Point-by-point response to the reviews

Responses to the reviewers are shown in red as Author Comment (AC). The number of the lines where to find the modifications done in the text are those from the Track changes version of the manuscript (see below).

Anonymous Referee #1

The authors test the MAIDENiso model in regard to O-isotope fractionation with “temperature-sensitive” tree species in Quebec and from Patagonia (which I interpret as ring growth being sensitive to temperature). In the case of the Canadian site, the high latitude indicates temperature sensitivity, whereas for the Argentina site the elevation probably contributes more to the temperature sensitivity. A number of parameters in the mechanistic models must be estimated, among which the estimated $\delta^{18}O$ of precipitation may have the greatest uncertainty, but parameters are also tested for sensitivity in simulating the observed tree-ring $\delta^{18}O$. The authors found that xylem water $\delta^{18}O$ is less influential than leaf evaporative enrichment in predicting tree-ring $\delta^{18}O$. Furthermore, temperature effects are more related to effect on leaf evaporative enrichment that T effects on precipitation isotopes. The analysis is important and results reasonable, although there are some large $\delta^{18}O$ differences in the actual tree-ring composition between the N. American and S. American sites.

AC: We thanks a lot Reviewer#1 for all his comments and suggestions.

Comments
p. 35, ‘tree rings’

AC: We change this part as proposed by Reviewer#1 (L30).

p. 101-102, ‘which is an angiosperm deciduous species dominating’

AC: We changed this part as proposed by Reviewer#1 (L103).

p. 111-112, ‘In western Argentina, precipitation is largely concentrated from late fall to early spring followed by a drier and mild period during summer and early fall’: isn’t late fall to early spring summer in Argentina, and therefore the following ‘mile period’ would be during the Argentina winter and early spring?

AC: In western Argentina, precipitation is concentrated in late fall to early spring (May-November) followed by a drier and mild period during summer and early fall (December-April). We specified the respective months for each period in the text (L112-114).

p. 188, ‘for N. pumilio, and therefore the’

AC: We changed this part as proposed by Reviewer#1 (L199).

216-217, ‘we also used modelled daily data from the GCMs described above for both the western Argentinian and northeastern Canadian sites’
AC: We changed this part as proposed by Reviewer#1 (L230-231).

221-222, ‘For the years 1950-1957,’

AC: We changed this part as proposed by Reviewer#1 (L235).

240 (and 159), the authors refer to ‘dampening factor fo’, but Eqn1 suggests it is actually the fraction of the tree-ring δ^{18}O signal that derives from xylem water: perhaps they are synonymous?

AC: The ‘dampening factor’ is defined in the literature (e.g. Saurer et al. 1997) as the proportion of oxygen atoms that is exchanged between sucrose and xylem water during cellulose synthesis. It is modelled as a coefficient in Eqn1 to take into account the part of δ^{18}O signal derived from xylem water during this exchange that is incorporated in the cellulose δ^{18}O.

287, in “temperature and precipitation dependences”, the authors seem to mean “temperature and precipitation coefficients”, i.e., a and b.

AC: Yes, the temperature and precipitation dependences are modelled as coefficients a and b, respectively.

289, “more strongly”

AC: We changed this part as proposed by Reviewer#1 (L307).

319, what is the “reference one”? perhaps “reference simulations”?

AC: Yes, it is the reference simulations. We changed it in the text (L342).

320, what is the “source one”? perhaps “than are the XW_source simulations”?

AC: Idem, we changed it in the text (L343).

325, what does “these results are limited upstream” mean?

AC: We removed this sentence in the text that was not clear (L352).

341-342, change “ratio in a high amount of precipitated water” to “ratio increased higher precipitation”

AC: We have simplified the sentence to be more understandable: ‘Consequently, in the Tropics, the \(^{18}O/^{16}O\) ratio in the meteoric water has been observed to decrease with increasing amount of precipitation and/or relative humidity.’ (L365-367).

362-363, why is it ‘interesting(ly)’ that “the δ^{18}O_p signal in northeastern Canada is comparatively more depleted than in western Argentina”. Given the latitude of northeastern Canada, I would expect δ^{18}O_p to be isotopically lighter.
AC: We expanded a little bit the explanation of why the $\delta^{18}O_p$ signal in northeastern Canada was comparatively more depleted than in western Argentina, following Reviewer#1 recommendations (L397-399).

363, “northeast”

AC: We decided to keep ‘northeastern’, which is often used (L394).

385-386, “GNIP stations”
AC: We changed this part as proposed by Reviewer#1 (L414).

434-435, “tree growth is inhibited, leading to a decrease of”
AC: We changed this part as proposed by Reviewer#1 (L484).

465, “tree rings”
AC: We changed this part as proposed by Reviewer#1 (L507-508).

719, are the “mean simulated $\delta^{18}O_{TR}$ levels” (here in caption and in B y-axis labels) actually “$\delta^{18}O_{TR}$ values”? or “$\delta^{18}O_{TR}$ output”
AC: Yes, they are the simulated $\delta^{18}O_{TR}$ values. We decided to stay with ‘simulated $\delta^{18}O_{TR}$ levels’ because in this figure we want to show that some parameters are affecting the mean levels of $\delta^{18}O_{TR}$ values (L890).

REFERENCES
The “13”’s and “18”’s in isotope designations in titles need to be superscripted. DeNiro and Epstein 1979, Rozanski et al. 1993, Yakir and Deniro references: too many words in title begin with upper-case letters

AC: We have corrected all the errors detected by Reviewer#1 in the reference list.

Figure 4, shouldn’t the label on the y-axis be “kernel density”?
AC: We think that the y-axis as ‘kernel density estimates’ is fine (L908).

Anonymous Referee #2
This paper is a welcome addition to the literature on tree ring isotopes and their potential to enrich palaeoclimate reconstructions. Application of the MAIDENiso (MI) model to two different species in two different environments was undertaken, and both of the target species have the potential to provide longer palaeoclimate reconstructions. The main aims are made clear from the outset: to evaluate if MI can simulate $\delta^{18}O$ of treerings, to identify physical processes that control $\delta^{18}O$ of tree rings using mechanistic modeling, and assess the origin of how temperature is recorded in both target species.
The mixture of settings and hemispheres is also nice to see. I was also delighted by the fact that this is a well-written paper, and I enjoyed reading it.

AC: We are happy that the reviewer really liked and enjoyed our study.

I have only a few main comments that I believe can help, and a handful of minor ones. For Section 2.4. Estimation of parameters, I believe this is one of the more important elements of the study. It is my opinion here because in some cases, ranges of unknowns need to be assumed or tested in a hierarchical way where observations are sparse. It might be good to mention other studies to the readers that have grappled with this issue in this section. For example, a range of unknown parameters for a Southern Hemisphere species with dendroclimatic potential was recently examined using a mechanistic model that augmented Barbour, Roden, Farquhar and Ehleringer (BRFE04). The ranges of some unknown parameters were tested simultaneously against a mean δ¹⁸O chronology while others were empirically derived (Lorrey et al., 2016). The code for the model described in that paper can be found here: https://github.com/nicolasfauchereau/model_isotope

AC: We have added in the text the link to the code of MAIDENiso model: https://doi.org/10.6084/m9.figshare.5446435.v1 (L134-135).

I can appreciate that some elements of MI will be different from other mechanistic models that have come before, so my pointing to the aforementioned resource is not to state it is better (or to get it cited), but rather suggesting that a myriad of modelling approaches can be helpful for distilling and probing important issues for isotope dendroclimatology.

AC: We thank Reviewer#2 for this suggestion. We have mentioned in the revised manuscript other studies that have used this approach: e.g. Danis et al., 2012; Lorrey et al., 2016 (see L266-268).

It would also be really nice if a diagram that shows how the MI model was constructed (the main componentry and inputs, for example) could be included either in the main paper or the supplement.

AC: Different publications have already detailed the construction of the MAIDENiso model (among the most recent one, Danis et al., 2012 and Gennaretti et al. 2017b). We have cited these papers in the text as references (L126 and L128-129).

Minor comments.

118-120. Reword this please as: The chronologies that were built for each species were significantly correlated between stands (Figure 1). This supported the construction of a combined isotope chronology for both the northeastern Canada and western Argentina sites.

AC: We changed this part as proposed by Reviewer#2 (L119-122).

124. please provide reference for MAIDENiso again here. If you can please provide links to the code for this model, it would be appreciated.

AC: We have added the references on MAIDENiso model mentioned above (L126 and L128-129).
162. can you please cite any IAEA studies where the closest measurements would be, or have a look at whether anything useful can be gleaned from the data underpinning the online isotopes in precipitation calculator

AC: To our knowledge, no IAEA studies have been developed in the regions of our study. In Argentina, only studies further north (30°S; Rozanski et al. 1995) and further south (47°-48°S; Stern and Blisniuk, 2002) have been done to understand the variability of δ¹⁸O_p. We are referring to the IAEA dataset in the text (L171-172) and we discussed the studies that have been done further north and further south in the Discussion section (L371-376).

AC: We have changed it as proposed by Reviewer#2 (L174).

175. As above with secondly. Second.

AC: We have changed it as proposed by Reviewer#2 (L185).

180. can you please spell out the acronym for LMDZ5A, and also fully spell out National Centers for Environmental Protection (NCEP), as well as fully refer to the 20th Century Reanalysis (20CR)

AC: LMDZ5A is the acronym of ‘Laboratoire de Météorologie Dynamique Zoom’. We have spelled out all the acronyms in the text as proposed by Reviewer#2 (L190-192).

202. I see 20CRv2c mentioned here; it should be fine, but please explain why this reanalysis dataset is chosen over something like NCEP1 or ERA-Interim.

AC: We have used the 20CRv2c dataset to extract daily minimum-maximum temperatures and precipitation amount because it is one of the few reanalysis products covering entirely the 20th century. Furthermore, NCEP1 has been replaced by 20CRv2c and ERA-Interim starts in 1979. We add this explanation in the text (L218-219).

250. Lorrey et al. (2016) evaluated the outcomes of iterative changes to unknown parameters for a δ¹⁸O model output in a similar way for NZ kauri (mentioned above). This appears to be a standard way to evaluate how well a mechanistic model does for δ¹⁸O_TR, in a simple way. I would just mention here a range of studies that may have undertaken a similar approach to show it is an acceptable method for evaluation.

AC: As suggested by Reviewer#2, we have added other studies that have undertaken a similar approach (L266-268).

318. Leaf water enrichment (are underscores needed?)

AC: We have deleted the underscores (L280, L287 and L341).

324. Last sentence. Can you please expand on this statement just a little bit more, for clarity?

AC: A suggested as well by Reviewer#1, we have deleted this last sentence, which was not clear (L352).
348. ‘…agreement with previous work (Rozanski et al)’

AC: We changed it as proposed by Reviewer#2 (L373).

356. Reword to start “In contrast, in northeastern Canada…”

AC: We changed it as proposed by Reviewer#2 (L391).

362. Reword to start “Of interest, the…”

AC: We changed this sentence as proposed by Reviewer#1 (L397-399).

374. Reword to say “Although isotope-enabled atmospheric global models can reproduce the mean annual precipitation isotopic values and seasonality for many areas (Risi et al)…”

AC: We changed the sentence as proposed by Reviewer#2 (L410-412).

385. Also mention here that the IAEA datasets that had a good deal of chemistry run on them in the 1970-80s may have been compromised by pan evaporation and therefore enrichment. Have to treat many of those extant (older) data sources very carefully.

AC: We have incorporated this explanation as well in the text (L421-436).

471. Firstly. As above.

AC: We changed it as proposed by Reviewer#2 (L521).

473. Secondly. As above.

AC: We changed it as proposed by Reviewer#2 (L523).

475. Last instead of Finally.

AC: We changed it as proposed by Reviewer#2 (L525).

References. Some errors with author names (Farquhar was one) please check this carefully.

AC: As already mentioned in the response to Reviewer#1, we have corrected all the errors detected in the Reference list.

List of relevant changes made in the manuscript

- Following the reviewer’s suggestions, we have rewritten some sentences in the manuscript (see track changes’ version of the manuscript).
- We have added a link to the code of the model (L134-135): https://doi.org/10.6084/m9.figshare.5446435.v1
- We have extended our discussion on the GNIP datasets quality (L421-436).
Modelling tree-ring cellulose δ^{18}O variations of two temperature-sensitive tree species from North and South America

Authors:
Aliénor Lavergne1, Fabio Gennaretti1, Camille Risi2, Valérie Daux3, Etienne Boucher4, Martine M. Savard5, Maud Naulier6, Ricardo Villalba7, Christian Bégin5 and Joël Guiot1

1 Aix Marseille Université, CNRS, IRD, Collège de France, CEREGE, ECCOREV, Aix-en-Provence, France
2 Laboratoire de Météorologie Dynamique, IPSL, UPMC, CNRS, Paris, France
3 Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, 91191 Gif-sur-Yvette, France
4 Department of Geography and GEOTOP, Université du Québec à Montréal, Montréal, Canada
5 Geological Survey of Canada, Natural Resources Canada, 490 rue de la Couronne, QC, G1K9A9, Canada
6 Institut de Radioprotection et de Sureté Nucléaire (IRSN), PRP-ENV, SERIS/LRTE, Saint-Paul-lez-Durance, France
7 Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, IANIGLA-CONICET, Mendoza, Argentina

Corresponding authors: Aliénor Lavergne (alienor.lavergne@gmail.com) and Fabio Gennaretti (gennaretti@cerege.fr)

Centre Européen de Recherche et d’Enseignement en Géosciences Technopôle de l’Arbois-Méditerranée
13545 Aix-en-Provence, FRANCE
ABSTRACT

Oxygen isotopes in tree rings (δ¹⁸O_TR) are widely used to reconstruct past climates. However, the complexity of climatic and biological processes controlling isotopic fractionation is not yet fully understood. Here, we use the MAIDENiso model to decipher the variability of δ¹⁸O_TR of two temperature-sensitive species of relevant paleoclimatological interest (Picea mariana and Nothofagus pumilio) and growing at cold high-latitudes in North and South America. In this first modelling study on δ¹⁸O_TR values in both northeastern Canada (53.86°N) and western Argentina (41.10°S), we specifically aim at: 1) evaluating the predictive skill of MAIDENiso to simulate δ¹⁸O_TR values, 2) identifying the physical processes controlling δ¹⁸O_TR by mechanistic modelling and, 3) defining the origin of the temperature signal recorded in the two species. Although the linear regression models used here to predict daily δ¹⁸O of precipitation (δ¹⁸O_P) may need to be improved in the future, the resulting daily δ¹⁸O_P values adequately reproduce observed (from weather stations) and simulated (by global circulation model) δ¹⁸O_P series. The δ¹⁸O_TR values of the two species are correctly simulated using the δ¹⁸O_P estimation as MAIDENiso input, although some offset in mean δ¹⁸O_TR levels is observed for the South American site. For both species, the variability of δ¹⁸O_TR series is more likely linked to the effect of temperature on isotopic enrichment of the leaf water rather than on the isotopic composition of the source water. We show that MAIDENiso is a powerful tool for investigating isotopic fractionation processes but that the lack of a denser isotope-enabled monitoring network recording oxygen fractionation in the soil-vegetation-atmosphere compartments limits our capacity to decipher the processes at play. This study proves that the eco-physiological modelling of δ¹⁸O_TR values is necessary to interpret the recorded climate signal more reliably.

Keywords: MAIDENiso model, δ¹⁸O, tree-ring, Nothofagus pumilio, Picea mariana
1. INTRODUCTION

Oxygen isotopes in tree rings (δ¹⁸O_TR) are increasingly used as indicators of past climatic changes in temperate areas (Cernusak and English, 2015; Hartl-Meier et al., 2014; Saurer et al., 2008). They have been widely used to reconstruct past atmospheric conditions such as air temperature (Naulier et al., 2015), drought (Labuhn et al., 2016), precipitation amount (Rinne et al., 2013), isotopic composition of precipitation (Danis et al., 2006), relative air humidity (Wernicke et al., 2015), cloud cover (Shi et al., 2012), and even atmospheric circulation patterns (Brienen et al., 2012). This diversity of climatic targets possibly reconstructed based on oxygen isotopes hints at the challenge of understanding the complexity of the climatic and biological processes that control isotopic fractionation of oxygen in trees (Treydte et al., 2014). Uncertainties arise because different poorly measured factors influence δ¹⁸O_TR values. Isotopic signals in tree-rings cellulose are strongly influenced by isotopic signature of soil water taken up by the roots and by evaporative and physiological processes occurring at the leaf level and during downstream metabolism (Barbour et al., 2005; Gessler et al., 2014). Thus, a comprehensive approach that embraces existing mechanistic understanding of the fractionation processes involved is required.

Few isotopic process-based models have been developed to investigate the mechanistic rules governing the δ¹⁸O_TR variations (Guiot et al., 2014): the Péclet-modified Craig-Gordon model (Kahmen et al., 2011) and the Roden’s model (Roden et al., 2000) are able to estimate, at a daily time step, the δ¹⁸O values of soil and xylem waters, and the isotopic fractionation occurring in the leaves due to evapotranspiration. Versions of these models are integrated in more complete forest ecophysiological models simulating the ensemble of forest water and carbon fluxes: (1) MAIDEN (Modeling and Analysis In DENdroecology) (Gea-Izquierdo et al., 2015; Misson, 2004), which contains the isotopic module MAIDENiso (Danis et al., 2012) and (2) MUSICA (Ogée et al., 2003, 2009). Both are accounting for important post-photosynthetic factors and are able to link photosynthesis and carbohydrate allocation to stem growth.

In this paper, we use the MAIDENiso model to decipher the δ¹⁸O_TR variability in American temperature-sensitive species (Picea mariana in northeastern Canada and Nothofagus pumilio in western Argentina). The selected sites are of special interest for paleoclimatology given that their
δ¹⁸O values to reflect variations in summer-autumn temperatures over a large region south of 38°S (Lavergne et al., 2016). However, up to now, the climate-δ¹⁸O relationships were analysed using a black box approach based on linear models. Here, we specifically aim at: 1) evaluating the predictive skill of MAIDENiso to simulate δ¹⁸O values, 2) identifying the physical processes controlling δ¹⁸O by mechanistic modelling and, 3) defining the origin of the temperature signal recorded in the two species.

2. DATA AND METHODS

2.1. Sampling sites and tree-ring data

Two high-latitude American native species were studied here: 1) *Picea mariana* (Mill. B.S.P.; black spruce), which is a conifer widely distributed over the American boreal forest (Viereck and Johnston, 1990); and 2) *Nothofagus pumilio* (Poepp. et Endl. Krasser; lenga), which is an angiosperm deciduous species dominating the high-elevation forests along the Patagonian Andes from 35°S to 55°S (Donoso, 1981; Schlatter, 1994). We selected two sites of *P. mariana* in the centre of the Quebec-Labrador Peninsula in northeastern Canada (L01 and L20; from 53°51’N-72°24’W to 54°33’N-71°14’W, ~480 m elevation; see Gennaretti et al. (2014) and Naulier et al. 2014 for details) and three sites of *N. pumilio* in northern Patagonia, western Argentina (NUB, ALM and CHA; from 41°09’S-71°48’W to 41°15’S-71°17’W, 1270-1610 m elevation; see Lavergne et al. 2016, 2017 for details). Climate in northeastern Canada is mostly continental and subarctic with short, mild and wet summers and long, cold and dry winter. Total annual precipitation averages 825 mm with up to 46% falling during the growing season in summer (June to September) (Naulier et al., 2014). In western Argentina, precipitation is largely concentrated from late fall to early spring (May-November) followed by a drier and mild period during summer and early fall (December-April) (López Bernal et al., 2012).

Four trees per site were collected for both species. The selection of the samples and analytical procedure for δ¹⁸O measurements were described in Lavergne et al. (2016) and Naulier et al.
(2014). The developed δ¹⁸O_TR chronologies covered the 1950-2005 and 1952-2011 periods at the northeastern Canadian and western Argentinian sites, respectively. The chronologies that were built for each species were significantly correlated between stands (Figure 1). This supported the construction of a combined isotope chronology for both the northeastern Canada and western Argentina sites.

2.2. Modelling oxygen isotopes in tree-ring cellulose with MAIDENiso

MAIDENiso is a process-based model that can simulate in parallel phenological and meteorological controls on photosynthetic activity and carbon allocation (Danis et al., 2012). It explicitly allocates carbohydrates to different carbon pools (leaves, stem, storage and roots) on a daily basis using phenological stage-dependent rules (see Gennaretti et al. (2017b) for details on the construction of the main MAIDEN model). It also simulates the fractionation of carbon and oxygen isotopes during growth processes. In particular, it estimates at a daily time step δ¹⁸O values of soil water and xylem water, the isotopic fractionation occurring in the leaves due to evapotranspiration and the biochemical fractionation during cellulose formation. It uses as input daily maximum and minimum temperature (°C), precipitation (cm/day), atmospheric CO₂ concentration (ppm) and δ¹⁸O values of precipitation (δ¹⁸O_P in ‰). The code of the model can be found here: https://doi.org/10.6084/m9.figshare.5446435.v1.

In this study, the calculation of the daily δ¹⁸O_TR in tree-ring cellulose (%) is based on the (Danis et al., 2012)’s formulation of the Craig-Gordon model (Craig and Gordon, 1965):

\[
\delta^{18}O_{TR} = (1-f_o)\left[\varepsilon^* + \varepsilon_k(1-h_{air}) + h_{air}\delta^{18}O_V + (1-h_{air})\delta^{18}O_{XW}\right] + f_o\delta^{18}O_{XW} + \varepsilon_0 \quad (1)
\]

This equation summarizes how δ¹⁸O_TR is determined by:

(i) the δ¹⁸O of the source (xylem) water (δ¹⁸O_XW), which is computed by averaging the δ¹⁸O_XW values of the different soil layers weighted by the volume of water taken up by the roots in each layer. The isotopic effects of water mixing and soil evaporation on the δ¹⁸O_XW values of the different soil layers are computed by a mass and isotopic balance (Danis et al., 2012). It is worth noting that no fractionation occurs during water uptake by roots (Wershaw et al., 1966), neither during the transport of water from the roots to the leaves.
(ii) the 18O enrichment of the leaf water due to transpiration is described by

$$
(\varepsilon^* + \varepsilon_k (1-h_{\text{air}}) + h_{\text{air}} \delta^{18}O_V + (1-h_{\text{air}}) \delta^{18}O_{XW})
$$

after (Craig and Gordon, 1965), where:

- ε^* is the equilibrium fractionation due to the change of phase from liquid water to
 vapour at the leaf temperature (fixed at 21.4°C, the temperature threshold for
 maximum carbon assimilation, ε^* is 9.65‰ (Helliker and Richter, 2008)),
- ε_k is the kinetic fractionation due to the diffusion of vapour into unsaturated air
 through the stomata and the leaf boundary layer,
- h_{air} is the relative humidity of the evaporating air mass estimated from daily air
 temperature (T_{air}; °C; mean of the maximum and minimum air temperatures), and the
dew point temperature (T_d; °C) (Running et al., 1987),
- $\delta^{18}O_V$ is the atmospheric water vapour calculated assuming a precipitation-vapour
 isotopic equilibrium (see below);

(iii) the biochemical fractionations (ε_0) due to oxygen exchange between carbonyl groups
 (C = O) in the organic molecules and water (DeNiro and Epstein, 1979; Farquhar et
 al., 1998).

(iv) the dampening factor f_o reflecting the exchange of the oxygen atoms between sucrose
 and xylem water during cellulose synthesis in the xylem cells of tree rings.

As previously evoked (i), $\delta^{18}O_{XW}$ of Eq. 1 depends on $\delta^{18}O_P$ and thus on $\delta^{18}O_V$ values. However,
long continuous time series of $\delta^{18}O_P$ are not available in the studied area (see http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html). Here, we tested the impact of using two
different methods for deriving $\delta^{18}O_P$ time series.

First, a linear model was used to estimate the daily values of $\delta^{18}O_P$ and subsequently $\delta^{18}O_V$ based
on the primary drivers of their temporal variability (Dansgaard, 1964; Horita and Wesolowski,
1994), that are air temperature (T_{air}; °C) and precipitation at the corresponding site (P; mm):

$$
\delta^{18}O_P = a \cdot T_{\text{air}} + b \cdot P + c
$$

(2)

$$
\delta^{18}O_V = \delta^{18}O_P - \varepsilon_{T_{\text{air}}}
$$

(3)

with $\varepsilon_{T_{\text{air}}}$ the fractionation due to the change of phase from liquid water to vapour at the mean air
temperature. The coefficients a and b were allowed to vary over a plausible range (or prior range)
in the calibration process together with other MAIDENiso parameters, while coefficient c was
The final δ^{18}O$_{TR}$ time series are the annual average of the δ^{18}O$_{TR}$ daily values (Eq. 1) weighted by the daily simulated stand Gross Primary Production (GPP), assuming a proportional allocation of carbon to the trunk. For the northeastern Canadian sites, the GPP simulated by MAIDENiso was optimized using observations from an eddy covariance station (see Gennaretti et al. (2017a)). Unfortunately, such observations were not available for *N. pumilio*, and therefore the parameterization obtained for the GPP of *P. mariana* was also used for the western Argentinian sites but constraining the simulations with phenological observations extracted from the literature. For example, to respect the annual cycle of the leaf area index (LAI) for *N. pumilio* (Magnin et al., 2014; Rusch, 1993), we used in MAIDENiso a seasonal LAI annual cycle with a development of leaves (LAI increase) between October and November, a maximum LAI (set at 5 leaf area/ground area) from November to April, a decreasing LAI (leaf fall) between April and May, and finally a leafless period (null LAI) from June to September (Magnin et al., 2014; Rusch, 1993). Furthermore, based on the finding that δ^{18}O$_{TR}$ annual time series were more correlated to climate variables of specific months of the growing season (Lavergne et al., 2016), we also computed δ^{18}O$_{TR}$ annual values by weighting the δ^{18}O$_{TR}$ daily values (Eq. 1) with synthetic GPP time series maximizing the correspondence between observations and simulations.

2.3. Meteorological and atmospheric CO$_2$ data
At the western Argentinian sites, we did not have long daily records of observed climate data. Therefore, daily minimum–maximum temperature and precipitation data were derived from the 20th Century Reanalysis V2c (Compo et al., 2011) provided by the NOAA/OAR/ESRL (2°×2° resolution, https://www.esrl.noaa.gov/psd/data/gridded/data.20thC_ReanV2c.html), which is one of the few reanalysis products covering entirely the 20th century. The temperature daily time series of the reanalysis were corrected in order to respect the monthly mean values detected at Bariloche, the nearest meteorological station from our sampling sites (~48 km from the sites, 41°12′ S–71°12′ W, 840 m asl; Servicio Meteorológico Nacional, Argentina). The resulting maximum and minimum temperature series, covering the 1952-2011 period, fit well with the daily local temperature data from La Almohadilla (ALM) site (41°11′S, 71°47′W, 1410 m asl; data measured by dataloggers and provided by IANIGLA) available over the 2002-2012 period (r = 0.74, p < 0.001; Figure SM1). For the northeastern Canadian sites, climate data were obtained from the gridded interpolated Canadian database of daily minimum–maximum temperature and precipitation covering the 1950-2005 studied period (0.08°×0.08° resolution, (Hutchinson et al., 2009); http://cfs.nrcan.gc.ca/projects/3/4). In addition to these data we also used modelled daily data from the GCMs described above for both the western Argentinian and northeastern Canadian sites (see Table 2 with the input data used for each tested configuration).

Data on the atmospheric CO₂ concentration were derived from the Mauna Loa station over the 1958-2012 period (Keeling et al. (1976); http://www.esrl.noaa.gov/gmd/ccgg/trends/). For the years 1950-1957, we extrapolated atmospheric CO₂ data using the trend and seasonal cycle observed in the observations over the subsequent 10-years period (1958-1967).

2.4. Estimation of parameters influencing δ¹⁸O_TR

We used a Bayesian method for the simultaneous calibration of the various MAIDENiso parameters specific to the study species and site. A set of 50 plausible blocks of parameters (posterior values) was selected according to the method described in Gennaretti et al. (2017a) using Markov Chain Monte Carlo (MCMC) sampling (Table 1). The following prior plausible ranges were considered:

1) the prior ranges of the a and b coefficients in the equation of the daily δ¹⁸O_P (Eq. 2) were selected in order to get δ¹⁸O_P values for each site consistent with the measured monthly local
values from the nearest stations of the Global Network of Isotopes in Precipitation (GNIP), and with the simulated daily values from the LMDZ-NCEP20 model and from the MUGCM model (see Table 1),

2) the range for the biochemical fractionation factor ϵ_0 was chosen between 24‰ and 30‰ (+27±3‰ after DeNiro and Epstein (1981); Sternberg (1989); Yakir and DeNiro (1990)),

3) the range for the kinetic fractionation ϵ_k, which has been set to 26.5‰ in Farquhar et al. (1989) but that can vary over larger ranges (Buhay et al., 1996), was taken between 10‰ and 30‰ here,

4) the range for the dampening factor f_o was allowed to vary between 0.3 and 0.5 following Saurer et al. (1997).

We tested the sensitivity of the MAIDENiso model to the calibrated parameters by modifying them within their respective prior calibration range. To control the robustness of the calibrated parameters, we performed the calibration of these parameters over two equal length intervals (1950-1977 and 1978-2005 for P. mariana; 1952-1981 and 1982-2011 for N. pumilio) keeping the second half for independent validation of the parameters estimates. Once the model was calibrated for the two species, the MAIDENiso’s performance to simulate $P.\ mariana$ and $N.\ pumilio$ δ18O TR interannual data was evaluated using the correlation coefficients (r) and the root mean square errors (RMSE) between observed and simulated values. This is a standard approach to evaluate how well a mechanistic model is simulating δ18O TR variations (e.g. Danis et al., 2012; Lorrey et al., 2016).

2.5. Disentangling leaf-level fractionation processes and source water influences on δ18O TR signature

To define the relative contributions to the δ18O TR signature of the isotopic signal of the source water (xylem water) and of the fractionation processes due to transpiration taking place in the leaves, we designed two experimental simulations with MAIDENiso based on Eq. 1:

1) to quantify the influence of the variability of the isotopic composition of the xylem water on δ18O TR, we compared the reference simulations to those where the relative humidity (h_{air}) and the isotopic composition of atmospheric vapour ($\delta^{18}O_V$) were assumed to be constant. The constant values for h_{air} and $\delta^{18}O_V$ were defined as the averages of the respective MAIDENiso outputs (h_{air} = 0.62 and 0.9, and, $\delta^{18}O_V$ = -26.28‰ and -17.34‰,
respectively for northeastern Canada and western Argentina; the XW source experiment simulation hereafter),

2) to quantify the influence of the isotopic enrichment of the leaf water due to transpiration on δ18O, we compared the reference simulations to those where the δ18O series were assumed to be constant. The constant value for δ18O was estimated as the average of the δ18O MAIDENiso outputs (δ18O = -13.81‰ and -7.03‰, respectively for northeastern Canada and western Argentina; the Leaf water enrichment driven experiment simulation hereafter).

Comparison between the experimental and reference simulations (i.e. using the optimal values of the parameters) was achieved through the calculation of the coefficient of determination (R²).

3. RESULTS

3.1. Estimated versus modelled and observed δ18O values

The modelled δ18O series from the GCM models are similar to the GNIP datasets, with mean values ranging from -12‰ to -8‰ over June-September in northeastern Canada (Figure SM2A) and from -7‰ to -3‰ over December-April at the western Argentinian sites (Figure SM2B). In general, δ18O series from LMDZ-NCEP2 model in western Argentina are slightly displaced toward higher values (+1‰) in comparison with the GNIP and MUGCM data. The estimated δ18O values based on plausible values of coefficients a and b agree well with those of the models and observations in northeastern Canada. For the western Argentinian sites, they are 2-3‰ lower from April to October, i.e. late spring-early autumn (Figure SM2).

3.2. Sensitivity of the model to the calibrated parameters

Most of the calibrated parameters have an influence on the correlations between observed and simulated δ18O series and/or on the mean levels of the simulated series (Figure 2). The temperature and precipitation dependences of δ18O values (respectively a and b coefficients) have the strongest influence on correlations. Increasing a and b values increase the mean δ18O levels, more strongly in western Argentina than in northeastern Canada (Figure 2). Changes in the dampening factor (f) and in the biochemical fractionation (ε) have almost no effect on correlation, but their increase induces significant decrease of the mean levels of δ18O series.
Finally, increasing the kinetic fractionation (ε_k) leads to lower correlations and to higher mean levels of $\delta^{18}O_{TR}$ (Figure 2).

3.3. MAIDENiso performance in reproducing observed $\delta^{18}O_{TR}$ series

Split-period verifications of the calibrated relationships for *P. mariana* and *N. pumilio* when using estimated $\delta^{18}O_p$ series from Eq. 2 indicate that the calibration over either the first half or the second half periods provide similar posterior densities of the calibrated parameters than the ones obtained when calibrating over the whole periods (Figure SM3). One exception is observed in the calibration of coefficient a in northeastern Canada over the two half periods, where the posterior densities of a are different from the one obtained by calibrating over the entire period. Over the entire periods, observed and simulated $\delta^{18}O_{TR}$ series are significantly correlated in northeastern Canada ($r = 0.56, p < 0.01$ and RMSE = 0.67; Figure 3A) and in western Argentina ($r = 0.48, p < 0.01$ and RMSE = 0.63; Figure 3C). The correlation between observed and simulated $\delta^{18}O_{TR}$ series are slightly improved when we used synthetic daily GPP ($r = 0.62$ and $r = 0.52, p < 0.01$, respectively for northeastern Canada and western Argentina; Figure 3B and 3D). It is worth noting that the mean levels of the simulated $\delta^{18}O_{TR}$ series for the Argentinian sites are lower than those of the observations (offset of around -2.5‰; Figure SM4). The series were therefore corrected to respect the mean values detected in the observations (Figure 3C and 3D). In contrast, the correlations between observation and simulation considerably decrease when we used modelled $\delta^{18}O_p$ from MUGCM models or LMDZ-NCEP20 reanalysis data. They only reach $r = 0.13$ (p > 0.05) to 0.23 (p < 0.05) in northeastern Canada and $r = 0.23$ to 0.26 (p < 0.05) in western Argentina, respectively (Figure 4).

3.4. Influence of source water and leaf water isotopic enrichment to the $\delta^{18}O_{TR}$ signature

The relative contributions to the $\delta^{18}O_{TR}$ signature of the isotopic signal of the source (xylem) water and of the ^{18}O enrichment of the leaf water due to transpiration were investigated. In both regions, the Leaf water enrichment experimental simulations are more highly related to the reference simulations (R^2 centred on 0.9 and 0.95, respectively for northeastern Canada and western Argentina; Figure 5) than are the XW source simulations (R^2 centred on 0.65 and 0.8, respectively for northeastern Canada and western Argentina). This suggests that, with the model, the variability of $\delta^{18}O_{XW}$ has a weaker influence on $\delta^{18}O_{TR}$ variations than the changes of the leaf
4. DISCUSSION

4.1. Precipitation δ¹⁸Oₚ variations and estimation

Although the regression models used to predict daily δ¹⁸Oₚ values are likely too simplistic, the resultant monthly averaged values adequately reproduce the distribution of the observed (from GNIP stations) and modelled (by GCMs) monthly δ¹⁸Oₚ series in northeastern Canada. In western Argentina, the distribution of monthly δ¹⁸Oₚ values is also well reproduced but the amplitude of variation of the predicted values is too high, leading to simulated values lower than the measured ones during the colder months. The temporal δ¹⁸Oₚ variations are positively related to air temperature given the positive coefficient a. In agreement with the simple Rayleigh distillation model (Dansgaard, 1964), as air temperature decreases, the specific humidity at saturation decreases, and water vapour condenses. H₂¹⁸O condenses preferentially, the residual water vapour gets more and more depleted as condensation proceeds. Consequently, in the Tropics, the ¹⁸O/¹⁶O ratio in the meteoric water has been observed to decrease with increasing amount of precipitation and/or relative humidity (Rozanski et al., 1993). In extra-tropical regions, δ¹⁸Oₚ may also correlate with precipitation amount (negative coefficient b), since both variables depend on the meteorological conditions.

The results of the linear regressions show comparatively lower influence of precipitation on δ¹⁸Oₚ in western Argentina than in northeastern Canada (Table 1). This suggests that the imprint of the precipitation amount on δ¹⁸Oₚ in western Argentina is low and that δ¹⁸Oₚ variations are mainly controlled by seasonal changes in temperature, which is in agreement with previous work (Rozanski et al., 1995). However, due to the strong west-to-east precipitation gradient in this region (orographic rain shadow), large δ¹⁸Oₚ variations occur over short distances (Rozanski et al., 1995; Smith and Evans, 2007; Stern and Blisniuk, 2002). Therefore, the daily precipitation dataset extracted from the gridded reanalysis data, which has a low spatial resolution (>200 km), may not represent the daily variations in precipitation at a local scale faithfully. Therefore, the model may underestimate the contribution of precipitation on δ¹⁸Oₚ variability in this particular area.
In contrast, in northeast Canada, both temperature and precipitation amount equally control the δ¹⁸O_P variations. The high amount of precipitation falling in summer (~46%) should have a strong effect and decrease the δ¹⁸O_P values in the condensed water, while high temperatures counteract this effect by increasing this ratio. Before reaching northeastern Canada, the air masses pushed by the dominant westerly winds discharge most of their humidity over the land, leading to a depleted δ¹⁸O_P signal at our sites (for the same reason, δ¹⁸O_TR values at L20, which is located 110 km North-East of L01, are ~1‰ lower). Moreover, the δ¹⁸O_P signal in the Canadian sites is comparatively more depleted than in the Argentinian sites, because of their higher latitude. It is worth noting that the resolution of the gridded meteorological dataset used for the Canadian sites is relatively high (~10 km), which means that the local processes are likely well represented.

4.2. Relative performance in modelling δ¹⁸O_TR values

The simulated δ¹⁸O_TR series based on daily δ¹⁸O_P estimation from the regression models reproduce the observations better than the ones based on δ¹⁸O_P values derived from GCMs (Figure 4). This is in part due to the greater number of parameters to optimize, as the calibration process can more easily find a solution that fits the observations better. This may however reflect error compensations especially in western Argentina where the estimated annual variability of δ¹⁸O_P is too large. Conversely in northeastern Canada, the annual variations of δ¹⁸O_P that are estimated, simulated by GCMs and observed are in good agreement (Figure SM2). Although isotope-enabled atmospheric global models can reproduce the mean annual precipitation isotopic values and seasonality for many areas (Risi et al., 2010), results at specific sites, especially in mountainous regions such as at our western Argentinian site, can be less accurate (Figure SM2; see the offset between GNIP stations and LMDZ-NCEP20). Ideally, daily δ¹⁸O_P long-term records from meteorological stations in the study region should be used as an input of MAIDENiso. Simulations from high-resolution regional circulation models, such as REMOiso which has a 0.5°×0.5° (~55 km) horizontal resolution (Insel et al., 2013; Sturm et al., 2007, 2005), may produce reliable local δ¹⁸O_P values. Such dataset has proven to be quite helpful with MAIDENiso in the Fontainebleau forest (France) (Danis et al., 2012). However, up to now, measured or REMOiso δ¹⁸O_P datasets in our regions of study do not exist, which is the case for most regions of the world. Moreover, early data (1970-80s) from GNIP stations may have been...
compromised by pan evaporation and therefore isotopic enrichment. Therefore, we recommend that daily GNIP stations are set up in various forested ecosystems, that en effort is accomplished to homogenize older GNIP time series, and that high resolution simulations of δ^{18}O$_P$ are performed in wider regions.

The modelling of δ^{18}O$_{TR}$ values based on the estimation of δ^{18}O$_P$ is relatively more accurate for northeastern Canada than for western Argentina (Figure 3). As the mean levels of the measured δ^{18}O$_{TR}$ values are high at the western Argentinian sites (mean value of about 30‰), the Bayesian optimization tends to increase the biochemical (ε_0) and kinetic (ε_k) fractionations as well as the coefficient a, while reducing the dampening factor (f_a) to reach more representative mean levels of the δ^{18}O$_{TR}$ simulation. But still, these levels are too low in comparison with the observations (about 2.5‰ lower; Figure SM4). When the posterior value of a calibrated parameter is limited to the upper bound of the prior range of plausible values, as it is the case at the western Argentinian sites for a, b and ε_0 (Figure SM3), it means that either the prior range is too narrow, or the model is inadequate, or some important process is not considered in the model. Here, the estimation of the prior ranges of both coefficients a and b were based on observed (GNIP stations) and simulated (GCMs) δ^{18}O$_P$ values. Therefore, we expect their respective ranges to be consistent with local processes. When the prior range of a is extended to higher values in the optimization process, observed and simulated δ^{18}O$_{TR}$ mean levels in western Argentina are better matching. However, in this case, the distribution of δ^{18}O$_P$ values is shifted toward higher values, advocating for unrealistic estimated δ^{18}O$_P$ variations.

One other possibility is that the prior range of ε_0 is too narrow. In accordance with DeNiro and Epstein (1981), Sternberg (1989) and Yakir and DeNiro (1990), the biochemical fractionation ε_0 is assumed here to be lower than 30‰. However, a recent study has demonstrated that this parameter, nearly constant between 20 to 30°C, increases at lower temperatures to values of 31‰ (Sternberg and Ellsworth, 2011). During the growing season, maximum temperatures can reach 20°C in western Argentina and 30°C in northeastern Canada, which suggests that the high mean δ^{18}O$_{TR}$ levels in N. pumilio may be due to biochemical fractionation higher than 30‰ due to temperature generally lower than 20°C. However, when the prior range of ε_0 is extended to 31‰ in the optimization process, the mean δ^{18}O$_{TR}$ levels of N. pumilio are still too low in comparison with the observations. These results advocate for the existence of other processes, which can
explain this offset in mean levels in Argentina. For example, higher soil water evaporation than modelled by MAIDENiso should lead to less negative $\delta^{18}O_{SW}$ (and therefore $\delta^{18}O_{XW}$), which could explain the high mean levels of $\delta^{18}O_{TR}$ in Argentina. Caution should be exercised with such an interpretation since other species living in similar conditions as N. pumilio in western Argentina show comparatively lower mean $\delta^{18}O_{TR}$ levels than N. pumilio (i.e., Fitzroya cupressoides; see Lavergne et al. (2016)). The ongoing monitoring and evaluation of isotopic processes based on synchronous measurements of vapour, precipitation, soil water and xylem water will certainly help understanding the high mean levels observed in Argentina, and increasing the representation of the involved processes in MAIDENiso.

The better fit between observed and simulated $\delta^{18}O_{TR}$ values obtained with specific forms of synthetic distributions of daily GPP for northeastern Canada and western Argentina (Figure 3) suggests differential limiting factors in the two regions. The synthetic bimodal distribution of daily GPP with maxima in spring and autumn, as simulated in western Argentina, is often observed in a diversity of ecosystems such as in the Mediterranean environments (Baldocchi et al., 2010; Gea-Izquierdo et al., 2015). After the activation of the photosynthesis in early spring, increasing temperatures tend to be optimal for tree growth. However, in a modelling study, Lavergne et al. (2015) have shown that the influence of temperature on N. pumilio’s growth becomes negative once a temperature threshold (soil moisture) is exceeded. Therefore, we assume that after reaching a threshold of temperature and soil moisture summer conditions, tree growth is inhibited, leading to a decrease of primary productivity. However, when temperature starts to decline and soil water supply tends to increase with increasing precipitation events, tree growth increases again until the end of the growing season. In contrast, because precipitation is more abundant in summer (June to September) in northeastern Canada (Naulier et al., 2014), high summer temperatures should be always beneficial to tree-growth if enough soil water is available. Therefore, in agreement with GPP-derived eddy covariance data from the Fluxnet network (see Gennaretti et al. (2017a)), a better fit between observations and simulations is observed when using a unimodal rather than a bimodal GPP distribution. Monitoring of tree physiology, environmental conditions and wood cell formation will provide a more detailed representation of the complex biological and ecological processes operating in Patagonia, allowing us to run the MAIDENiso model with better constraints.
4.3. What is the main origin of the temperature signal recorded in δ¹⁸O_TR?

The investigation of the relative contributions of the isotopic composition of the source (xylem) water and of the ¹⁸O enrichment of the leaf water by transpiration on the simulated δ¹⁸O_TR reveals that the variability of the former has a weaker influence on δ¹⁸O_TR variations than that of the latter in North and South America. Therefore, the temperature signal recorded in δ¹⁸O_TR series more likely reflects the effect of temperature on isotopic enrichment of the leaf water rather than on the isotopic composition of the source water. At the leaf-level, air temperature has a strong effect on the relative humidity and therefore on the vapour pressure deficit (VPD), i.e. the difference between the saturation vapour pressure and the actual vapour pressure, which modulates the transpiration (Barbour, 2007). Thus, the imprint of the ambient air temperature on the fractionation processes occurring during transpiration is preferentially recorded in the tree-rings of the two species. Furthermore, both the isotopic signature of the xylem water and of the fractionation processes occurring at the evaporation sites of the leaves have comparatively higher influence on δ¹⁸O_TR in P. mariana than in N. pumilio. This is probably due to the lower amplitude of the day-by-day variations of the relative humidity in western Argentina (SD = 5%) versus in northeastern Canada (SD = 16%) that translates into a weaker influence of h_air variations and therefore of leaf-level isotopic fractionation processes on δ¹⁸O_TR values in western Argentina than in northeastern Canada. These results highlight the potential of MAIDENiso model to better refine the origin of the climatic signal recorded in the oxygen isotopic signature in the tree-rings of different species.

5. CONCLUSION

Here, by using MAIDENiso model, we provided a mechanistic overview of the climatic and biological processes controlling oxygen isotopic fractionation in two American temperature-sensitive tree species. First, we have shown that using regression-based rather than model-based δ¹⁸O_P estimates as inputs increases the predictive skills of our simulations, although this may be at the price of error compensations. Second, our study reveals that the variability of the isotopic composition of the source (xylem) water has a weaker influence on δ¹⁸O_TR variations than that of the ¹⁸O enrichment of the leaf water by transpiration. Last, these findings suggest that the imprint...
of temperature recorded in $\delta^{18}O_{TR}$ of the two species is likely related to the effect of temperature on isotopic enrichment of the leaf water. The isotopic monitoring of water within the soil-vegetation-atmosphere compartments in future work will certainly provide the input and control data necessary to better constrain MAIDENiso. Our study demonstrates that the eco-physiological modelling of $\delta^{18}O_{TR}$ values is necessary and likely the only approach to accurately interpret the recorded climate signal. Based on the calibrations of MAIDENiso presented here, the next step involves inverse modelling approaches to perform paleoclimatic reconstructions in North and South America that are less biased by the complex and nonlinear interactions between climate, CO$_2$ concentrations and tree growth as recommended by Boucher et al. (2014).

ACKNOWLEDGMENTS

A.L. has been supported by a Research associate/Lecturer position at the Aix-Marseille University (France). F.G. has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 656896. We acknowledge all data providers: the Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA, Argentina) for providing the daily temperature data from La Almohadilla site; the National Meteorological Service from Argentina for providing the monthly temperature data from Bariloche meteorological station (Argentina); the Department of Natural Resources Canada for providing the daily climatic data used for Quebec; the US Department of Energy, Office of Science Biological and Environmental Research (BER) and the National Oceanic and Atmospheric Administration Climate Program Office for providing the daily climatic data used for Argentina; and the SWING project for providing the daily $\delta^{18}O_P$ data from MUGCM model.

References

Dansgaard, W.: Stable isotopes in precipitation, Tellus A, 16(4), 436–468,

Guiot, J., Boucher, E. and Gea-Izquierdo, G.: Process models and model-data fusion in

Noone, D. and Simmonds, I.: Associations between δ18O of water and climate parameters in a...
Saurer, M., Aellen, K. and Siegwolf, R. T. W.: Correlating δ13C and δ18O in cellulose of trees,

Tables and Figures

Table 1 Definition of sensitive parameters. The posterior medians and 90% confidence intervals are also shown.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition</th>
<th>Unit</th>
<th>Parameter type (prior range)</th>
<th>Values with 90% posterior confidence intervals</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_0</td>
<td>Dampening factor</td>
<td>NA</td>
<td>Calibrated (0.3 to 0.5)</td>
<td>0.36 [0.31; 0.46] (Arg.) 0.41 [0.32; 0.48] (Q.)</td>
</tr>
<tr>
<td>ε_0</td>
<td>Biochemical fractionation</td>
<td>‰</td>
<td>Calibrated (24 to 30)</td>
<td>29.99 [29.93; 30] (Arg.) 26.81 [24.74; 28.04] (Q.)</td>
</tr>
<tr>
<td>ε_k</td>
<td>Kinetic fractionation</td>
<td>‰</td>
<td>Calibrated (10 to 30)</td>
<td>28.86 [18.25; 29.96] (Arg.) 17.20 [11.16; 26.34] (Q.)</td>
</tr>
<tr>
<td>a</td>
<td>Temperature dependence of $\delta^{18}O_p$</td>
<td>NA</td>
<td>Calibrated (0.2 to 0.5 for Arg. and 0 to 0.38 for Q.)</td>
<td>0.50 [0.49; 0.50] (Arg.) 0.31 [0.25; 0.37] (Q.)</td>
</tr>
<tr>
<td>b</td>
<td>Precipitation dependence of $\delta^{18}O_p$</td>
<td>NA</td>
<td>Calibrated (-0.3 to 0 for Arg. and -0.39 to 0 for Q.)</td>
<td>-0.009 [-0.15; 0] (Arg.) -0.22 [-0.35; -0.14] (Q.)</td>
</tr>
<tr>
<td>c</td>
<td>Intercept of $\delta^{18}O_p$</td>
<td>‰</td>
<td>Fixed</td>
<td>-10.0 (Arg.) -11.9 (Q.)</td>
</tr>
<tr>
<td>Configuration</td>
<td>Daily Tmin and Tmax</td>
<td>Daily P</td>
<td>Daily δ¹⁸O_P</td>
<td>CO₂</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------</td>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Configuration 1</td>
<td>Canadian database/ NOAA-CIRES dataset</td>
<td>Linear regression</td>
<td>Mauna Loa station</td>
<td></td>
</tr>
<tr>
<td>Configuration 2</td>
<td>Canadian database / NOAA-CIRES dataset</td>
<td>MUGCM data</td>
<td>Mauna Loa station</td>
<td></td>
</tr>
<tr>
<td>Configuration 3</td>
<td>LMDZ-NCEP20 data</td>
<td></td>
<td>Mauna Loa station</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1 Tree-ring δ¹⁸O time series (‰) at the three sites in Argentina (NUB, ALM and CHA in dark grey) and two sites in Quebec (L01 and L20 in dark grey; single trees in light grey). The bold black lines are the averaged values. The mean inter-site correlation coefficients are $r = 0.60$, $p < 0.05$ and $r = 0.80$, $p < 0.01$ in the South and North American sites, respectively.
Figure 2 Dependence of the correlation coefficients between observed and simulated δ18O\textsubscript{TR} series (panels A), and of the mean simulated δ18O\textsubscript{TR} levels (‰) (panels B) as a function of the range of calibrated parameters a, b, f\textsubscript{o}, \varepsilon\textsubscript{0} and \varepsilon\textsubscript{k} for the 50 simulations performed. In black are the tests with the sites from Quebec and in red the ones with the Argentinean sites. The vertical lines are the values of a plausible block of parameters retained in the MCMC optimization. The horizontal dashed lines are their respective 90% confidence interval calculated with 50 simulations (see Table 1). The horizontal dot lines in panel B are the mean values of the observed δ18O\textsubscript{TR}.

A

0.30 0.50
R
0.30 0.50

B

0.30 0.50
R
0.30 0.50

R

\begin{align*}
\text{Mean levels} & \\
0.30 & 0.50 \quad 18 \quad 24 \quad 30 \\
0.30 & 0.40 \quad 0.50 \quad 18 \quad 24 \quad 30 \\
0.30 & 0.40 \quad 0.50 \quad 18 \quad 24 \quad 30 \\
0.30 & 0.40 \quad 0.50 \quad 18 \quad 24 \quad 30
\end{align*}
Figure 3: Comparison between observed (red or green) and simulated (grey) $\delta^{18}O_{TR}$ chronologies in Quebec (A and B) and Argentina (C and D), respectively, using GPP (in gC.m$^{-2}$.day$^{-1}$) simulated by MAIDENiso (A and C) or synthetized for maximizing correlations (B and D). The simulations are based on estimated $\delta^{18}O_{P}$ series. The 50 different simulations inferred from the Markov Chain Monte Carlo (MCMC) chains are in dark grey. The \pm 1 root mean square error (RMSE) range is represented in light grey. The mean correlation coefficients are significant at 99% level (**).
Figure 4 Comparison of the densities of probability of the coefficient of correlation (R) between observed and simulated \(\delta^{18}O_{TR}\) chronologies in Quebec and Argentina when the simulations are based on \(\delta^{18}O_P\) series estimated by the regression model or from the MUGCM and LMDZ-NCEP20 models.
Figure 5 Density distributions of the coefficients of determination (R^2) between the reference simulations and the: 1) XW source experiment simulation ($\delta^{18}O_{V}$ and h_{air} set as constant, black) and, 2) Leaf water enrichment driven experiment simulation ($\delta^{18}O_{XW}$ set as constant, green) in Quebec (bold line) and Argentina (dashed line).