn’t d18O do
the same as d2Hf if your claim is correct?” Response: δ13CC is actually shown,
within Figure 8b. We do make greater use of δ2Hf towards the end of the discus-
sion, because we are attempting to use the fluid inclusion data to better understand
the carbonate isotope datasets, and hydrogen cannot be measured in carbonate and
therefore provides valuable independent evidence of changes. As the fluid inclusion
isotopes do correlate, it is indeed true that the δ18Of shows a similar pattern.
Your statement in line 392 to 394 is not clear to me. Response: We will clarify that statement.

References


Table R1

<table>
<thead>
<tr>
<th>Sample</th>
<th>18O (%)</th>
<th>2H (%)</th>
<th>Base (m)</th>
<th>Age (ky)</th>
<th>Temperature (oC)</th>
<th>Growth Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-4.45</td>
<td>-21.51</td>
<td>9  - 4.35</td>
<td>15 - 20</td>
<td>66 - 394</td>
<td>I</td>
</tr>
<tr>
<td>2</td>
<td>-5.69</td>
<td>-19.95</td>
<td>56 - 5.69</td>
<td>56 - 61</td>
<td>66493 - 61393</td>
<td>I</td>
</tr>
<tr>
<td>3</td>
<td>-5.92</td>
<td>-21.75</td>
<td>109 - 5.92</td>
<td>159 - 118</td>
<td>63487 - 63302</td>
<td>I</td>
</tr>
<tr>
<td>4</td>
<td>-5.45</td>
<td>-25.62</td>
<td>260 - 5.45</td>
<td>260 - 267</td>
<td>59106 - 59840</td>
<td>I</td>
</tr>
<tr>
<td>5</td>
<td>-5.38</td>
<td>-25.54</td>
<td>395 - 5.38</td>
<td>395 - 400</td>
<td>51687 - 51648</td>
<td>I</td>
</tr>
<tr>
<td>6</td>
<td>-4.70</td>
<td>-26.72</td>
<td>556 - 4.70</td>
<td>556 - 561</td>
<td>37260 - 37221</td>
<td>I</td>
</tr>
<tr>
<td>7</td>
<td>-5.08</td>
<td>-22.72</td>
<td>597 - 5.08</td>
<td>597 - 602</td>
<td>36957 - 36921</td>
<td>III</td>
</tr>
<tr>
<td>8</td>
<td>-5.03</td>
<td>-21.37</td>
<td>652 - 5.03</td>
<td>652 - 657</td>
<td>36581 - 36284</td>
<td>III</td>
</tr>
<tr>
<td>9</td>
<td>-4.96</td>
<td>-23.74</td>
<td>767 - 4.96</td>
<td>767 - 772</td>
<td>35688 - 35647</td>
<td>III</td>
</tr>
<tr>
<td>10</td>
<td>-5.21</td>
<td>-25.54</td>
<td>395 - 5.21</td>
<td>395 - 400</td>
<td>51687 - 51648</td>
<td>I</td>
</tr>
</tbody>
</table>

Fig. 1. Table R1