Interactive comment on “The Climate of the Common Era off the Iberian Peninsula” by Fátima Abrantes et al.

Fátima Abrantes et al.
fatima.abrantes@ipma.pt

Received and published: 12 November 2017

Please consider reading the supplement for a more clear vision of the reply and the new abstract.

The authors thank referee 1 for his important contribution to improve the manuscript. In general, the reviewer considers that the presented records provide useful information about climate variability offshore the Iberian Peninsula over the Common Era. However, the reviewer finds the paper too long and unable to pass a clear message, and suggests the paper to concentrate on answering a clear question. The length of the paper has been substantially reduced. The introduction was shortened, the material and methods was reduced to the essential information and most of the detailed and considered important information is now compiled as Supplementary material. The essential information relative to the cores chronology was included in the methods and the individualized chronology section of the previous version was deleted. Detailed information on the age-model construction for the new sedimentary sequences is now also included in the supplementary material. The results and discussion section was subdivided and results are now presented separately. The discussion has also been re-organized around the specific questions raised by the data. Abstract and Conclusions have equally been re-written in what we hope to be a more concise style. We certainly hope that the re-organization of the paper makes it easier to read and helps to better convey the message(s) included.

The reviewer considers also that the paper should definitely be proof read by a native English speaker, as many parts of the paper are very hard to understand lacking a sentence structure and words. The new and much changed version has been thoroughly revised by a native English speaker. Age model: The 3 new age models of the cores should be shown as an age-depth plot additionally to the table with the 14C dates. Moreover, a Bayesian age depth model should be performed to better constrain age uncertainties. An explanation and data used for the definition of the age-models for the new three cores is now included in the supplementary material. However, in order to correctly respond to this comment, below we present a discussion on the methodology used for the age model construction of all 7 sedimentary sequences used in this paper, the comparison between methods and the basic data for the three new sedimentary sequences, including de age-depth models.

Chronology: The example of PO287-6 The age-model for the spliced sequence composed of cores PO287-6B and 6G (box, gravity) was constructed by combining two methods: (1) 210Pb activity measured in box-core samples (Fig. 1A) which depending on the accepted model provides a sedimentation rate varying between 0.32 and 0.43 cm yr⁻¹; (2) four accelerator mass spectrometry (AMS) radiocarbon measurements (Leibniz-Laboratory for Radiometric Dating and Stable Isotope Research, Kiel,
Germany) (Table 1). Two further ages were assigned through MS correlation to other well-dated cores recovered off Lisbon (Fig. 1B). Raw AMS 14C dates were corrected for reservoir effect by 400 yr (Abrantes et al., 2005) and converted to calendar ages with the INTCAL04 data set (Reimer et al., 2004). The obtained calendar ages are presented in years Anno Domini (AD/CE). To develop a continuous record, the splicing of the long cores (piston and gravity) with the box-core (PO287-6B, 6G) was done through the Magnetic Susceptibility record (MS) of both cores (Fig. 1B). Further integration of the above-referred cores was based on the 1952 CE age found at 20.7 cm (depth corrected for compaction during sub-sampling) in box-core PO287-6B. Comparison of the PO287-6G MS record to sedimentary sequences from the Tagus system (Abrantes et al. 2005) was also done; Figure 1C depicts Depth vs. AD ages (with 2σ error) for PO287-6G with a linear best fit. An age that is within the error of the age estimated for the same depth using the sedimentation rate that results from a linear interpolation of the five considered levels (Table 1, Figs. 1B, 1C). Given the uncertainty associated to the 14C dates, the establishment of an age model based on the interpolation between each dated level is normally avoided for sequences covering short time intervals (Jan Heinemeier, pers com.). An age/depth relationship defined by the linear best-fit line of the calibrated 14C ages is the most common approach (e.g. (Narayan et al., 2010)). However we decided to compare age-depth models using both a linear and a polynomial best fit for core PO287-6G (Fig. 2). Both models give very close ages on the interval with dated levels, but the lack of dates at the base of core PO287-6G leads to older ages at the bottom of the record when using the polynomial solution. Why the selection of a linear interpolation? The assumption of a constant sedimentation rate was applied in Abrantes et al., 2005 (QSR) following the advise of Jan Heinemeier (Aarhus University 14C dating center). According to this expert, in the case of records covering short time-scales, such as the last 2,000 yr, and with a relatively small number of age control points, it is better to use a linear best-fit curve.

Chronology of the Galiza, Minho and Algarve Cores The chronology of core GeoB11033-1 (Box-core of Galiza site) is based on a set of twelve 210Pb data points, obtained in the upper 30 cm of the record, and one accelerator mass spectrometry 14C date (AMS C14), obtained in planktonic foraminifera (Table 2, Fig. 3, Fig. 4). 210Pb data was evaluated with the Constant Flux and Constant Sedimentation Rate model (CFCSR - (Appleby and Oldfield, 1992)) to date the upper 30 cm of the sediment core. The sedimentation rate was determined using the excess 210Pb (210Pbexcess) values, which is equivalent to the total 210Pb activity minus the supported 210Pb activity in equilibrium with sedimentary 226Ra. The excess 210Pb profile shows an exponential decrease with depth reaching the stable background value obtained using the 226Ra activity at 27.5 cm depth. The data points at 6 and 8 cm depth were excluded (Fig. 3). The 210Pb sedimentation rate estimated for the first 13 centimeters is 0.04 cm yr-1. Top core age was assumed to be the core recovery year, 2006. In the case of core DIVA09 GC (Minho site) the age-model construction is based in 12 210Pb data points distributed by 90 cm and 6 14C dates (AMS C14), obtained in marine material (shell and planktonic foraminifera) (Table 2, Fig. 3, Fig. 4). Background value was found at 9 cm depth. CFCSR model was defined excluding the 210Pb values at 6 cm. Top age was assumed to be the core recovery year, 2009. The 210Pb sedimentation rate estimated for the first 10 cm is 0.05 cm yr-1. The age-model of POPEI VC2B (Algarve site) is based on a set of eight 210Pb data points, obtained in the upper 50 cm of the record, and eight accelerator mass spectrometry 14C dates (AMS C14), obtained in marine material (shell and planktonic foraminifera) (Table 2, Fig. 3, Fig. 4). Background value was found at 9 cm depth. CFCSR model was defined excluding the 210Pb values at 6 cm. Top age was assumed to be the core recovery year, 2008. The 210Pb sedimentation rate estimated for the first 10 cm is 0.05 cm yr-1. The age-model of POPEI VC2B (Algarve site) is based on a set of eight 210Pb data points, obtained in the upper 50 cm of the record, and eight accelerator mass spectrometry 14C dates (AMS C14), obtained in marine material (shell and planktonic foraminifera) (Table 2, Fig. 3, Fig. 4). Background value was found at 9 cm depth. CFCSR model was defined excluding the 210Pb values at 6 cm. Top age was assumed to be the core recovery year, 2008.

Some specific comments below: Page 1 line 18: The Iberian Peninsula, at North Atlantic mid-latitude and the western extreme of the European continent, is a relevant area for climate reconstructions. – Rephrase sentence and what makes it a relevant area for climate reconstructions? The sentence was changed following reviewer 1 sug-
gestion.
Line 25: Is that even significant as the calibration error on alkenone SST is 1.5 °C? Schouten et al., 2013, http://dx.doi.org/10.1016/j.orggeochem.2012.09.006 We used the calibration method defined by (Muller et al, 1998), which is a global calibration based on core-top sediments and mean annual climatological temperatures. The error associated with this calibration was defined in the original paper: “the standard error is 1.5 °C, however considering that the Uk’37 values used for the global calibration were measured in about ten laboratories which partly used different methodologies, this differences could be minor rather attesting the robustness of the Uk’37 paleotemperature indicator”. Schouten et al. (2013) compiles previously published information in his Table 7. Other calibration models use suspended matter (SOM) Uk’37 calibrated to in-situ measured SST (Conte et al., 2006; Gould et al., 2017) or are based on culture data (Prahl et al., 1988) and water column measurements (Prahl et al., 2005). As a test we have used the three different models referred above to estimate SST in one of our sedimentary sequences (PO287-, Porto). Figure 5 shows no difference between the Muller and Prahl calibrations, while systematically lower SSTs are estimated when using Conte’s calibration equation for core-top sediments (Mollenhauer et al., 2015). Independently of the used calibration method, the trends and amplitude of the observed variations are maintained all along the record even if variation is ≤ 1 °C. As such, we conclude that our variability is significant, moreover for the definition of a long-term trend. Besides, UK’37 derived SST data has been compared to those determined from GDGTs by Mollenhauer et al. (2015) for the Mauritania upwelling system and the authors conclusion is: SST reconstructions based on alkenones are in excellent agreement with satellite data, and the entire seasonal amplitude of temperature variations at the sea surface is well recorded. In contrast, GDGT based temperature reconstructions using the logarithmic TEX86 calibration yields temperature maxima similar to observed maxima, but a reduced seasonal amplitude (warm bias).

Page 2 Line 2: change to Medieval climate anomaly Line 5: what does particular C5 mean? Wording has been changed
Line 7: “The intense precipitation/ flooding and warm winters but cooler intermediate seasons (spring and fall) observed for the early MWP imply the interplay of internal oceanic variability with the three atmospheric circulation modes, North Atlantic Oscillation (NAO), East Atlantic (EA) and Sandinavia (SCAND) in a positive phase”- how would the interplay of these 3 patterns cause the observed pattern? We have profoundly changed the Introduction, and these patterns are now only referred. The effect of the three modes of atmospheric circulation on the climate of the Iberia Peninsula (shown in figure 5 of Hernández et al. (2015)) is discussed in detail in the section Climate Forcing Mechanisms of the Discussion.

Line 15: rephrase-sentence like that makes no sense Line 32: restructure Line 33: delete Medieval Warm Period (MWP) Page 3: Line 27: rephrase bad English Page 4 Line 23-26: superficial statement needs more explanation Line 30: change to: For that we combine the above mentioned published records with 3 new records located along the Iberian margin from 42° N to 36° N, covering the last 2,000 yr The paper was revised taking into account all of referee 1 comments and requests. Page 6: Line 4: Any additional proof that the cores are tracing river input despite pollen like BIT index We did not use the BTI index, but as stated on lines 5 to 10 of the manuscript, “Intensity of river discharge and on-land precipitation regimes were determined by using lipid compounds synthesized by higher plants, such as C23–C33 n-alkanes ([n-alc]) (e.g. Farrington et al. (1988); Pelejero et al. (1999); Prahl et al. (1994)) and the total pollen concentration (TPC)”

List of Tables and Figures Table 1 – Results of 14C AMS dating of the gravity core
PO287-6G. Ages were reservoir corrected by 400 yr. Error column lists ± errors of 14C ages. Table 2 – Results of 14C accelerator mass spectrometry dating (means ± SE) for cores GeoB11033-1 (Galiza), DIVA09CG (Minho) and POPEI VC2B (Algarve). Ages were corrected for reservoir effect by 400 yr and converted into calendar years (AD/CE). Figure 1 Information used to construct our age model; A) 210Pb activity downcore PO287-6B; B) MS correlation of PO287-6G to sedimentary sequences from the Tagus system (Abrantes et al. 2005); C) Depth vs. AD ages (with 2σ error) for PO287-6G with a linear best fit. Figure 2 – Dated levels for core PO287-6G with a linear and a polynomial best fit for comparison. Figure 3 – 210Pb activity downcore for the box-core GeoB11033-1 at the Galiza site and cores (Minho) DIVA09GC and (Algarve) POPEI VC2B. Figure 4. Depth vs. AD ages (with 2σ error) for cores GeoB11033-1 and GC at the Galiza site (orange), DIVA09GC (Minho, magenta) and POPEI VC2B (Algarve, red), with a linear best fit. Figure 5 – Comparison of the SST variability estimated from three different calibration equations, along core PO287-6 (PORTO).

References
Please also note the supplement to this comment:

Fig. 1.
Figure 2 – Dated levels for core PO287-6G with a linear and a polynomial best fit for comparison.

Figure 3 – 210Pb activity downcore for the box-core GeoB11033-1 at the Galiza site and cores (Minho) DIVA09GC and (Algarve) POPEI VC2B.
Figure 4. Depth vs. AD ages (with 2σ error) for cores GeoB11033-1 and GC at the Galiza site (orange), DIVA09GC (Minho, magenta) and POPEI VC2B (Algarve, red), with a linear best fit.

Figure 5 – Comparison of the SST variability estimated from three different calibration equations, along core PO287-6 (PORTO).

C13

C14
Table 1 – Results of 14C AMS dating of the gravity core PO287-6G. Ages were reservoir corrected by 400 yr. Error column lists ± errors of 14C ages.

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Depth (cm)</th>
<th>14C Age (RC = 400 yr)</th>
<th>Error</th>
<th>Age AD</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KIA 35149</td>
<td>100.5</td>
<td>160</td>
<td>25</td>
<td>1770</td>
<td>mixed benthics</td>
</tr>
<tr>
<td>KIA 29290</td>
<td>318.0</td>
<td>405</td>
<td>35</td>
<td>1478</td>
<td>mixed planktonics</td>
</tr>
<tr>
<td>KIA 35150</td>
<td>400.0</td>
<td>820</td>
<td>30</td>
<td>1223</td>
<td>mixed benthics</td>
</tr>
</tbody>
</table>

Table 2 – Results of 14C accelerator mass spectrometry dating (means ± SE) for cores GeoB11033-1 (G) and POPEI VC2B (Algarve). Ages were corrected for reservoir effect by 400 yr and converted into calendar years (AD/CE).

<table>
<thead>
<tr>
<th>Core ID and depth (cm)</th>
<th>Laboratory code</th>
<th>Sample Type</th>
<th>Conventional 14C age (BP)</th>
<th>error</th>
<th>Calibrated age ranges at 95% confidence intervals</th>
<th>Age AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeoB11033-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 - 28.5</td>
<td>OS-97151</td>
<td>Foraminifera</td>
<td>2430</td>
<td>25</td>
<td>746-530 -638</td>
<td></td>
</tr>
<tr>
<td>42 - 45</td>
<td>KIA 42919</td>
<td>Mollusk shell</td>
<td>465</td>
<td>25</td>
<td>1841-1859 -1864</td>
<td></td>
</tr>
<tr>
<td>57 - 58</td>
<td>OS-97148</td>
<td>Foraminifera</td>
<td>1270</td>
<td>25</td>
<td>1057-1211 -1133</td>
<td></td>
</tr>
<tr>
<td>68 - 69</td>
<td>OS-97149</td>
<td>Foraminifera</td>
<td>1990</td>
<td>25</td>
<td>298-482 -400</td>
<td></td>
</tr>
<tr>
<td>83 - 84</td>
<td>KIA 42921</td>
<td>Mollusk shell</td>
<td>2380</td>
<td>30</td>
<td>-157-33 -60</td>
<td></td>
</tr>
<tr>
<td>101 - 102</td>
<td>KIA 42932</td>
<td>Mollusk shell</td>
<td>2325</td>
<td>30</td>
<td>-87 - 95 -11</td>
<td></td>
</tr>
<tr>
<td>POPEI VC2B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130.9</td>
<td>Beta 278216</td>
<td>Mollusk shell</td>
<td>1220</td>
<td>40</td>
<td>1080-1274 -1184</td>
<td></td>
</tr>
<tr>
<td>200.6</td>
<td>OS-97152</td>
<td>Foraminifera</td>
<td>2130</td>
<td>25</td>
<td>146-326 -243</td>
<td></td>
</tr>
<tr>
<td>270.3</td>
<td>OS-97143</td>
<td>Foraminifera</td>
<td>3020</td>
<td>25</td>
<td>-902-783 -837</td>
<td></td>
</tr>
</tbody>
</table>