"Temperature and mineral dust variability recorded in two low accumulation Alpine ice cores over the last millennium" by Pascal Bohleber et al.

- final technical corrections -

Please note:

• All line numbers in "Changes to manuscript" refer to the new version (if not noted otherwise)
• Changes in the corresponding pdf are highlighted in red
• Author's responses to the referee's comments are in blue
• All new references can be found in the new manuscript

1. Comments by the Editor

Comments to the Author:

The comments of the two referees have been carefully addressed and especially, it is now very clear how the Ca2+ vs temperature link should be considered.

I would still suggest a small change in the conclusion section: l. 30, p. 20, can you be more cautious about the link between Ca2+ and temperature and change the sentence beginning with "Exploiting ..."? I suggest to remove the first part of the sentence and simply mentioning "Considering a constant Ca2+ - temperature relationship (1) proves ..."

Many thanks again for your submission and careful revisions.

Thank you again for your helpful comments. We appreciate the suggestion and have changed the sentence accordingly. Please also note the following additional technical changes to the manuscript:

• We have updated and added the following references: Hoffmann et al. 2017b, Spaulding et al. 2017, Luongo et al. 2017
• Updated Acknowledgements
• We have included the former appendix as a separate document serving as supplementary material. We have changed the references in the text accordingly.
• We have submitted the central datasets of this study to the Pangaea repository and will add a respective reference at the end of the manuscript as soon as they are available.
2. Comments by the Anonymous Referee #1

I find this version of the paper considerably improved and I believe the authors clarified my most important points. However, the authors may consider these additional comments.

We thank the referee again for the constructive comments and thorough review. We have also considered the additional remarks for the final version of the manuscript (see below).

Main points:

I think the supplementary figures A1 and A2 provide important additional information/value to the paper.

Figure A1: This figure provides a good idea of 1) how the seasonal cycles of delta 18O and Ca2+ can be preserved at Colle Gnifetti and 2) the partitioning of summer and winter accumulation. While I see how the large amplitude seasonal signal can be conserved and transferred to greater depths over time, I do not see how the same can happen for the minor Ca2+ peaks, as indicated by the arrows. To me this figure does not support the concept of “group of peaks” observed at greater depths and referred as annual cycle. Counting these groups as annual layers is still equivocal and, while this could still be correct, (another unknown post-depositional glaciological mechanism may concur to form this presumed annual feature) the dating of this core remain well constrained only in its upper and bottom parts. Identifying absolute time horizons in the time interval of 100-300 years before present, seems however a frequent problem of Alpine cores whose dating might typically suffer of a lower relative accuracy at that time.

Figure A2: This figure strongly supports the idea that the occurrence of dust in snow layers facilitates their consolidation and thus preservation on site. I was wondering whether it would be possible to also display and comment delta 18O in this figure, as it might be telling about the role of atmospheric temperature and the timing of occurrence of this consolidation process. In any event I strongly recommend this figure to be incorporated within the main text as this seems the most convincing evidence supporting the arguments proposed by the authors.

We appreciate the referee's statement that the new supplementary figures add to the value and clarity of the paper. We have moved figure A2 to the main text as suggested.
The indication of the potential source area of dust remains elusive to me. However, regardless whether the Sahara is constantly the source of these large inputs of dust to Colle Gnifetti, this does not influence the main message of the paper. I would only recommend the authors to provide some significant references for isotopic and elemental tools/methods (e.g. Sr and Nd isotopes, REE etc.) that could possibly be employed in the future to better constrain potential source areas of dust that reached Colle Gnifetti.

We have added references accordingly. Page 20, Lines 16-17.

A graphical comparison with the Thevenon record might be also helpful. Since we now discuss the comparison with the Thevenon et al. (2009) dataset in more detail in the text, we have decided not to add another figure in the manuscript.

I would also recommend a final polishing of the English as it does not always sound correct to me.

We will wait for the English language copy-editing to the final stage of manuscript production.

Specific points:

Pag 1, Line 12: I would suggest to replace “advection” with “convection”.

In this case we specifically want to include the (comparatively long range) advection of dust and hence leave the wording unchanged.

Pag 3, Line 17-18 “A changing amount of winter precipitation contributing to annual mean values may introduce a coupling on the inter-annual scale among seasonal varying signals, including δ18O and most impurities”. This sentence is not clear.

We have reworded the sentence to make it more clear. Page 3, Lines 16-18.

Pag 4, Line 27 I would remove “specific”.

Changed accordingly.

Pag 18 Line 11 (and elsewhere within the text, e.g. in caption of figure A2). You may replace “snow preservation” with “snow consolidation”. This latter is more focused on the process.

Changed accordingly where appropriate.
Page 18, Line 18 “This revealed that the resulting bias from incomplete snow preservation on the average Ca2+ level is already in the same order of magnitude as the long-term Ca2+ trends found in previous studies”. This sentence is not clear. We have reworded the sentence to make it more clear. Page 18, Lines 18-20.

Page 20, Line 8 "depend on"

Changed accordingly.

2. Comments by the Anonymous Referee #2

The authors have improved the paper and answered many of the points I raised in my original review. I am particularly pleased that the authors provided a more detailed assessment of the influence of snow deposition and post-depositional processes in explaining the apparent Ca2+ - temperature covariation. The discussion section is now clearer and benefits significantly by the introduction of subsection 5.2.2, which addresses the main scientific issues concerning the relation of long term variability of Ca2+ and temperature in a more exhaustive way compared to the original version. I therefore think that the manuscript should be published as it is.

Thank you very much again for your constructive review and comments.

I only suggest the following rewording:

- Fig. 1: “[...] hence providing the same upstream catchment area [...]” rather than “hence providing their same upstream catchment area”.

Changed accordingly.
Temperature and mineral dust variability recorded in two low accumulation Alpine ice cores over the last millennium

Pascal Bohleber¹,²,³, Tobias Erhardt⁴,⁵, Nicole Spaulding¹, Helene Hoffmann², Hubertus Fischer⁴,⁵, and Paul Mayewski¹

¹Climate Change Institute, University of Maine, Orono, Maine, USA
²Institute of Environmental Physics, Heidelberg University, Heidelberg, Germany
³Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innsbruck, Austria
⁴Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
⁵Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

Correspondence to: Pascal Bohleber (Pascal.Bohleber@iup.uni-heidelberg.de)

Abstract. Among ice core drilling sites in the European Alps, Colle Gnifetti (CG) is the only non-temperate glacier to offer climate records back to at least 1000 years. This unique long-term archive is the result of an exceptionally low net accumulation driven by wind erosion and rapid annual layer thinning. However, the full exploitation of the CG time series has been hampered by considerable dating uncertainties and the seasonal summer bias in snow preservation. Using a new core drilled in 2013 we extend annual layer counting, for the first time at CG, over the last 1000 years and add additional constraints to the resulting age scale from radiocarbon dating. Based on this improved age scale, and using a multi-core approach with a neighboring ice core, we explore the time series of stable water isotopes and the mineral dust proxies Ca²⁺ and insoluble particles. Also in our latest ice core we face the already known limitation to the quantitative use of the stable isotope variability based on a high and potentially non-stationary isotope/temperature sensitivity at CG. Decadal trends in Ca²⁺ reveal substantial agreement with instrumental temperature and are explored here as a potential site-specific supplement to the isotope-based temperature reconstruction. The observed coupling between temperature and Ca²⁺-trends likely results from snow preservation effects and the advection of dust-rich air masses coinciding with warm temperatures. We find that if calibrated against instrumental data, the Ca²⁺-based temperature reconstruction is in robust agreement with the latest proxy-based summer temperature reconstruction, including a “Little Ice Age” cold period as well as a medieval climate anomaly. Part of the medieval climate period around 1100–1200 AD clearly stands out through an increased occurrence of dust events, potentially resulting from a relative increase in meridional flow and/or dry conditions over the Mediterranean.

1 Introduction

Glaciers and ice caps of high mountain ranges can provide climate records of mid- and low latitudes complementary to polar ice cores. In comparison to their polar counterparts, mountain drilling sites are characterized by a comparatively small-scale glacier geometry and their proximity to continental source areas. As a consequence, cold mountain glaciers are an especially worthwhile target for ice core studies focusing on Holocene climate, e.g. in view of the envisaged IPICS 2k array (Brook et al.,
2006) and the present underrepresentation of ice core records contributing to the PAGES 2k Network (Ahmed et al., 2013). In
the European Alps, ice core studies have been performed at Col du Dôme, Mont Blanc (Preunkert et al., 2000), Fiescherhorn,
Bernese Alps (Schwerzmann et al., 2006), Ortles, Eastern Alps (Gabrielli et al., 2016) as well as at Colle Gnifetti and Colle
del Lys in the Monte Rosa region (e.g. Wagenbach et al., 2012, and references therein). Among these glaciers, Colle Gnifetti
(CG) – in spite of its limited glacier depth – stands out as the only non-temperate site where net snow accumulation is low
enough to provide records over the last millennium and potentially beyond at a reasonable time resolution. The exceptionally
low net accumulation at CG is a result of seasonal net snow loss by wind erosion: Since snow consolidation is most effective
during the summer half year, winter precipitation is more likely to be removed from the surface (Wagenbach, 1992). This has
far-reaching consequences with respect to the interpretation of the CG ice cores, hampering to-date the full exploitation of their
unique long climate time series. On the one hand, considerable uncertainty in the individual ice core chronologies becomes an
obstacle already after a few hundred years. Difficulties in deploying annual layer counting as the main dating tool arise from
snow scouring, rapid layer thinning associated with strongly non-linear time-depth relationships and the extremely low time
resolution achieved in the bottom part of the glacier by conventional cm-resolution analyses. As a consequence, dating the
deeper part of CG ice cores is commonly based on simple extrapolation combined with constraints from radiocarbon analysis
(e.g. Jenk et al., 2009). On the other hand, irregular and summer-biased snow deposition makes the annual or long-term levels
of ice core proxy signals with a prominent seasonal cycle a primary function of the relative winter snow fraction preserved, as
opposed to their common climatological meaning. In addition, net snow accumulation is characterized by substantial spatial
and temporal variability, leading to considerable influence of upstream flow effects and depositional noise (Wagenbach, 1992).
In contrast to the strong signals of anthropogenic aerosol increase, depositional noise especially challenges the detection of the
comparatively weak stable water isotope trends ($\delta^{18}O$ and δD). Under these circumstances, the comparison of multiple cores
drilled at the same site can be used to identify an atmospheric signal as shared variability among the cores (Bohleber et al.,
2013; Wagenbach et al., 2012).

Here we present new results to tackle the two-fold challenge above with a new core drilled at Colle Gnifetti in 2013, integrating
datasets from an additional ice core drilled in 2005 on the same flow line. In order to obtain a reliable long-term chronology for
the 2013 core, we utilize state-of-the-art continuous flow analysis for ice core impurity profiling and, to identify even highly
thinned annual layers, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) at sub-mm depth resolution
(Della Lunga et al., 2017; More et al., 2017; Haines et al., 2016; Mayewski et al., 2014). We combine annual layer counting
in the resulting impurity profiles with absolute age constraints from radiocarbon analysis, taking advantage of recent progress
in applying this technique to mountain ice cores (Hoffmann et al., 2017b; Uglietti et al., 2016). Based on a refined long-term
chronology, the time series of stable water isotopes and mineral dust proxies (Ca^{2+} and insoluble particles) are investigated,
with special emphasis on their relation to temperature.
Figure 1. The ice core array at Colle Gnifetti, at 4450 m asl in the Monte Rosa summit range. The drilling sites of the two cores KCI and KCC are located on approximately the same flow line (black line) towards the eastern flank (downwind of the main wind direction), hence providing the same upstream catchment area. Locations of previous drillings initiated by the Institute of Environmental Physics are also shown as small black dots for reference.

2 Glaciological settings of the CG drilling site

Details on the glaciological features of CG are described thoroughly in the literature; e.g. Haeberli et al. (1988); Lüthi and Funk (2000); Konrad et al. (2013) for geometry and glacier flow, Haeberli and Funk (1991); Hoelzle et al. (2011) for englacial temperature and Alean et al. (1983) for surface accumulation. Here, we present only a brief overview, mainly dedicated to explaining the role of snow deposition in relation to recording atmospheric temperature and mineral dust variability in the CG ice cores.

With a horizontal scale of 400 m and a maximum ice thickness of around 140 m, the CG site forms a small firn saddle at around 4500 m asl between two summits of the Monte Rosa massif. The orientation of the convex, central saddle axis coincides with the main westerly wind direction, thereby making the downwind-situated ice cliff a perfect sink for drifting snow (Figure 1). Hence, a substantial fraction of the annual fresh snow precipitation is removed at CG, which limits linking the net snow accumulation rate to the climatologic precipitation rate. The latter ranges from 0.15 m water equivalent (WE) per year in the north-facing flank to about 1.2 m WE per year in the southern one, where the higher abundance of ice layers and ice crusts significantly reduces the snow erosion rate (Alean et al., 1983). Within the CG north flank (comprising our CG ice core array) fresh snow consolidation is faster during the summer half year (additionally supported by refreezing surface melt). Accordingly, the mean net snow accumulation is mainly made up by precipitation of the warm seasons, which entails a systematic over-representation of the summer half-year in chemical and isotopic signatures (Wagenbach, 1989). A changing amount of preserved winter precipitation affects annual mean values of all signals with a distinct seasonality (including $\delta^{18}O$ and most impurities), and may introduce a coupling on the inter-annual scale (Wagenbach, 1992). Notably this also includes a
potential link to temperature, since warm summers feature increased vertical mixing and hence a higher atmospheric impurity load. In addition, faster fresh snow consolidation favored by higher temperatures may lead to an increased relative amount of impurity-rich summer snow deposition.

A long-term co-variation between $\delta^{18}O$ and Ca$^{2+}$ suggesting a possible relationship between climate and dust deposition at CG has already been noted but was left for future investigation (Wagenbach and Geis, 1989; Wagenbach et al., 1996). A later study specifically explored the link between the $\delta^{18}O$ signal and air temperature changes in the presence of the snow preservation influence at CG. A dominant influence of atmospheric temperature on decadal isotope variability shared among the CG cores was found, although a high and potentially non-stationary isotope/temperature sensitivity hampered the quantitative use of the CG isotope variability (Bohleber et al., 2013). Considering the co-variation of the long-term variability of i) Ca$^{2+}$ and $\delta^{18}O$, and ii) $\delta^{18}O$ and temperature, suggests that atmospheric temperature variability could also be reflected in the Ca$^{2+}$ trends. In view of the shortcomings in quantitatively using the isotope-thermometer at CG, identifying a temperature-related imprint in the Ca$^{2+}$ variability could provide a valuable supplement in this respect.

At CG, mineral background aerosol levels are generally low, making the Ca$^{2+}$ record dominated by episodic inputs of dust, most likely originating in the Saharan desert (Wagenbach et al., 1996). While dry deposition may add to the average mineral dust content (Haeberli et al., 1983), it appears less important in case of Saharan dust events (Schwikowski et al., 1995). In addition, only a marginal contribution to changes in the particle size distribution is expected from changes in the dry deposition (Ruth et al., 2003). As for most of the impurity species at CG, the seasonal contrast in Ca$^{2+}$ concentration is primarily connected to the seasonal gradient in vertical atmospheric mixing, with an additional component from sporadic Saharan dust inputs (Preunkert et al., 2000; Preunkert and Wagenbach, 1998). Saharan dust deposition events are a frequent phenomenon in the Alps with main occurrence in spring and summer (Prodi and Fea, 1979). A single deposition event typically lasts less than a few days (Sodemann et al., 2005; Schwikowski et al., 1995). The associated warm air temperature and the substantially lowered snow albedo both support surface snow consolidation and partly protect the dust layer from wind erosion (Haeberli et al., 1983). Intensive Saharan dust events of the summer half year, associated with directly northward transport of air masses, are most likely to become preserved at CG. Saharan dust layers in CG ice cores can be characterized by high concentrations of insoluble particles, SO$_4^{2-}$ and Ca$^{2+}$ coinciding with buffered low acidity, as well as to some extent by increased $\delta^{18}O$ and deuterium excess values (Wagenbach et al., 1996; Wagenbach and Geis, 1989). Accordingly, the combination of Ca$^{2+}$ with an alkalinity measurement is a tool to identify Saharan dust influenced layers in CG ice cores (Wagenbach et al., 1996), which will be employed in the following.

The above considerations warrant a general distinction and separate evaluation of the following two features of the Ca$^{2+}$ record of the CG ice cores: i) The long-term average Ca$^{2+}$ concentration, and its potential coupling with $\delta^{18}O$ and temperature via snow preservation. ii) Spikes in Ca$^{2+}$ typically two orders of magnitude above background, which are dominated by Saharan dust input (Wagenbach et al., 1996). Regarding ii), changes in the dust peak occurrence rate can originate from changes in the meridional versus zonal circulation and/or in the desert dust source strength. Here detecting the frequency of dust peaks in the ice core matters, which is expected to be comparatively more robust against snow preservation influence.
Table 1. Basic glaciological parameters of the two CG ice cores

<table>
<thead>
<tr>
<th>Core name</th>
<th>KCI</th>
<th>KCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Position GPS (WGS84)</td>
<td>N 45.92972 E 7.87696</td>
<td>N 45.92893 E 7.87627</td>
</tr>
<tr>
<td>Year of drilling</td>
<td>2005</td>
<td>2013</td>
</tr>
<tr>
<td>Total depth [m abs]</td>
<td>61.84</td>
<td>71.81</td>
</tr>
<tr>
<td>Total depth [m WE]</td>
<td>48.44</td>
<td>53.77</td>
</tr>
<tr>
<td>Surface net accumulation [cm WE/yr]</td>
<td>14</td>
<td>22</td>
</tr>
<tr>
<td>Firn-ice-transition [m WE]</td>
<td>17</td>
<td>21</td>
</tr>
</tbody>
</table>

3 Ice core analysis

The two cores used in this study, denoted as KCI and KCC, were drilled in 2005 and 2013, respectively. Both cores were drilled roughly on the same flow line, making them the natural choice for our inter-core comparison, i.e. opposed to using previously deep cores drilled on another flow line (Figure 1). Table 1 summarizes basic glaciological parameters of the two cores. The depth sections used in this study were chosen to comprise roughly the last 1000 years, i.e., the upper 44 m WE (corresponding to 81% relative depth) and 35 m WE (73% relative depth) of KCC and KCI, respectively. Table 2 provides an overview of the carefully co-registered datasets used in this study. The various methods of analysis are discussed briefly in the following.

3.1 Impurity profiles from continuous flow analysis

Continuous flow analysis (CFA) of the KCC core was performed with the setup at the Division for Climate and Environmental Physics, Physics Institute, at the University of Bern. Analyses performed on the meltwater flow included meltwater conductivity, insoluble particle concentration and size distribution as well as selected ion species (Ca$^{2+}$, NH$^{+}$, NO$_{3}^{-}$, Na$^{+}$, see Table 2). In addition, stable water isotopes were analyzed using a Picarro instrument coupled directly to the meltwater flow. The size distribution of insoluble particles recorded by the optical particle sensor was used to derive a profile of the “coarse particle percentage” (CPP). The CPP was calculated based on particle volume, and represents the percentage of particles exceeding a threshold of 4.0 µm. The threshold was chosen such that it corresponds to the expected median particle diameter of Saharan dust particles at CG, which was shown to be distinguishable from background sources (Wagenbach and Geis, 1989). Deviations from a CPP of 50% indicate higher or lower contribution of large and small particles respectively. The melt rate was adjusted to provide the necessary amount of water for all analyses resulting in an effective depth resolution ranging from 1.2 cm at the very top of the core to about 0.5 cm for all depth below approximately 25 m WE. Electrical conductivity measurements (ECM) performed at the Institute of Environmental Physics, Heidelberg University were used primarily to obtain a qualitative record of the acidity of the ice in connection to the detection of Saharan dust events.

The KCI core was analyzed using the reduced CFA setup at the Institute of Environmental Physics, Heidelberg University. Meltwater conductivity and insoluble particle concentration were measured by CFA at about 0.7 cm effective resolution. Con-
Table 2. Overview on ice core analyses and datasets used in this study

<table>
<thead>
<tr>
<th>Core</th>
<th>Parameters</th>
<th>Sampling</th>
<th>Effective resolution [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCC</td>
<td>Meltwater Conductivity, NH$_4^+$, NO$_3^-$, Na$^+$</td>
<td>Continuous Flow</td>
<td>> 0.5</td>
</tr>
<tr>
<td></td>
<td>Insoluble Particles, Ca$^{2+}$</td>
<td>Continuous Flow</td>
<td>> 0.5</td>
</tr>
<tr>
<td></td>
<td>Stable water isotopes (δ18O and δD)</td>
<td>Continuous Flow</td>
<td>> 0.5</td>
</tr>
<tr>
<td></td>
<td>Electric Conductivity</td>
<td>ECM</td>
<td>> 0.5</td>
</tr>
<tr>
<td></td>
<td>44Ca</td>
<td>Laser ablation ICP-MS</td>
<td>120 µm</td>
</tr>
<tr>
<td>KCI</td>
<td>Meltwater Conductivity, Insoluble Particles</td>
<td>Continuous Flow</td>
<td>> 0.7</td>
</tr>
<tr>
<td></td>
<td>Stable water isotopes (δ18O or δD)</td>
<td>Discrete Sampling</td>
<td>10 – 1.5</td>
</tr>
</tbody>
</table>

Continuous sub-sampling of the core for stable water isotope analyses was conducted at a depth resolution typically ranging between 5 and 10 cm. Due to the relatively high firn temperature at CG, isotope smoothing is much faster compared to polar sites with similar annual layer thickness. Hence re-sampling most of KCI even at 1.5 cm depth resolution did not significantly restore any high-frequency isotope variability (Bohleber et al., 2013).

3.2 Ultra-high resolution Ca-profile of the KCC core by laser ablation ICP-MS

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was conducted in the WM Keck Laser Ice Facility at the Climate Change Institute (University of Maine) and used to analyze 44Ca at ultra-high depth resolution (better than 120 µm). The more abundant 40Ca is blocked by mass interference from 40Ar used as carrier gas. Details regarding the method, sample preparation and calibration routine can be found in Spaulding et al. (2017); Sneed et al. (2015). Briefly, the components of this system include a Thermo Element 2 ICP-MS, a New Wave UP-213 laser, and a cryo-cell chamber, designed to seal a 1 m ice core from the surrounding air while maintaining a uniform temperature of −15°C. In order to ensure a complete seal of the ablation chamber, porous firn parts could not be measured. From 29.5 m WE to bedrock, the KCC ice core was analyzed for 44Ca along a single ablation track. The 44Ca signal comprises contributions of soluble and insoluble Ca (Sneed et al., 2015). Crucial for further deployment for annual layer counting, the trend components in the LA-ICP-MS measured Ca signal have been shown to be in good correspondence with the lower resolution CFA Ca signal, as shown in Figure 2 and previously by Spaulding et al. (2017); Sneed et al. (2015).

3.2.1 Radiocarbon analysis

The measurements for radiocarbon dating of the ice core have been conducted at the Institute of Environmental Physics (Heidelberg, Germany) under close collaboration with the accelerator mass spectrometer (AMS) facility at the Klaus-Tschira-Lab in Mannheim, Germany. The microscopic particulate organic carbon fraction (POC) incorporated into the ice matrix was extracted, combusted and analyzed for 14C content. Calibration of the retrieved 14C ages was performed using OxCal version 2.4.
Figure 2. Ca signals obtained from the KCC ice core at around 65% relative depth using LA-ICP-MS and CFA in direct comparison after careful alignment of the two depth scales. Top row: Raw (black) and filtered LA-ICP-MS Ca signal (blue). Bottom: CFA Ca (red) vs filtered LA-ICP-MS Ca signal (blue). Note i) additional peaks and high-frequency information revealed by LA-ICP-MS, ii) a general agreement of CFA and low frequency LA-ICP-MS components is consistently observed over core parts measured by LA-ICP-MS. LA-ICP-MS intensity is reported as counts per second.

(Ramsey, 2016) and by convention the 1-sigma error range is shown (Stuiver and Polach, 1977). For details on the sample preparation and measurement procedure see Hoffmann et al. (2017a, b). The average ice sample masses were for both cores in a range of ca. 300–500 g ice resulting in absolute POC masses below 10 μgC. For the KCC core, a fraction of the ice core with a cross section of 17 cm2 was reserved for the POC 14C analysis. Within the upper 44 m WE, a total of six samples were analysed, typically comprising between 40–60 cm of core. For the KCI ice core more core material (one third) was available, resulting in depth intervals of 40 cm length used for radiocarbon dating. Within the upper 40 m WE of the KCI core six samples have been analyzed so far.

4 Ice core dating

Ice core chronologies were established by annual layer counting as the main dating tool in combination with additional age constraints from 14C for the lower core parts. For roughly the last 100 years, dated time horizons (1963 bomb-radioactivity, and the Saharan dust layers of 1977, 1947 and 1901, cf. Figure 4 below) are available to constrain the counting (Supplementary Material). The 1963 horizon was used to cross-check that the annual signal had been identified correctly (cf. sub-annual and multi-year signals). The dust events were independently used for verification and typically lie within one to two years of the counted age scale (four years at maximum for the 1901 horizon). Regarding additional absolute age markers beyond 1901, the identification of volcanic eruptions solely based on basic ice chemistry profiles is not feasible at CG. This is due to the fact that the relatively weak signals of volcanic sulphate or volcanic acidity are easily overlooked at CG since they are embedded into
Figure 3. Examples for annual layer counting in KCC impurity profiles for three different depth sections, labeled a), b) and c), and corresponding roughly to 100, 250 and 1000 years before 2013, respectively (cf. Table 3). In the upper core parts (firn sections) CFA measured impurities were used for counting, with special emphasis on NH$_4^+$ (a). Counted years are marked as full stars, uncertain years as white stars. The middle row (b) shows an example of overlap in counting between CFA and LA-ICP-MS Ca, showing (10 ± 3) and (11 ± 3) years, respectively. The LA-ICP-MS Ca raw signal is shown in black together with Gaussian smoothing (blue). Note that a minor depth offset (at most a few cm) may exist between the CFA and LA-ICP-MS datasets. Accordingly, no one-to-one match of the individual peaks is attempted. Counting within one of the deepest sections analysed for this study is shown in (c). Here, only the LA-ICP-MS Ca allows a reliable identification of almost sub-cm thin annual layers. LA-ICP-MS intensity is reported as counts per second.

the relatively large variability of Saharan dust associated sulphate (mainly from gypsum) and (acidity consuming) carbonate. More promising in this respect is the investigation of relatively volatile trace elements (Kellerhals et al., 2010b), or the detection of tephra markers (Luongo et al., 2017), which are beyond the scope of this work, however.

4.1 The KCI chronology

For KCI, insoluble particle concentration and meltwater conductivity were used for annual layer counting, extending down to about 26 m WE. Below 26 m WE the identification of annual layers became ambiguous and was abandoned. This depth corresponds (taking the uncertainty in layer counting into account) to (1492 ± 30) AD. A two-parameter model (based on a simple analytical expression for the decrease of the annual layer thickness with depth) was used to extrapolate a continuous age-depth relation to greater depth (Nye, 1963; Jenk et al., 2009). Note that high-resolution annual layer counting could only be performed in KCC (see below) since only small sections of KCI have been analyzed by LA-ICP-MS so far (Sneed et al., 2015).

4.2 The KCC chronology

All impurity species measured by CFA (Table 2) were used in combination for annual layer counting. Annual layers were defined as local maxima in at least two of the six impurity signals, with special emphasis on NH$_4^+$ featuring the largest seasonal amplitude. An example of counting annual layers in the CFA profiles in shown in Figure 3 a). In order to identify highly thinned, sub-cm annual layers expected to dominate the deeper core sections, an independent counting was established using...
Table 3. Ice core age, dating uncertainty and annual layer thickness for selected depths

<table>
<thead>
<tr>
<th>Core</th>
<th>Depth [m WE]</th>
<th>Age [year AD]</th>
<th>Uncertainty [years]</th>
<th>Annual Layer Thickness [cm WE]</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCC</td>
<td>10</td>
<td>1971</td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1912</td>
<td>4</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1762</td>
<td>12</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>1000</td>
<td>72</td>
<td>1</td>
</tr>
<tr>
<td>KCI</td>
<td>10</td>
<td>1917</td>
<td>4</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1700</td>
<td>20</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>1312</td>
<td>62</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>939</td>
<td>77</td>
<td>1</td>
</tr>
</tbody>
</table>

the LA-ICP-MS Ca profile starting at 29.5 m WE (corresponding to 1760 AD). At this depth, the average annual layer thickness was estimated from CFA-based counting as around 3 cm. The LA-ICP-MS Ca record was investigated at full resolution and as a smoothed version (using the leading components in singular spectrum analysis or Gaussian smoothing). In its upper section, the LA-ICP-MS Ca profile is characterized by regular occurrence of several distinct peaks grouped together going along with an elevated baseline of Ca concentration (Figure 3 b)). The groups of peaks are separated by a comparatively stable signal of low Ca concentrations. The latter is interpreted as resulting from the varying degree of winter snow being included in the record otherwise dominated by summer snow. Accordingly, the grouped peaks correspond to sub-annual snow deposition events of elevated Ca concentration during the summer period, which is also observed in the most shallow parts of KCC (Supplementary Material). For the depth interval 29.5–32.5 m WE, counting separated groups of peaks (typically 3–5 peaks per annual layer) in the LA-ICP-MS Ca record results in good agreement with counting performed on the CFA profile (typically within ±1 year per 10 counted years, see Figure 3 b)). Below 32.5 m WE, average annual layer thickness becomes close to 1 cm and counting in the CFA profile becomes increasingly difficult (i.e. frequent “shoulder type” annual layers merged into a single impurity peak). The LA-ICP-MS Ca profile continues to show distinct groups of peaks that become increasingly closely spaced and eventually merge into single broad peak events (Figure 3 c)). Accordingly, LA-ICPMS Ca was the dominant source of annual layer counting after around 32.5 m WE (1600 AD). The annual layer signal remains clearly identifiable for the remaining part of the depth-range investigated here (e.g. apparently not affected by diffusion of soluble Ca).

4.3 Age constraints from radiocarbon analysis

For KCC, results from 14C analysis are found to back the annual layer counted age scale. Five of six 14C dates agree with the counting within their 1-sigma range (Figure 4), corresponding to a root mean square deviation of 118 years (227 years including the outlier). The outlier 14C point contradicts a monotonic increase of age with depth and is thus disregarded. This is justified, because the 14C age of this sample matches with a very sensitive section of the 14C-calibration curve. Therefore already a small, unknown blank contribution would be able to shift the calibrated age of this sample significantly. Within the
2 sigma error range it also hits the error range of the annual layer counting chronology in the present configuration. Its deviation is therefore not of consequence.

For the KCI ice core, the radiocarbon ages are found to agree with the extension of the existing age scale based on the two-parameter model. It seems worth noting, however, that four out of six 14C points lie systematically above the extrapolated age scale (albeit in agreement within their 1-sigma range). Only the sample at 28.4 m WE shows an age that is significantly older than expected. This can on one hand be due to the extremely small (also compared to the other KCI samples) sample size of only 2.2 μgC making this sample prone to even very small potential blank contributions. In this context also a potential influence of aged organic material (e.g. from Saharan dust) has to be regarded. At present, the age of this sample is therefore regarded as an outlier. Additional radiocarbon measurements of this core section above and below the critical sample are planned to further refine the match, and to test if the systematic deviation of the 14C ages persists. The 14C ages of the KCC and KCI samples are summarized in the Supplementary Material.

4.4 Dating uncertainty

Potential sources of uncertainty in annual layer counting stem from i) erroneously identifying or missing of existing annual layers, ii) interpolating data gaps and iii) an incomplete stratigraphy missing years due to annual snowfall fully eroded from the surface. Regarding i), we estimated the likelihood of miscounting layers by marking "uncertain years" (Figure 3). In view of the high snow erosion at CG, uncertain layers were defined as additional peaks in close proximity to an annual layer (e.g. "shoulder type" peaks). To quantify counting uncertainty from uncertain layers, we followed the approach successfully employed for Greenland ice cores. This is to count uncertain layers as 0.5±0.5 years and to estimate the maximum counting error (MCE) from N uncertain layers as $N \times 0.5$ years (Andersen et al., 2006; Rasmussen et al., 2006). With 144 uncertain layers detected within the upper 40 m WE of KCC, this corresponds to an uncertainty of ±72 years at 1000 AD. With respect to ii), the depth interval considered in this work was completely recovered without core loss. The ends of the CFA core sections were trimmed in case of irregular core breaks. This resulted typically in less than a centimeter of missing CFA data, thus not interfering with annual layer counting. The ECM profile was used as an alternative backup across these short CFA data gaps. Likewise, the CFA data was used as an alternative indicator where the LA-ICP-MS profile was incomplete, which only concerned one major instance of missing LA-ICP-MS data between about 33.8–34.24 m WE.

Contribution iii) constitutes a fundamental difference relative to Greenland conditions, since CG is not a closed system with respect to precipitation and loss of the annual snowfall in selected years can occur. The frequency of occurrence in these total snow loss events is, however, extremely hard to quantify. Counting annual layers in between the above mentioned (dust) horizons within the last century, reveals an offset of typically only one to two years as compared to the known age of the horizons. Thus, the counting appears not to be systematically flawed by missing years. Hence we regard uncertainty i) as dominant and use the MCE as an uncertainty estimation of the KCC age scale. Notably, the uncertainty refers to the unconstrained counting approach used here and could be further refined in the future with new absolute dating horizons, especially for the per-1900 AD period.

The uncertainty of the KCI age scale was obtained in a consistent manner, using the MCE for the annual layer counted interval
Figure 4. Age-depth relations over the last 1000 years for KCC and KCI, shown in the top and bottom row respectively. Age is plotted on a logarithmic axis, together with the according estimates of maximum dating uncertainty (dashed lines) and 14C age constraints (with 1-sigma range) for KCC and KCI. Also shown is the adjusted age scale of KCI based on the stable water isotope time series comparison (solid black line, within less than 15 years of the original dating and thus hardly distinguishable here, see text). Absolute dating horizons used roughly within the last 100 years (see text) are shown as black squares. Note that the KCI chronology is based on a simple extrapolation below 26 m WE and has large uncertainty beyond the last 1000 years (thus indicated as light gray line only).

and extrapolating the upper and lower uncertainty limits with the two-parametric model. Figure 4 shows the resulting age-depth relation and uncertainty bands for KCC and KCI, together with 14C dates (shown with their 1-sigma uncertainty range) available for the respective depth interval. Table 3 gives a complementary summary of the age-depth relation, uncertainties and annual layer thickness for 10 m depth intervals. It is important to note that we are less confident about the age-depth relation of KCI compared to KCC, due to KCI featuring i) annual layering counting using only two bulk parameters and only down to 26 m WE and ii) the extrapolation by the two-parameter model.

4.5 Inter-core time series comparison and age scale alignment

To investigate potential offsets between the KCI chronology and the presumably more reliably dated KCC, we compared the stable water isotope time series of the two cores. This is motivated by the fact that the decadal isotope trends among the CG ice cores have been previously shown to agree over the last 250 years (Bohleber et al., 2013). Without substantial dating offset between the cores, this inter-core agreement should hold also on longer time intervals. It is important to note that due
Figure 5. Stable water isotope time series of KCC and KCI, shown in blue and red, respectively. The top row shows both records on their original time scale over the last 1000 years. The KCI age scale was adjusted using the algorithm of (Lisiecki and Lisiecki, 2002) to optimise the match with KCC.

To the strong effect of isotope diffusion at CG, inter-annual or even seasonal isotope variability is effectively eliminated. As a consequence, the records (except for the last 100 years in KCC) resolve only decadal-scale variability at best. Hence we did not apply any further smoothing to the time series. In order to avoid potential biases from increasing sampling resolution, both time series were sub-sampled to nominal biennial resolution. Figure 5 shows the comparison of the respective time series on their original time scales for the last 1000 years.

The two original time series of KCC and KCI already feature striking similarities, although frequently separated by a lag between the two time series (e.g. note the distinct isotope minima around 1360 AD). The direction and magnitude of this lag varies with time, hampering an absolutely straightforward adjustment to match the two records. Aiming to adjust the KCI record to KCC time series, we employed the powerful algorithm developed by Lisiecki and Lisiecki (2002) for correlating paleoclimate time series. In doing so, we left the last 150 years of the KCI age scale unchanged (since considered reliably dated) but did not prescribe any further user-defined tie-points to the algorithm. The result shows the original lag between the two time series eliminated (Figure 5). A maximum shift of around 15 years is needed to align the two records (e.g. around the 1360 AD isotope minimum), which is within the estimated dating uncertainty of KCI (Figure 4). As a result, the aligned time series are significantly correlated ($r = 0.47$). This degree of correlation is within the typical range of correlating CG isotope time series on the decadal scale within the last 250 years (Bohleber et al., 2013). However, this is the first time that the correlation holds to this extent also for the comparatively old core sections of CG ice cores, e.g. we find a correlation coefficient of $r = 0.50$ when considering the interval 1500–1000 AD only. In the following, all KCI time series are considered on their aligned time scale.
5 Results and Discussion

The age scale of KCC provides the first chronology of the last millennium for a CG ice core that is fully based on annual layer counting. The new KCC age scale offers the to-date most accurate foundation to study the CG proxy time series over long time scales, e.g. regarding the recent investigation pursuing the link with historical evidence by More et al. (2017) who used a slightly adjusted version of the age scale presented here (albeit not significantly different with respect to uncertainty). The novel technique of LA-ICP-MS was crucial for a reliable identification of cm and sub-cm thin layers in the deeper parts of the core. Thereby, this work adds to recent studies (e.g. Della Lunga et al., 2017; Haines et al., 2016; Mayewski et al., 2014) to demonstrate the potential of the high-resolution impurity records afforded by LA-ICP-MS for investigating highly thinned sections of polar and alpine ice cores. The combination of high-resolution annual layer counting and radiocarbon analysis promises a break-through also for dating highly thinned deep parts of ice cores drilled at other sites.

5.1 Stable water isotope records

The covariation of the δ^{18}O time series between KCI and KCC strongly suggests a common atmospheric driver, i.e. temperature. At first glance Figure 5 shows an increasing trend over the last 100 years but also generally higher mean isotope levels prior to about 1900 AD. This is in line with earlier findings suggesting an “early instrumental period” warmer than instrumental data by about +0.4°C derived from the CG isotope signal (Bohleber et al., 2013). Here we find the generally higher average isotope levels to persist over much of the pre-industrial period: For instance, the mean δ^{18}O level in KCC between 1860-1000 AD is higher by about 0.75‰ than the 2000-1860 AD average. A quantitative use of the common isotope signal would therefore require addressing systematic so-called “upstream effects” and a reliable calibration of the isotope signal against instrumental temperature.

Upstream-effects concern the systematic variation in seasonality of the net accumulation upstream of the drilling site and have the potential to bias long-term core averages. Quantifying this effect requires accurate identification of the upstream catchment area (typically by sophisticated flow modeling) and evaluating the spatial variability in mean isotope levels. Dedicated efforts to evaluate the upstream-effect for the KCI-KCC flow line are currently underway (pers. comm. Carlo Licciulli and Josef Lier IUP Heidelberg). From a preliminary inspection of snow pit data recently obtained for the KCI-KCC flow line, there is no clear indication of a systematic trend in mean δ^{18}O levels upstream of KCI, however: Comprising roughly the years 2016–2014, three snow pits evaluated thus far show mean δ^{18}O levels of $-13.22, -11.94$ and -15.04‰ at about 60, 195 and 300 m distance upstream of KCI, respectively (KCC is located roughly 110 m upstream of KCI, cf. Figure 1).

In order to calibrate the stable water isotope signal, we used the instrumental temperature dataset compiled in an earlier study (Bohleber et al., 2013). This temperature dataset (referred to here as “CG modified temperature”) was specifically adjusted to the CG ice core conditions, taking into account the summer bias in precipitation and snow deposition. To calculate an isotope/temperature sensitivity, we considered both KCC and KCI individually as well as a stack of the two stable isotope records (calculated as their simple average at nominal annual resolution). Using 2000–1860 AD as calibration period (thus deliberately avoiding the “early instrumental period” prior to 1860) our results reproduce earlier findings of Bohleber et al. (2013). This
Figure 6. Comparison of KCC δ^{18}O and Ca^{2+} against the CG modified instrumental temperature (orange), shown in top and bottom, respectively, and covering the full instrumental period back to 1760 AD. Shown are anomalies relative to the respective 2000-1860 AD mean, and as decadal trends obtained from Gaussian smoothing.

specifically includes showing i) an overall agreement between the isotope and temperature record interrupted by characteristic decadal mismatch periods (Figure 6), ii) an increase in isotope/temperature correlation for multi-annual and decadal averages (e.g. $r = 0.33, 0.47, 0.64$ for discretely binned annual, 5 and 10 year averages, respectively in case of KCC) and iii) higher correlations obtained from the stack vs. the individual time series (e.g. $r = 0.48, 0.67, 0.79$ for annual, 5 and 10 year averages, respectively).

Regarding sensitivity values, we also find an increase with length in averaging period as well as substantially higher sensitivity values for KCI than KCC, revealing 2.3 vs. 1.4 ‰/$^\circ$C, respectively, when using discretely binned 10-year averages (and 1.8 ‰/$^\circ$C for the stacked record). Hence we obtain sensitivity values about threefold of what is expected, e.g. based on the isotope/temperature relationship of 0.65 ‰/$^\circ$C reported by Rozanski et al. (1992) for European temporal trends in precipitation.

Since a more strict confinement towards sampling the high summer season can be expected for the lower accumulation KCI, the sensitivity difference among KCI and KCC points towards the seasonal bias in snow sampling to be connected with enhancing sensitivity. It is important to note that the high isotope-sensitivity deserves a separate thorough investigation, ideally comprising regional climate-isotope modeling and taking into account post-depositional effects such as snow preservation, upstream-effects and isotope diffusion, which is outside the scope of this study. Until an adequate long-term calibration of the CG isotope signal is achieved, however, we do not attempt a quantitative temperature reconstruction based on the isotope composite record so far.

Figure 7 shows the time series of δ^{18}O in comparison with Ca^{2+}, deuterium excess and CPP. Due to the logarithmic distribution of the Ca^{2+} data, we generally use a log-scale to show the Ca^{2+} time series. For KCC, we find δ^{18}O and Ca^{2+} to be significantly correlated over the last 1000 years (at $r = 0.49$, cf. Figure 7). This suggests that the common decadal-scale
signal driver behind the shared variability between the $\delta^{18}\text{O}$ time series of KCC and KCI also holds for Ca$^{2+}$. Prior to about 1860 AD, the $\delta^{18}\text{O}$ time series constitutes nearly an upper envelope signal as compared to Ca$^{2+}$. Short excursions to low Ca$^{2+}$ concentrations missing a respective counterpart in $\delta^{18}\text{O}$ may have been smoothed out by isotope diffusion. Worth noting in this respect, the firn-ice transition in KCC coincides roughly with the last 100 years in the record (Tables 1 and 3).

5.2 Mineral dust proxy records

Following our general distinction (section 2), two signal components of the Ca$^{2+}$ time series are investigated separately: i) the frequency of occurrence in Saharan dust deposition, and ii) the long-term average Ca$^{2+}$ concentration. In order to investigate to what extent the time series agreement observed for $\delta^{18}\text{O}$ also holds in case of mineral dust related species, we use the insoluble particle signal as a surrogate for Ca$^{2+}$ (since Ca$^{2+}$ has not been measured for KCI). Figure 8 shows an overview of the insoluble particle datasets of KCC and KCI. KCC data shows that the insoluble particle signal and Ca$^{2+}$ concentrations are generally highly correlated (e.g. $r = 0.9$ within the last 1000 years). The KCC-KCI inter-core comparison of insoluble particle records reveals agreement of decadal scale features, as well as similarities regarding periods of low concentrations and higher peak abundance (e.g. 1800–1820 vs. 1780–1800, respectively). Differences in the magnitude of individual peak events as well as mean levels of particle concentrations can be explained in light of i) the KCI particle signal measured on diluted sample meltwater, ii) potential calibration differences in the optical particle sensor and iii) inter-site snow deposition variability. Accordingly, it was not attempted to construct a composite record of insoluble particles from the two cores.
Figure 8. Inter-core comparison of the insoluble particle signal of KCC (blue) and KCI (orange). The top and middle row show the insoluble particle time series on a linear and logarithmic scale, respectively. The bottom row shows decadal trends of anomalies with respect to their 2000–1860 AD mean, highlighted by Gaussian smoothing. The KCI record is on the adjusted time scale after matching the stable water isotope records.

5.2.1 Detection of Saharan dust peak events and frequency of occurrence

Essential for the calculation of a robust occurrence rate of dust events are adequate means to distinguish desert dust from background and from deposition events of long-range transported anthropogenic pollutants. While the particle signal alone is not sufficient for differentiating these events, Saharan dust layers in CG ice cores can be reliably identified based on the analyses of Ca\(^{2+}\), supplemented by alkalinity measurements and, in principle, particle size distribution (Wagenbach et al., 1996). The central criteria used in this study in order to identify Saharan dust are strongly elevated concentrations of Ca\(^{2+}\) coinciding with acidity values reduced to alkaline levels. Since no direct acidity measurements are available in our case from CFA, we rely on the ECM record for this purpose. At CG high dust levels are able to reduce the ECM signal to almost zero (rendering the ECM to be a qualitative dust indicator rather than an quantitative acidity gauge). Dust anomalies were identified as “peaks over threshold”. A robust spline smoothing was used to remove the general trend from the Ca\(^{2+}\)-data. Peak events then needed to exceed three times the median absolute deviations (Figure 9). We have also used the particle size distribution to investigate exemplarily a small number of dust events, finding that dust events show systematically higher CPP with respect to dust-free core sections.

To detect the frequency of occurrence in dust peak events, we followed the statistical tool outlined in Chapter 6 of Mudelsee (2010). For a non-parametric occurrence rate estimate we used a moving Gaussian kernel (bandwidth 51 years) and accounted for boundary effects. For KCC, only the subset of peak events coinciding with a vanishing ECM signal was considered to be of Saharan dust origin. For KCI, we employed the same peak detection scheme to the insoluble particle signal. However, due
Figure 9. Results from detecting Saharan dust events in the ice core records and estimating their long-term frequency of occurrence. Figure part a) corresponds to KCC, part b) to KCI (see text). The bottom row shows the detected events (blue) and the frequency of occurrence kernel estimate with a 51-year bandwidth (bottom rows, in red) together with 90% confidence intervals.

to the lack of a full ECM profile, no subset corresponding to low acidity could be defined. Using a direct comparison with the insoluble particle signal of KCC, with and without ECM correction, we found that the respective uncorrected frequency of occurrence is expected to contain a minor bias towards higher peak abundances, but leaves the overall features unchanged. As the main robust features for KCC and KCI, the frequency of occurrence in dust peaks is systematically increased prior to 1250 AD with respect to the rest of the record (Figure 9). Dust anomalies are found clustered in periods around 1100–1200 (extending into the 1200s), around 1400–1450 and, for KCC only, between 1500–1800. This is in broad agreement with enhanced Saharan dust deposition reported by Thevenon et al. (2009) for periods around 1200–1300, 1430–1520, 1570–1690, 1780–1800, and after 1870. The latter periods were identified by Thevenon et al. (2009) based on sophisticated elemental analysis in a CG ice core, albeit at much coarser resolution and larger dating uncertainty, which hampers a more detailed comparison. However, in our data we also recognize a large dust peak located between 1780 and 1800 which was suggested as a dating reference horizon by Thevenon et al. (2009).

5.2.2 The long-term \(\text{Ca}^{2+} \) variability in relation to temperature

Within the calibration period 2000–1860 AD, we find the overall increasing trend in instrumental temperature to be represented also in increasing levels of \(\delta^{18} \text{O} \) and \(\text{Ca}^{2+} \) (Figure 6). The \(\text{Ca}^{2+} \) signal correlates significantly with the CG modified instrumental temperature at \(r = 0.41, 0.56, 0.71 \) using biennial, 5 and 10 year averages, respectively, within the calibration period. Nearly identical correlation values are obtained for the full instrumental period back to 1760 AD. Within the calibration period (Figure 6), we compared the decadal trends (highlighted by Gaussian smoothing) of the CG modified instrumental tempera-
ture with δ^{18}O and Ca$^{2+}$, respectively. The comparison reveals that the Ca$^{2+}$ signal performs similarly to δ^{18}O in explaining variance of the temperature data (both at around 25%, although only interpreted with caution due to the autocorrelation of the smoothed curves).

Potential drivers for a Ca$^{2+}$-temperature coupling can be expected from i) the advection of air masses comprising a high Saharan dust load generally being associated with warm temperatures (Wagenbach et al., 1996), ii) the deposition of dust leading to lowered snow albedo thus supporting surface snow consolidation (Haeberli et al., 1983) and iii) warm temperature favoring snow consolidation (e.g. Fauve et al., 2002; Haeberli et al., 1983). However, it generally remains difficult to quantify the influence of the above processes. It seems worth pointing out that, process iii) acts independently from the type of impurity/isotope species considered. Likewise, a similar process as i) may be envisaged in case of δ^{18}O. However, process ii) mainly concerns dust-related species such as Ca$^{2+}$ providing an essential “self-preserving” character for these species with respect to snow deposition. Regarding this connection between dust content and presumed faster snow consolidation, supporting evidence is provided by including the high-resolution density profile of KCC. Comparing profiles of Ca$^{2+}$ and density reveals that layers with a high dust load generally coincide with layers of enhanced density (Figure 10). Regarding process iii), we made an attempt to semi-quantitatively explore the imprint of snow preservation on the long-term variability in Ca$^{2+}$ (Supplementary Material). Previous studies already used simplified conceptual models to investigate the influence of snow deposition on seasonal ice core signals, and demonstrated the decisive role played by the amplitude of the seasonality (Wagenbach et al., 2012; Fisher and Koerner, 1988). We employed the model by Wagenbach et al. (2012), with parameters reflecting to CG snow preservation conditions. Our calculations revealed that incomplete snow preservation can bias the average Ca$^{2+}$ concentration in comparable magnitude as the long-term variability in Ca$^{2+}$ observed in previous studies (Wagenbach et al., 1996) and also in the core investigated here. As a result, the influence of snow deposition appears non-negligible in explaining the apparent Ca$^{2+}$-temperature co-variation. Notably this implies that, at best, the Ca$^{2+}$-temperature coupling allows for using Ca$^{2+}$ trends as a site-specific temperature proxy only. This is in analogue to the study by Kellerhals et al. (2010a) demonstrating temperature-related variability for NH$_4^+$ at a low-latitude site, albeit explained by a different mechanism than discussed for Ca$^{2+}$ at CG here.

5.3 Temperature and mineral dust variability over the last millennium

Based on the above considerations and the agreement within the instrumental period (Figure 6), the potential of the Ca$^{2+}$ signal to quantitatively record temperature variability is explored further over the full 1000 year period. For this purpose the biennial logarithmic Ca$^{2+}$ is calibrated tentatively against instrumental temperature using linear regression within the time period 2006–1860 AD. The respective 90% confidence intervals are used to calculate a temperature reconstruction with uncertainty bands (0.7–1.8 °C/log Ca$^{2+}$ [ppb]). Decadal trends are again highlighted by Gaussian smoothing in Figure 11. The resulting 1000-year record is shown with a tentative 200-year extension. Regarding its overall features and in view of remaining dating uncertainties, the record provides evidence of “Little Ice Age conditions” systematically cooler than the reference and calibration period, with an average of -0.3°C between 1800–1200 AD. A shorter warm interval of about $+0.3^\circ$C is found in the late 1100s. These features are especially noteworthy considering the above-average mean of the δ^{18}O values with respect
to 2006–1860 AD (Figure 7). The comparison with δ^{18}O suggests that the Ca$^{2+}$-temperature coupling may be less affected by non-stationary sensitivity (and upstream) effects.

In this context we further explored our Ca$^{2+}$-based temperature-reconstruction attempt in comparison with other proxy reconstructions of European summer temperature. We show here results from using the mean European summer temperature anomalies reconstructed by Luterbacher et al. (2016), considering their composite-plus-scaling method (CPS) adjusted to biennial resolution and our reference time period of 2006–1860 AD. The decadal trends (represented by Gaussian smoothing) of both reconstructions shown in Figure 11 are generally consistent in their overall features (and formally correlate at $r = 0.4$). These features comprise the recent warming trend and below average conditions during the “Little Ice Age” (LIA), and a warm episode in the late 1100s ("Medieval Climate Anomaly", MCA). The only major feature of disagreement occurs around the already noted minimum around 1250–1230 AD. The overall low levels of impurities (especially NH$_4^+$) and δ^{18}O may point to increased deposition of winter snow during this time, or exceptionally cold summer conditions. It is worth noting that if, tentatively, extending the comparison for another 200 years beyond 1000 AD, the agreement between the two reconstructions continues to last until 800 AD, consistently showing a relatively warm interval lasting between about 1000–850 AD. The overall agreement is especially noteworthy in the light of: i) Only small offsets exist between the general features of the two records, which may stem from the remaining dating uncertainty of KCC. The comparison is not intended as a dating validation, however. ii) The absence of evidence of a non-stationary sensitivity. The magnitude of the general features (LIA, MCA) and decadal scale temperature variability derived from our ice core record is consistent overall with the other proxy reconstruction. A potential systematic bias to the observed Ca$^{2+}$-temperature coupling could arise from strong and long-term changes at the
Figure 11. Comparison of decadal temperature trends as anomalies with respect to the mean of 2006–1860 AD. Shown are calibrated temperatures obtained from the KCC Ca$^{2+}$ variability (blue lines, with uncertainty indicated as light blue bands). Also shown are instrumental temperature data (black) and the summer temperature reconstruction of Luterbacher et al. (2016) in red (uncertainty as gray bands). Note that the overall co-variation among the two reconstructions persists for at least another 200 years beyond 1000 AD (light gray shaded area). Black bars on the bottom indicate maximum dating uncertainty.

...
6 Conclusions and Outlook

A combination of state-of-the-art methods in ice core analysis allowed us to date the latest CG ice core KCC with unprecedented confidence. The breakthrough in this respect was to extend annual layer counting, for the first time at CG, over more than the last 1000 years and finding the resulting age scale corroborated by radiocarbon analyses. The combination of high-resolution annual layer counting afforded by LA-ICP-MS with constraints from radiocarbon analyses could be employed with great success also at deep sections of other (mountain) ice cores. By means of the improved age scale it became possible, for the first time, to demonstrate that the inter-core agreement in decadal isotope variability among two cores on the same flow line extends over the last 1000 years. The inter-core agreement suggests a common driver of the shared signal, also extending to the long-term variability in Ca\(^{2+}\). We find substantial agreement among the decadal trends of Ca\(^{2+}\) and temperature at CG, over the entire instrumental period. Since snow preservation plays a key role for the observed coupling between Ca\(^{2+}\) and instrumental temperature, this makes Ca\(^{2+}\) trends at best a site-specific temperature proxy, although it remains to be tested to what degree the association with temperature also holds at other alpine drilling sites. In contrast to the stable isotope signal at CG, however, we find no evidence of non-stationary temperature sensitivity for Ca\(^{2+}\): Considering a constant Ca\(^{2+}\)-temperature relationship i) proves to be consistent with other latest summer temperature reconstructions, and ii) reproduces overall features regarding the “Little Ice Age” and the “Medieval Climate Anomaly”. Parameters less influenced by snow preservation (dust event occurrence rate and particle size distribution) reveal an exceptional medieval period around 1100–1200 AD, suggesting a relative increase in meridional flow and dry conditions over the Mediterranean during that time. Future and ongoing investigations will target the application of our new dating approach to the bottom 10 m WE of KCC, and an improved quantitative understanding of the isotope-thermometer at CG. In this context a central question remains whether the isotope-based temperature signal can be reconciled quantitatively with the Ca\(^{2+}\)-based reconstruction.

Data availability. Complementary datasets are available at:

Competing interests. The authors declare that they have no competing interests.

Acknowledgements. We are grateful to numerous colleagues for their commitment regarding field work, ice core drilling and ice core analyses. In particular we would like to acknowledge the support of the Initiative for the Science of the Human Past at Harvard University and all its project members. Additional invaluable support in ice core processing was provided by the Alfred-Wegener-Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven (AWI). The Klaus-Tschira-Lab Mannheim is acknowledged for their support in radiocarbon analysis. We also would like to thank Johanna Kere, CarloLicciulli, Josef Lier and Lars Zipf from IUP Heidelberg for their support. We thank Johannes Freitag (AWI Bremerhaven) for the high-resolution density data. Recovery and analysis of the 2013 CG ice core KCC were supported by the Arcadia Fund of London (AC3450) and the Helmholtz Climate Initiative REKLIM. Work on the 2005 CG ice
core KCI has been funded by the European Union under contract ENV4-CT97-0639 (project ALPCLIM) and within the project ALP-IMP through grant EVK2-CT2002-00148. LA-ICP-MS ice core analyses were conducted in the Climate Change Institute’s W. M. Keck Laser Ice Facility at the University of Maine supported from the W. M. Keck Foundation and the National Science Foundation (PLR-1042883, PLR-1203640). Financial support was provided to P.B. by the Deutsche Forschungsgemeinschaft (BO 4246/1-1, BO 4246/3-1). The Division of Climate and Environmental Physics acknowledges long-term financial support of ice core research by the Swiss National Science Foundation (SNSF) and the Oeschger Center for Climate Change Research. We acknowledge financial support by Deutsche Forschungsgemeinschaft and Ruprecht-Karls-Universität Heidelberg within the funding programme Open Access Publishing. We also thank editor Amaelle Landais and two anonymous referees for their valuable comments that helpful suggestions. We would like to especially thank and acknowledge our late colleague Dietmar Wagenbach (Heidelberg University) for his long-standing contributions to glaciological research at Colle Gnifetti, and in particular for sharing his unique expertise with us at the early stage of our project.
References

