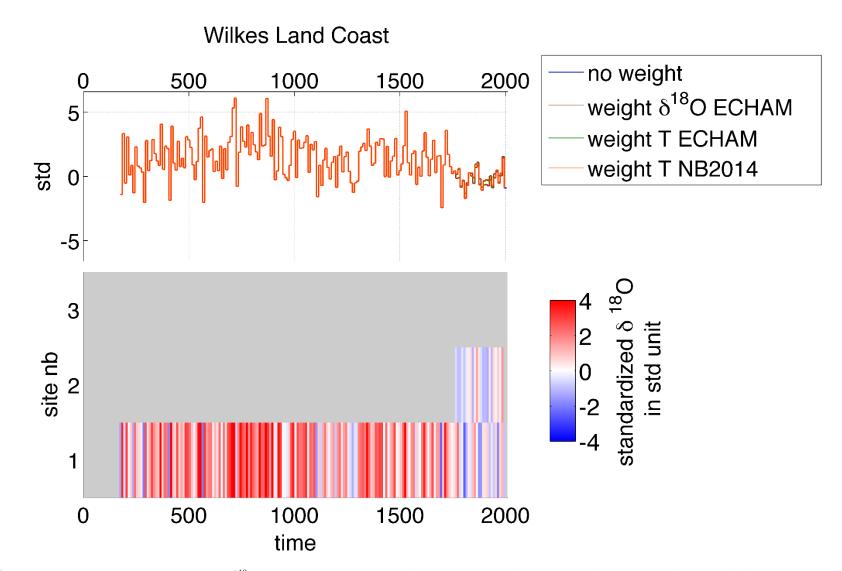
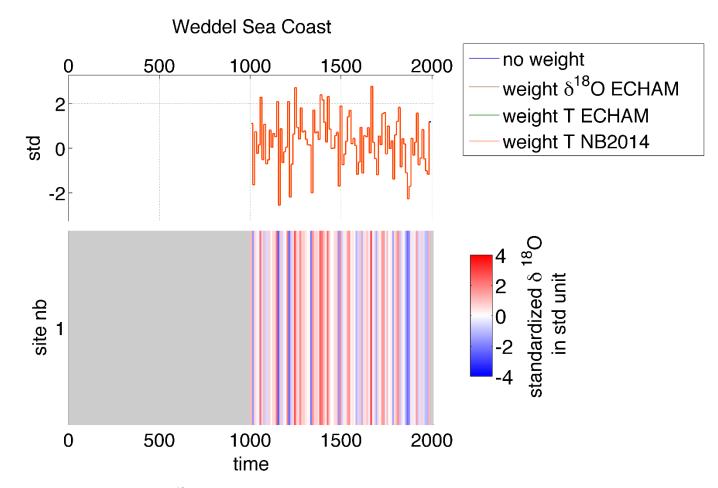
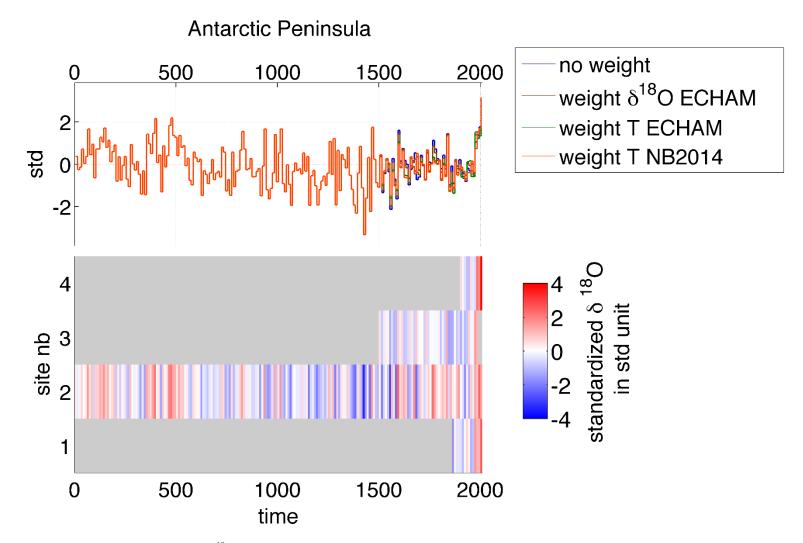
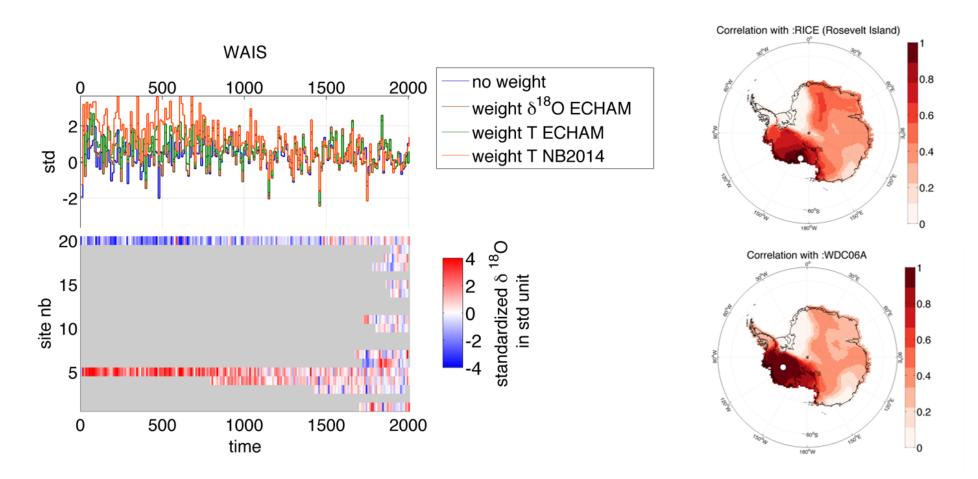
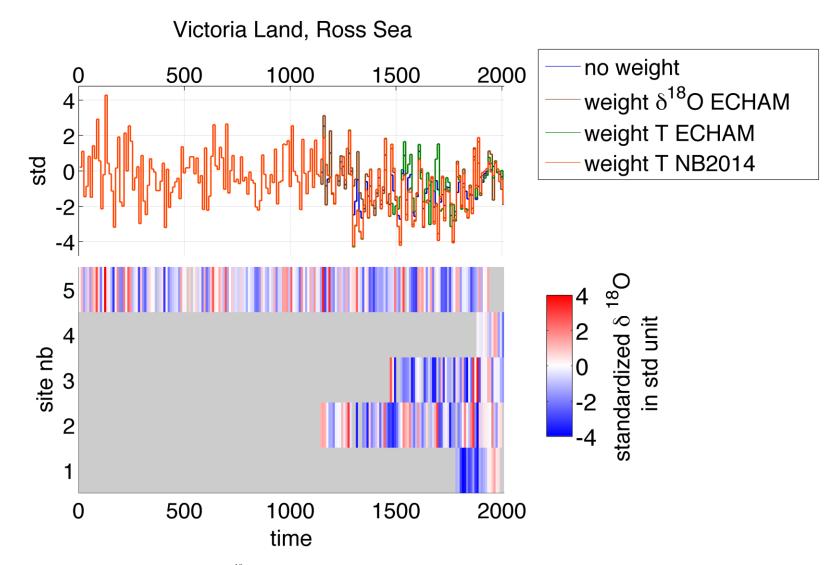

Figure S1. Length of records (years) for the new PAGES Antarctica2k database.


Figure S2. 5y un-weighted data for the last 200 years. Simple average of all the records in a region (left panel) after having reduced the data in the same grid (2°lat, 10°long), see map on the right panel. For each 5y bin the mean δ^{18} O anomaly across all records in the climatic region is calculated, as well as the distribution of δ^{18} O anomalies within each bin, expressed relative to the 1960-1990CE interval. The number of records used in the reconstructions for the different regions are displayed at the bottom.


Figure S3. 10y un-weighted data for the last 2000 years. Simple average of all the records in a region (left panel) after having reduced the data in the same grid (2°lat, 10°long), see map on the right panel. For each 10y bin the mean δ^{18} O anomaly across all records in the climatic region is calculated, as well as the distribution of δ^{18} O anomalies within each bin, expressed relative to the 1900-1990CE interval. The number of records used in the reconstructions for the different regions are displayed at the bottom.


Figure S4. Upper panel: 10y averaged standardised δ^{18} O records for un-weighted (grid-reduced) and weighted composites (for the different weighting methods see the text for explanation) for the East Antarctic Plateau region over the last 2000 years. Bottom panel: 10y averaged standardised δ^{18} O records for the individual ice core records that contribute to this region. Sites with no data reflect ice cores which failed the length requirements (minimum 90y of data for 10y binned composites). For the site numbers refer to Table S1.


Figure S5. Upper panel: 10y averaged standardised δ^{18} O records for un-weighted (grid-reduced) and weighted composites (for the different weighting methods see the text for explanation) for the Wilkes Land Coast region over the last 2000 years. Bottom panel: 10y averaged standardised δ^{18} O records for the individual ice core records that contribute to this region. Sites with no data reflect ice cores which failed the length requirements (minimum 90y of data for 10y binned composites). For the site numbers refer to Table S1.


Figure S6. Upper panel: 10y averaged standardised δ^{18} O records for un-weighted (grid-reduced) and weighted composites (for the different weighting methods see the text for explanation) for the Weddell Sea Coast region over the last 2000 years. Bottom panel: 10y averaged standardised δ^{18} O records for the individual ice core records that contribute to this region. Sites with no data reflect ice cores which failed the length requirements (minimum 90y of data for 10y binned composites). For the site number refer to Table S1.

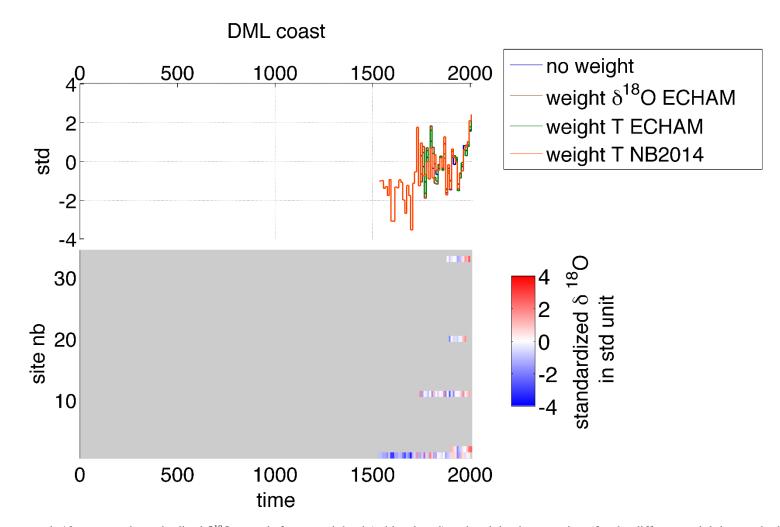

Figure S7. Upper panel: 10y averaged standardised δ^{18} O records for un-weighted (grid-reduced) and weighted composites (for the different weighting methods see the text for explanation) for the Antarctic Peninsula region over the last 2000 years. Bottom panel: 10y averaged standardised δ^{18} O records for the individual ice core records that contribute to this region. Sites with no data reflect ice cores which failed the length requirements (minimum 90y of data for 10y binned composites). For the site numbers refer to Table S1.

Figure S8. Left panel, top part: 10y averaged standardised δ^{18} O records for un-weighted (grid-reduced) and weighted composites (for the different weighting methods see the text for explanation) for the West Antarctic Ice Sheet region over the last 2000 years. Left panel, bottom part: 10y averaged standardised δ^{18} O records for the individual ice core records that contribute to this region. Sites with no data reflect ice cores which failed the length requirements (minimum 90y of data for 10y binned composites). For the site numbers refer to Table S1. Right panel: the upper figure shows the temperature correlation map, using the NB2014 reconstruction (Nicolas and Bromwich, 2014), for the RICE site (white dot), and the bottom figure shows the correlation map for the WAIS Divide site (white dot).

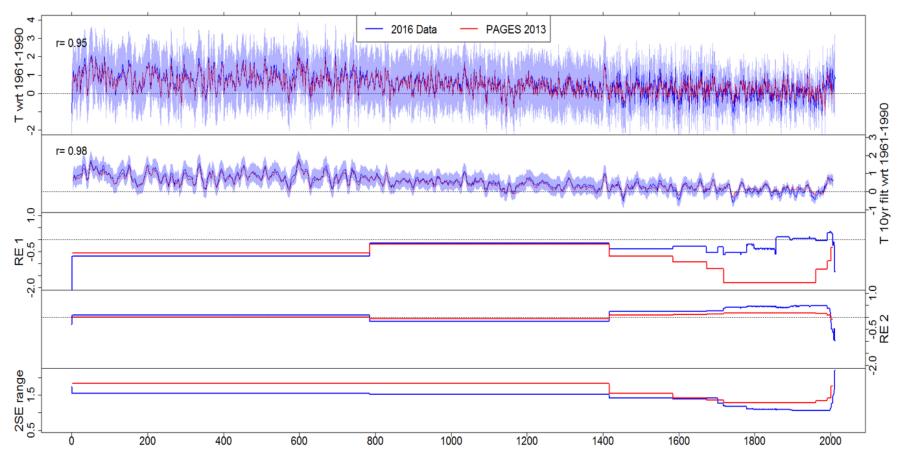


Figure S9. Upper panel: 10y averaged standardised δ^{18} O records for un-weighted (grid-reduced) and weighted composites (for the different weighting methods see the text for explanation) for the Victoria Land Coast region over the last 2000 years. Bottom panel: 10y averaged standardised δ^{18} O records for the individual ice core records that contribute to this region. Sites with no data reflect ice cores which failed the length requirements (minimum 90y of data for 10y binned composites). For the site numbers refer to Table S1.

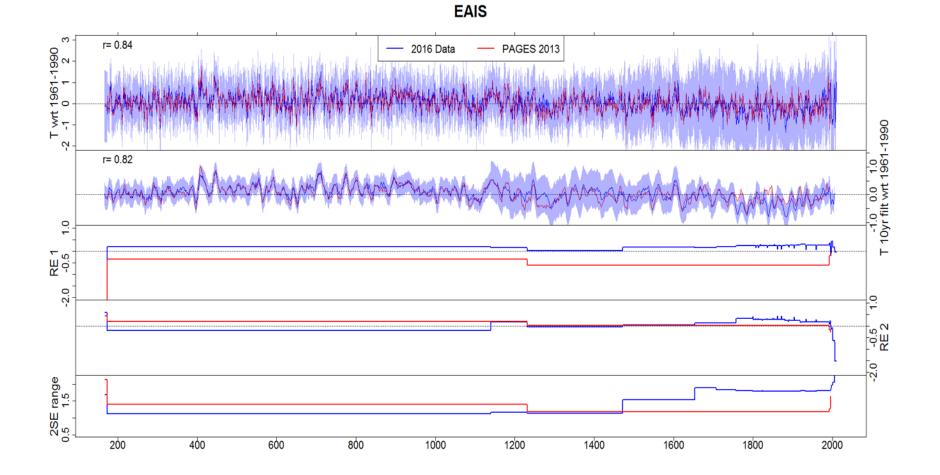
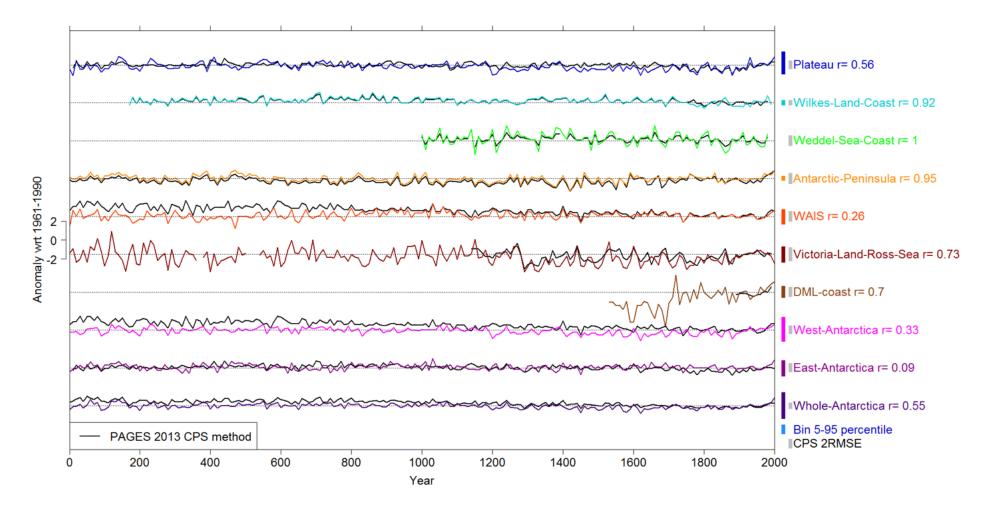
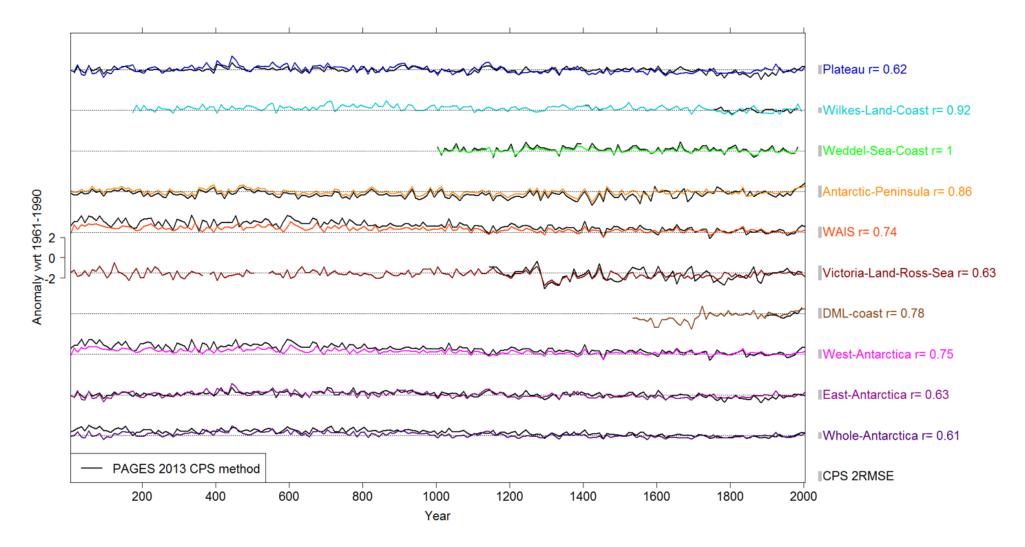
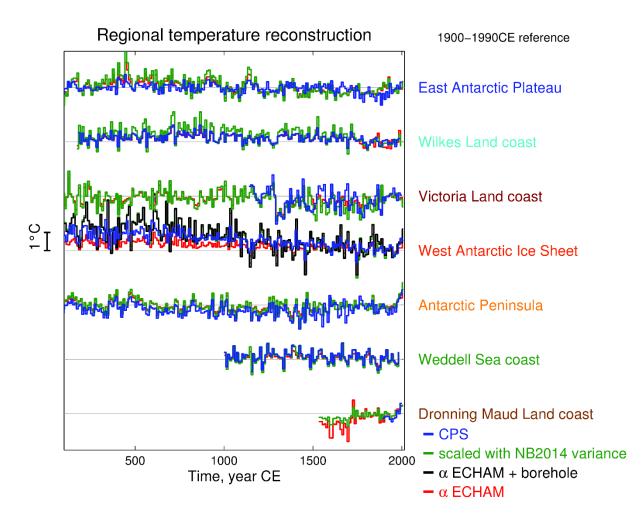


Figure S10. Upper panel: 10y averaged standardised δ^{18} O records for un-weighted (grid-reduced) and weighted composites (for the different weighting methods see the text for explanation) for the Dronning Maud Land Coast region over the last 2000 years. Bottom panel: 10y averaged standardised δ^{18} O records for the individual ice core records that contribute to this region. Sites with no data reflect ice cores which failed the length requirements (minimum 90y of data for 10y binned composites). For the site numbers refer to Table S1.




Figure S11. Comparison of CPS reconstructions of West Antarctic (regions WAIS & Peninsula) mean temperatures over 167-2010 CE. Red: results from PAGES 2k Consortium (2013). Blue: Updated results using the new ice core isotope data collection described herein and the NB2014 temperature target. Blue shading: 2SE uncertainties of the updated reconstruction. Top panel: Unfiltered interannual reconstructions. Second panel: 10-year running mean of reconstructions. Third (fourth) panel Reduction of Error skill from a split-calibration-verification exercise using 1961-1976 for calibration (verification) and 1977-1991 for verification (calibration). Bottom panel: 2SE reconstruction uncertainty range.


Figure S12. Comparison of CPS reconstructions of East Antarctic (all regions except WAIS & Peninsula) mean temperatures over 167-2010 CE. Red: results from PAGES 2k Consortium (2013). Blue: Updated results using the new ice core isotope data collection described herein and the NB2014 temperature target. Blue shading: 2SE uncertainties of the updated reconstruction. Top panel: Unfiltered interannual reconstructions. Second panel: 10-year running mean of reconstructions. Third (fourth) panel Reduction of Error skill from a split-calibration-verification exercise using 1961-1976 for calibration (verification) and 1977-1991 for verification (calibration). Bottom panel: 2SE reconstruction uncertainty range.

Figures S13. Comparison of the simple composites (10 year bins; colored lines) from each region with the CPS reconstructions (decadal averages; black lines). Pearson Correlation coefficients are indicated for each region. Note that CPS reconstructions are shorter for some regions because records that do not cover the 1961-1991 calibration window or have negative correlations with the target are excluded from the CPS reconstruction. Bars, on the right, beside the region names indicate the width of the uncertainty estimates averaged over the entire reconstruction period. For the simple composites the uncertainties represent the 5%-95% range from the individual records and for CPS they reflect the 2RMSE from calibration.

Figure S14. Comparison of the weighted composites (10 year bins; colored lines) from each region with the CPS reconstructions (decadal averages; black lines). Pearson Correlation coefficients are indicated for each region. Note that CPS reconstructions are shorter for some regions because records that do not cover the 1961-1991 calibration window or have negative correlations with the target are excluded from the CPS reconstruction. Bars, on the right, beside the region names indicate the width of the uncertainty estimates averaged over the entire reconstruction period. For the simple composites the uncertainties represent the 5%-95% range from the individual records and for CPS they reflect the 2RMSE from calibration.

Figure S15. Plot comparing the temperature scaling methods using 10y averages: in blue the CPS method; in green the method which uses the NB2014 variance for scaling (different weighting method compared to CPS); in red the method based on the correlation between annual mean regional δ^{18} O and regional T from ECHAM-wiso forced by ERA-Interim; in black the West Antarctic Ice Sheet region is adjusted to match the temperature trend between 1000 and 1600 CE based on borehole temperature measurements (Orsi et al., 2012).

Site id	Site name	Lat (dec degree)	Long (dec degree)	elevation (m)	Min year (CE)	Max year (CE)	Resolution (years)	Included	Citation
1.01	EDC Dome C	-75.10	123.39	3233	3	1919	15	Y	Jouzel et al, 2001; Stenni et al., 2001
1.02	Vostok VRS13	-78.47	106.83	3488	1654	2010	1	Y	Ekaykin et al., 2014
1.03	B31Site DML07	-75.58	-3.43	2680	1000	1994	1	Y	Graf et al., 2002
1.04	B32Site DML05	-75.00	-0.01	2892	166	1996	1	Y	Graf et al., 2002
1.05	B33Site DML17	-75.17	6.50	3160	1000	1997	1	Y	Graf et al., 2002
1.06	DML E98	-72.68	3.67	2751	1976	1996	1	Ν	Isaksson et al., 1999
1.07	DML L89	-74.65	12.80	3406	1962	1996	1	Y	Isaksson et al., 1999
1.08	FB96 DML01	-74.86	-2.55	2817	1895	1995	1	Y	Oerter et al., 1999
1.09	FB96 DML02	-74.97	-3.92	3014	1919	1995	1	Y	Oerter et al., 1999
1.10	FB97 DML03	-74.49	1.97	2843	1941	1996	1	Y	Oerter et al., 1999
1.11	FB97 DML04	-74.41	7.22	3161	1905	1996	1	Y	Oerter et al., 1999
1.12	FB97 DML05	-75.00	0.01	2882	1930	1996	1	Y	Oerter et al., 1999
1.13	FB97 DML06	-75.00	8.01	3246	1899	1996	1	Y	Oerter et al., 1999
1.14	FB97 DML07	-74.59	-3.44	2669	1908	1996	1	Y	Oerter et al., 1999
1.15	FB97 DML08	-75.75	3.29	2962	1919	1996	1	Y	Oerter et al., 1999
1.16	FB97 DML09	-75.93	7.22	3145	1897	1996	1	Y	Oerter et al., 1999
1.17	FB97 DML10	-75.22	11.35	3349	1900	1996	1	Y	Oerter et al., 1999
1.18	DML11 FB9803	-74.85	-8.50	2600	1921	1997	1	Y	Oerter et al., 2000
1.19	DML18 FB9804	-75.25	-6.00	2630	1801	1996	1	Y	Oerter et al., 2000
1.20	DML19 FB9805	-75.17	-1.00	2840	1800	1997	1	Y	Oerter et al., 2000
1.21	DML05 FB9807	-75.00	0.04	2880	1758	1997	1	Y	Oerter et al., 2000
1.22	DML20 FB9808	-74.75	1.00	2860	1801	1997	1	Y	Oerter et al., 2000
1.23	DML03 FB9809	-74.50	1.96	2843	1801	1997	1	Y	Oerter et al., 2000
1.24	DML21 FB9810	-74.67	4.00	2980	1801	1997	1	Y	Oerter et al., 2000
1.25	DML22 FB9811	-75.08	6.50	3160	1801	1997	1	Y	Oerter et al., 2000

Table S1. Identification number (the first number identifies the region: 1 East Antarctic Plateau, 2 Wilkes Land Coast, 3 Weddell Sea Coast, 4 Antarctic Peninsula, 5 West Antarctic Ice Sheet, 6 Victoria Land Coast and 7 Dronning Maud Land Coast), name, latitude and longitude, elevation, minimum and maximum time period covered by the core, data resolution, inclusion or not in the reconstructions and bibliographic citation of the core sites.

1.26	DML23 FB9812	-75.25	6.50	3160	1810	1997	1	Y	Oerter et al., 2000
1.27	DML16 FB9813	-75.17	5.00	3100	1800	1997	1	Y	Oerter et al., 2000
1.28	DML15 FB9814	-75.08	2.50	2970	1801	1997	1	Y	Oerter et al., 2000
1.29	DML14 FB9815	-74.96	-1.50	2840	1801	1997	1	Y	Oerter et al., 2000
1.30	DML13 FB9816	-75.00	-4.51	2740	1800	1997	1	Y	Oerter et al., 2000
1.31	DML12 FB9817	-75.00	-6.50	2680	1800	1997	1	Y	Oerter et al., 2000
1.32	DML02) SS9813	-74.97	3.92	3014	1801	1997	1	Y	Oerter et al., 2000
1.33	Dome F 1993	-77.32	39.70	3810	424	1467	5	N	Kawamura et al., 2007
1.34	Dome F 2001	-77.32	39.70	3810	695	1875	10	Y	Horiuchi et al., 2008
1.35	US-ITASE-2002-4	-86.50	-107.99	2586	1594	2003	0.12	Y	Steig et al., 2013
1.36	Plateau Remote	-84.00	43.00	3330	2	1986	1	Y	Cole-Dai et al., 2000
1.37	TALDICE -Talos Dome	-72.82	159.18	2315	4	1991	11	Y	Stenni et al., 2011
1.38	TD96 Talos Dome	-72.80	159.06	2316	1232	1995	1	Y	Stenni et al., 2002
1.39	SPRESSO (South Pole)	-89.93	144.39	2835	1801	1998	1	Y	Steig et al., 2013
1.40	NUS 08-7	-74.12	1.60	2673	1382	2008	0.25	Y	Steig et al., 2013
1.41	NUS 07-1	-73.72	7.94	3174	1706	2005	0.21	Y	Steig et al., 2013
1.42	400th km	-69.95	95.62	2777	1254	1987	5	Y	Ekaykin et al., 2017
1.43	NVFL-1	-77.11	95.07	3775	1711	1944	1	Y	Ekaykin et al., 2017
1.44	NVFL-3	-76.41	102.17	3528	1978	2009	1	Y	Ekaykin et al., 2017
1.45	PV-10	-72.81	79.93	2800	1976	2009	1	Y	Ekaykin et al., 2017
2.01	DSS Law Dome	-66.77	112.81	1370	173	1995	1	Y	PAGES2k consortium, 2013
2.02	105th km	-67.43	93.38	1407	1757	1987	1	Y	Vladimirova and Ekaykir 2014
2.03	200th km	-68.25	94.08	1990	1640	1988	1	N	Ekaykin et al., 2017
3.01	Berkner Island (South) B25	-79.57	-45.72	890	1000	1992	1	Y	Mulvaney et al., 2002
4.01	Gomez	-73.59	-70.36	1400	1858	2006	1	Y	Thomas et al., 2008
4.02	James Ross Island	-64.20	-57.69	1542	0	2007	1	Y	Mulvaney et al., 2012
4.03	Dyer Plateau	-70.68	-64.87	2002	1505	1988	1	Y	Thompson et al., 1994
4.04	Bruce Plateau	-66.04	-64.08	1975.5	1900	2009	1	Y	Goodwin et al., 2016
5.01	Ferrigno	-74.57	-86.90	1354	1703	2010	1	Y	Thomas et al., 2013
5.02	Bryan Coast	-74.50	-81.68	1177	1712	2010	1	N	Thomas et al., 2015

5.03	Siple Station	-75.92	-84.25	1054	1417	1983	1	Y	Mosley-Thompson et al., 1996
5.04	WDC05A	-79.46	-112.09	1806	786	2005	1	Y	Steig et al., 2013
5.05	WDC06A	-79.46	-112.09	1766	-50	2005	0.05	Y	Steig et al., 2013
5.06	US-ITASE-1999-1	-80.62	-122.63	1350	1724	2000	0.5	Y	Steig et al., 2013
5.07	US-ITASE-2000-1	-79.38	-111.24	1791	1673	2001	0.1	Y	Steig et al., 2013
5.08	US-ITASE-2000-2	-79.73	-111.50	1675	1979	2000	0.025	N	Steig et al., 2013
5.09	US-ITASE-2000-3	-78.43	-111.92	1742	1971	2001	0.043	Y	Steig et al., 2013
5.10	US-ITASE-2000-4	-78.08	-120.08	1697	1798	2000	0.085	Y	Steig et al., 2013
5.11	US-ITASE-2000-5	-77.68	-124.00	1828	1718	1999	0.18	Y	Steig et al., 2013
5.12	US-ITASE-2000-6	-78.33	-124.48	1639	1965	1998	0.09	Y	Steig et al., 2013
5.13	US-ITASE-2001-1	-79.16	-104.97	1842	1986	2002	0.038	N	Steig et al., 2013
5.14	US-ITASE-2001-2	-82.00	-110.01	1746	1892	2002	0.037	Y	Steig et al., 2013
5.15	US-ITASE-2001-3	-78.12	-95.65	1620	1858	2002	0.048	Y	Steig et al., 2013
5.16	US-ITASE-2001-4	-77.61	-92.25	1483	1986	2001	0.058	N	Steig et al., 2013
5.17	US-ITASE-2001-5	-77.06	-89.14	1239	1780	2002	0.078	Y	Steig et al., 2013
5.18	US-ITASE-2002-1	-82.00	-110.01	1746	1855	2003	0.072	Y	Steig et al., 2013
5.19	US-ITASE-2002-2	-83.50	-104.99	1957	1894	2002	0.046	Y	Steig et al., 2013
5.20	RICE (Roosevelt Island)	-79.36	-161.70	550	-44	2011	0.14	Y	Bertler et al., in prep.
6.01	Hercules Névé	-73.10	165.40	2960	1770	1992	1	Y	Stenni et al., 2000
6.02	VLG	-77.33	162.53	625	1140	2000	1	Y	Bertler et al., 2011
6.03	Mt Erebus Saddle - MES	-77.52	167.68	1600	1473	2007	0.08	Y	Rhodes et al., 2012
6.04	Whitehall Glacier WGH	-72.90	169.08	400	1882	2006	1	Y	Sinclair et al., 2012
6.05	Taylor Dome	-77.78	158.72	2365	-25	1939	1.7	Y	Steig et al., 2000
7.01	IND 22B4	-70.86	11.54	500	1533	1994	1	Y	Laluraj et al., 2011
7.02	IND 25B5	-71.34	11.59	1300	1903	2006	0.08	Y	Naik et al., 2010
7.03	DML G3	-69.83	-0.62	57	1993	2009	1	N	Schlosser et al., 2012
7.04	DML G4	-70.90	-0.40	66	1983	2009	1	N	Schlosser et al., 2012
7.05	DML G5	-70.55	-0.05	82	1983	2009	1	N	Schlosser et al., 2012
7.06	DML G8	-70.42	2.02	58	1991	2009	1	N	Schlosser et al., 2014
7.07	DML LP1	-70.24	4.80	48	1992	2009	1	N	Schlosser et al., 2014

7.08	DML M2	-70.33	-0.12	75	1981	2009	1	N	Schlosser et al., 2012
7.09	DML S20	-70.25	4.82	63	1956	1996	1	Y	Isaksson et al., 1999
7.10	DML S32	-70.32	-0.80	53	1995	2009	1	N	Schlosser et al., 2014
7.11	DML S100	-70.24	4.80	48	1737	1999	1	Y	Kaczmarska et al., 2006
7.12	DML A89	-72.66	-16.65	30	1975	1988	1	N	Isaksson et al., 1994
7.13	DML C89	-72.77	-14.77	70	1976	1987	1	N	Isaksson et al., 1994
7.14	DML D89	-73.46	-12.56	300	1974	1988	1	N	Isaksson et al., 1994
7.15	DML E89	-73.60	-12.43	700	1973	1988	1	N	Isaksson et al., 1994
7.16	DML E91	-73.60	-12.43	700	1932	1991	1	Y	Isaksson et al., 1996
7.17	DML F89	-73.83	-12.22	800	1970	1988	1	N	Isaksson et al., 1994
7.18	DML G89	-74.02	-12.03	1200	1971	1988	1	N	Isaksson et al., 1994
7.19	DML H89	-74.35	-11.73	1200	1973	1988	1	N	Isaksson et al., 1994
7.20	DML B04	-70.62	-8.37	28	1892	1981	1	Y	Schlosser et al., 2002
7.21	DML E002	-70.62	-8.37	39	1972	1986	1	N	Oerter et al., 1999
7.22	DML E040	-70.96	-8.52	58	1971	1986	1	N	Oerter et al., 1999
7.23	DML E090	-71.40	-8.36	75	1969	1986	1	N	Oerter et al., 1999
7.24	DML E143	-71.84	-8.62	298	1967	1986	1	N	Oerter et al., 1999
7.25	DML E160	-71.98	-8.73	559	1969	1986	1	N	Oerter et al., 1999
7.26	DML E180	-72.17	-8.83	788	1973	1984	1	N	Oerter et al., 1999
7.27	DML FB0189	-70.66	-8.25	28	1975	1988	1	N	Schlosser et al., 2002
7.28	DML FB0201	-71.21	-6.79	600	1995	2001	1	N	Fernandoy et al., 2010
7.29	DML FB0203	-71.46	-9.86	630	1996	2001	1	N	Fernandoy et al., 2010
7.30	DML A98	-71.90	3.08	1520	1971	1996	1	N	Isaksson et al., 1999
7.31	DML B89	-72.13	3.18	2044	1971	1996	1	N	Isaksson et al., 1999
7.32	DML S15	-71.20	4.61	800	1974	1996	1	N	Isaksson et al., 1999
7.33	DML FB9802	-74.21	-9.75	1439	1881	1997	1	Y	Oerter et al., 2000
7.34	H72	-69.20	41.08	1214	1832	1999	1	N	Nishio et al., 2002

			normalised			ECHAM			NB2014	NB2014		
	start	end	Slope σ 1000y ⁻¹	slope error	p-value	Slope °C 1000y-1	slope error	p-value	Slope °C 1000y-1	slope error	p-value	
1. Plateau	160	1900	-1.14	-0.29	0.00	-0.35	-0.09	0.00	-0.48	-0.12	0.00	
2. Wilkes Coast	170	1900	-0.59	-0.48	0.02	-0.11	-0.08	0.01	-0.16	-0.13	0.02	
3. Weddel coast	1000	1900	-0.41	-0.92	0.38	-0.08	-0.19	0.38	-0.14	-0.31	0.38	
4. Peninsula	160	1900	-0.41	-0.27	0.00	-0.13	-0.09	0.00	-0.16	-0.11	0.00	
5. WAIS	160	1900	-1.33	-0.26	0.00	-0.28	-0.06	0.00	-0.93	-0.18	0.00	
6. Victoria Ross	160	1900	-0.85	-0.44	0.00	-0.15	-0.10	0.00	-0.27	-0.14	0.00	
7. DML coast	1530	1900	4.98	-3.20	0.00	2.30	-1.27	0.00	0.97	-0.62	0.00	
West Antarctica	160	1900	-0.72	-0.18	0.00	-0.13	-0.05	0.00	-0.42	-0.10	0.00	
East Antarctica	160	1900	-0.88	-0.19	0.00	-0.26	-0.06	0.00	-0.47	-0.10	0.00	
All Antarctica	160	1900	-0.96	-0.15	0.00	-0.25	-0.04	0.00	-0.51	-0.08	0.00	

Table S2: Statistics of the 165-1900 CE slope, for different methods. The slope is expressed in °C 1000y⁻¹, the slope uncertainty is the 2σ confidence interval.

	Borehole			CPS				
	Slope °C 1000y-1	slope error	p-value	Slope °C 1000y-1	slope error	p-value	start date	end date
1. Plateau	NaN	NaN	NaN	-0.17	-0.07	0.00	170	1900
2. Wilkes Coast	NaN	NaN	NaN	-0.10	-0.07	0.01	180	1900
3. Weddel coast	NaN	NaN	NaN	-0.09	-0.27	0.49	1000	1900
4. Peninsula	NaN	NaN	NaN	-0.04	-0.10	0.48	170	1900
5. WAIS	-0.84	-0.19	0.00	-0.61	-0.09	0.00	170	1900
6. Victoria Ross	NaN	NaN	NaN	-0.54	-0.58	0.07	1140	1900
7. DML coast	2.30	-1.27	0.00	NaN	NaN	NaN	NaN	NaN
West Antarctica	-0.74	-0.17	0.00	-0.56	-0.08	0.00	170	1900
East Antarctica	NaN	NaN	NaN	-0.25	-0.07	0.00	170	1900
All Antarctica	-0.18	-0.03	0.00	-0.38	-0.06	0.00	170	1900

			normalised			ECHAM			NB2014		
	start	end	Slope σ 1000γ ⁻¹	slope error	p-value	Slope °C 1000y ⁻¹	slope error	p-value	Slope °C 1000y-1	slope error	p-value
1. Plateau	0	1900	-0.76	-0.28	0.000	-0.24	-0.09	0.000	-0.32	-0.12	0.000
2. Wilkes Coast	170	1900	-0.59	-0.48	0.016	-0.11	-0.08	0.007	-0.16	-0.13	0.016
3. Weddel coast	1000	1900	-0.41	-0.92	0.376	-0.08	-0.19	0.376	-0.14	-0.31	0.376
4. Peninsula	0	1900	-0.50	-0.23	0.000	-0.16	-0.07	0.000	-0.20	-0.09	0.000
5. WAIS	0	1900	-1.32	-0.23	0.000	-0.28	-0.06	0.000	-0.92	-0.16	0.000
6. Victoria Ross	0	1900	-0.89	-0.39	0.000	-0.17	-0.09	0.000	-0.29	-0.12	0.000
7. DML coast	1530	1900	4.98	-3.20	0.003	2.30	-1.27	0.001	0.97	-0.62	0.003
West Antarctica	0	1900	-0.76	-0.16	0.000	-0.15	-0.04	0.000	-0.44	-0.09	0.000
East Antarctica	0	1900	-0.59	-0.19	0.000	-0.18	-0.06	0.000	-0.32	-0.10	0.000
All Antarctica	0	1900	-0.76	-0.15	0.000	-0.20	-0.04	0.000	-0.40	-0.08	0.000

Table S3: Statistics of the 0-1900 CE slope, for different methods. The slope is expressed in °C 1000y⁻¹, the slope uncertainty is the 2σ confidence interval.

	Borehole			CPS				
	Slope °C 1000y ⁻¹	slope error	p-value	Slope °C 1000y ⁻¹	slope error	p-value	start date	end date
1. Plateau	NaN	NaN	NaN	-0.15	-0.06	0.000	10	1900
2. Wilkes Coast	NaN	NaN	NaN	-0.10	-0.07	0.008	180	1900
3. Weddel coast	NaN	NaN	NaN	-0.09	-0.27	0.494	1000	1900
4. Peninsula	NaN	NaN	NaN	-0.09	-0.09	0.048	0	1900
5. WAIS	-0.85	-0.18	0.000	-0.59	-0.08	0.000	0	1900
6. Victoria Ross	NaN	NaN	NaN	-0.54	-0.58	0.066	1140	1900
7. DML coast	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

	-0.75	-0.15	0.000	-0.55	-0.07	0.000	0	1900
West Antarctica								
	NaN	NaN	NaN	-0.18	-0.06	0.000	10	1900
East Antarctica								
	-0.15	-0.03	0.000	-0.38	-0.05	0.000	0	1900
All Antarctica								

	normalised			ECHAM			NB2014		
	Slope σ 100y ⁻¹	slope error	p-value	Slope °C 100y ⁻¹	slope error	p-value	Slope °C 100y ⁻¹	slope error	p-value
1. Plateau	-0.85	-1.14	0.133	-0.31	-0.46	0.174	-1.28	-1.71	0.133
2. Wilkes Coast	1.08	-1.37	0.115	0.75	-0.68	0.034	0.47	-0.60	0.115
3. Weddel coast	-1.10	-2.45	0.351	-0.27	-0.60	0.351	-0.50	-1.12	0.351
4. Peninsula	2.65	-0.99	0.000	0.90	-0.35	0.000	1.99	-0.75	0.000
5. WAIS	1.17	-0.90	0.014	0.66	-0.54	0.020	0.97	-0.75	0.014
6. Victoria Ross	-0.79	-1.23	0.195	-0.27	-0.48	0.247	-0.64	-1.00	0.195
7. DML coast	2.51	-1.88	0.012	0.51	-0.35	0.006	0.98	-0.73	0.012
West Antarctica	1.50	-0.83	0.001	0.78	-0.53	0.007	1.12	-0.62	0.001
East Antarctica	0.04	-0.85	0.924	0.05	-0.34	0.743	0.06	-1.23	0.924
All Antarctica	0.72	-0.68	0.040	0.45	-0.47	0.060	0.99	-0.94	0.040

Table S4: Statistics of the last 100-year slope calculated on the 5-year averages, for different methods. The slope is expressed in $^{\circ}$ C 100y⁻¹, the slope uncertainty is the 2 σ confidence interval.

	Borehole			CPS		
	Slope			Slope		
	°C 100y ⁻¹	slope error	p-value	°C 100y ⁻¹	slope error	p-value
1. Plateau	NaN	NaN	NaN	0.66	-0.55	0.024
2. Wilkes Coast	NaN	NaN	NaN	0.15	-0.63	0.586
3. Weddel coast	NaN	NaN	NaN	-0.27	-1.25	0.608
4. Peninsula	NaN	NaN	NaN	1.42	-0.59	0.001
5. WAIS	2.03	-1.66	0.020	0.44	-0.79	0.239
6. Victoria Ross	NaN	NaN	NaN	0.05	-0.60	0.845
7. DML coast	NaN	NaN	NaN	0.74	-0.74	0.050
West Antarctica	1.85	-1.43	0.014	0.63	-0.76	0.091
East Antarctica	NaN	NaN	NaN	0.32	-0.38	0.082
All Antarctica	0.21	-0.19	0.034	0.40	-0.39	0.049

References

Bertler, N. A. N., Mayewski, P. A., and Carter, L.: Cold conditions in Antarctica during the Little Ice Age - Implications for abrupt climate change mechanisms, Earth Planet. Sci. Lett., 308, 41-51, doi: 10.1016/j.epsl.2011.05.021, 2011.

Bertler, N.A.N. et al. (in preparation): A 2,000 year reconstruction of temperature and snow accumulation variability in the Ross Sea Region, Antarctica. For submission to Climate of the Past Discussions in March 2017.

Cole-Dai, J., Mosley-Thompson, E., Wight, S. P., and Thompson, L. G.: A 4100-year record of explosive volcanism from an East Antarctica ice core, J. Geophys. Res., 105, 24431–24441, 2000.

Ekaykin, A. A., Kozachek, A. V., Lipenkov, V. Y., and Shibaev, Y. A.: Multiple climate shifts in the Southern Hemisphere over the past three centuries based on central Antarctic snow pits and core studies, Ann. Glaciol., 55, 259–266, 2014.

Ekaykin, A. A., Vladimirova, D. O., Lipenkov, V. Y., and Masson-Delmotte, V.: Climatic variability in Princess Elizabeth Land (East Antarctica) over the last 350 years, Clim. Past, 13, 61–71, doi: 10.5194/cp-13-61-2017, 2017.

Fernandoy, F., Meyer, H., Oerter, H., Wilhelms, F., Graf, W., and Schwander, J.: Temporal and spatial variation of stable-isotope ratios and accumulation rates in the hinterland of Neumayer Station, East Antarctica, J. Glaciol., 56, 673–687, doi: 10.3189/002214310793146296, 2010.

Goodwin, B. P., Mosley-Thompson, E., Wilson, A. B., Porter, S. E., and Roxana Sierra-Hernandez, M.: Accumulation variability in the Antarctic Peninsula: The role of large-scale atmospheric oscillations and their interactions, Journal of Climate, 29 (4), 2579-2596, doi: 10.1175/JCLI-D-15-0354.1, 2016.

Graf, W., Oerter, H., Reinwarth, O., Stichler, W., Wilhelms, F., Miller, H., and Mulvaney, R.: Stable-isotope record from Dronning Maud Land, Antarctica, Ann. Glaciol., 35, 195–201, 2002.

Horiuchi, K., Uchida, T., Sakamoto. Y., Ohta, A., Matsuzaki, H., Shibata, Y., and Motoyama, H.: Ice core record of 10Be over the past millennium from Dome Fuji, Antarctica: A new proxy record of past solar activity and a powerful tool for stratigraphic dating, Quat. Geochronol., 3 (1), 253-261, doi:10.1016/j.quageo.2008.01.003, 2008.

Isaksson, E., and Karlén, W.: Spatial and temporal patterns in snow accumulation and oxygen isotopes, Western Dronning Maud Land, Antarctica. J. Glaciol., 40 (135), 399-409, 1994.

Isaksson, E., Karlén, W., Gundestrup, N., Mayewski, P., Whitlow, S., and Twickler, M.: A century of accumulation and temperature changes in Dronning Maud Land, Antarctica, J. Geophys. Res., 101 (D3), 7085-7094, 1996.

Isaksson, E., Van den Broeke, M., Winther, J-G., Karlöf, L., Pinglot, J-F., and Gundestrup, N.: Accumulation and proxy-temperature variability in Dronning Maud Land, Antarctica, determined from shallow firn cores, Ann. Glaciol., 29, 17-22, 1999.

Jouzel, J., Masson, V., Cattani, O., Falourd, S., Stievenard, M., Stenni, B., Longinelli, A., Johnsen, S.J., Steffensen, J.P., Petit, J.R., Schwander, J., Souchez, R., Barkov, N.I.: A new 27 kyr high resolution East Antarctic climate record, Geophys. Res. Lett., 28, 3199-3202, 2001.

Kaczmarska, M., E. Isaksson, , L. Karlöf, O.Brandt, J-G., Winther, R. S.W. van de Wal, M. van den Broeke, S. J. Johnsen: Antarctic coastal climate interpreted from light transmittance in and ice core record, Antarctic Science, 18 (2), 271-278, doi:10.1017/S09544102006000319, 2006.

Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F., Severinghaus, J. P., Hutterli, M. A., Nakazawa, T., Aoki, S., Jouzel, J., Raymo, M. E., Matsumoto, K., Nakata, H., Motoyama, H., Fujita, S., Goto-Azuma, K., Fujii, Y., and Watanabe, O: Northern Hemisphere forcing of climatic cycles in Antarctica over the past 360,000 years, Nature, 448, 912-916, doi:10.1038/nature06015, 2007.

Laluraj, C.M., Thamban, M., Naik, S.S., Redkar, B.L., Chaturvedi, A., and Ravindra, R.: Nitrate records of a shallow ice core from East Antarctica: atmospheric processes, preservation and climatic implications, The Holocene, 21, 351-356, 2011.

Mosley-Thompson, E.: Holocene Climate Changes Recorded in an East Antarctica Ice Core, In: Climatic Variations and Forcing mechanisms of the last 2,000. (Eds. P.D. Jones, R. Bradley and J. Jouzel), NATO Advanced Research Series I, Volume 41, 263- 279, 1996.

Mulvaney, R., Oerter, H., Peel, D. A., Graf, W., Arrowsmith, C., Pasteur, E. C., Knight, B., Littot, G. C., and Miners, W. D: 1000-year ice core records from Berkner Island, Antarctic, Ann. Glaciol., 35, 45–51, doi:10.3189/172756402781817176, 2002.

Mulvaney, R., Abram, N. J., Hindmarsh, R. C. A., Arrowsmith, C., Fleet, L., Triest, J., Sime, L. C., Alemany, O., and Foord, S.: Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history, Nature, 489, 141–144, doi:10.1038/nature11391, 2012.

Naik, S. S., Thamban, M., Laluraj, C.M., Redkar, B.L., and Chaturvedi, A.: A century of climate variability in the central Dronning Maud Land, East Antarctica and its relation to Southern Annular Mode and El Niño Southern Oscillation, J. Geophys. Res., 115, D16102, doi:10.1029/2009JD013268, 2010.

Nicolas, J. P. and Bromwich, D. H.: New Reconstruction of Antarctic Near-Surface Temperatures: Multidecadal Trends and Reliability of Global Reanalyses, J. Climate, 27, 8070-8093, doi: 10.1175/JCLI-D-13-00733.1, 2014.

Nishio, F., Furukawa, T., Hashida, G., Igarashi, M., Kameda, T., Kohno, M., Motoyama, H., Naoki, K., Satow, K., Suzuki, K., Morimasa, T., Toyama, Y., Yamada, T., and Watanabe, O: Annual-layer determinations and 167 year records of past climate of H72 ice core in east Dronning Maud Land, Antarctica, Ann. Glaciol., 35, 471-479, 2002.

Oerter, H., Graf, W., Wilhelms, F., Minikin, A., and Miller, H.: Accumulation studies on Amundsenisen, Dronning Maud Land, Antarctica, by means of tritium, dielectric profiling and stablei sotope measurements: first results from the 1995–1996 and 1996–1997 field seasons, Ann. Glaciol., 29, 1–9, 1999.

Oerter, H., Wilhelms, F., Jung-Rothenhäusler, F., Göktas, Miller, H., Graf, W., and Sommer, S.: Accumulation rates in Dronning Maud Land, Antarctica, as revealed by dielectric-profiling measurements of shallow firn cores, Ann. Glaciol., 30, 27–34, 2000.

Orsi, A. J., Cornuelle, B. D., and Severinghaus, J. P.: Little Ice Age cold interval in West Antarctica: Evidence from borehole temperature at the West Antarctic Ice Sheet (WAIS) Divide, Geophys. Res. Lett., 39, L09710, doi:10.1029/2012GL051260, 2012.

PAGES 2k Consortium: Continental-scale temperature variability during the past two millennia, Nat. Geosci., 6, 339-346, Published online 21 April 2013, doi: 10.1038/NGEO1797, 2013.

Rhodes, R.H., Bertler, N.A.N., Baker, J.A., Steen-Larsen, H.C., Sneed, S.B., Morgenstern, U., and Johnsen, S.J.: Little Ice Age climate and oceanic conditions of the Ross Sea, Antarctica from a coastal ice core record, Clim. Past, 8, 1223-1238, doi: doi:10.5194/cp-8-1223-2012, 2012.

Schlosser, E., and Oerter, H.: Shallow firn cores from Neumayer, Ekströmisen – A comparison of accumulation rates, and stable isotope ratios, Ann. Glaciol., 35, 91-96, doi: 10.3189/172756402781816915, 2002.

Schlosser, E., Anschütz, H., Isaksson, E., Martma, T., Divine, D., and Nøst, O-A.: Surface mass balance and stable oxygen isotope ratios from shallow firn cores on Fimbulisen, East Antarctica, Ann. Glaciol., 53(60), 70-78, doi:10.3189/2012AoG60A102, 2012.

Schlosser, E., Anschütz, H., Divine, D., Martma, T., Sinisalo, A., Altnau, S., Isaksson, E: Recent climate tendencies on an East Antarctic ice shelf inferred from a shallow firn core network, J. Geophys. Res., 119 (11), 6549–6562, doi:10.1002/2013JD020818, 2014.

Sinclair, K. E., Bertler, N. A. N., and van Ommen T. D.: Twentieth-Century Surface Temperature Trends in the Western Ross Sea, Antarctica: Evidence from a High-Resolution Ice Core, Journal of Climate, 25, 3629-3636, doi:10.1002/2014GL059821, 2012.

Steig, E. J., Morse, D. L., Waddington, E. D., Stuiver, M., Grootes, P. M., Mayewski, P. A., Twickler, M. S., and Whitlow, S. I.: Wisconsinan and Holocene climate history from an ice core at Taylor Dome, western Ross Embayment, Antarctica, Geografiska Annaler, 82A (2-3), 213-215, doi: 10.1111/j.0435-3676.2000.00122.x, 2000.

Steig, E. J., Ding, Q., White, J. W. C., Küttel, M., Rupper, S. B., Neumann, T. A., Neff, P. D., Gallant, A. J. E., Mayewski, P. A., Taylor, K. C., Hoffmann, G., Dixon, D. A., Schoenemann, S. W., Markle, B. R., Fudge, T. J., Schneider, D. P., Schauer, A. J., Teel, R. P., Vaughn, B. H., Burgener, L., Williams, J., and Korotkikh E.: Recent climate and ice-sheet changes in West Antarctica compared with the past 2,000 years, Nat. Geosci., 6, 372–375, doi:10.1038/ngeo1778, 2013.

Stenni, B., Caprioli, R., Cimino, L., Cremisini, C., Flora, O., Gragnani, R., Longinelli, A., Maggi, V., and Torcini, S.: 200 years of isotope and chemical records in a firn core from Hercules Névé, northern Victoria Land, Antarctica, Ann. Glaciol., 29, 106-112, 1999.

Stenni, B., Masson-Delmotte, V., Johnsen, S., Jouzel, J., Longinelli, A., Monnin, E., Röthlisberger, R., Selmo, E.: An oceanic cold reversal during the last deglaciation, Science, 293, 2074–2077, 2001.

Stenni, B., Proposito, M., Gragnani, R., Flora, O., Jouzel, J., Falourd, S. and Frezzotti, M.: Eight centuries of volcanic signal and climate change at Talos Dome (East Antarctica), J. Geophys. Res., 107 (D9), doi:10.1029/2000JD000317, 2002

Stenni B., Buiron D., Frezzotti M., Albani S., Barbante C., Bard E., Barnola J. M., Baroni C., Baumgartner S., Bonazza M., Capron E., Castellano E., Chappellaz J., Delmonte B., Falourd, S., Genoni L., Iacumin P., Jouzel J., Kipfsthul J., Landais A., Lemieux-Dudon B., Maggi V., Masson-Delmotte V., Mazzola C., Minster B., Montagnat M., Mulvaney R., Narcisi B., Oerter H., Parrenin F., Petit J. R., Ritz C., Scarchilli C., Schilt A., Schüpbach S., Schwander J., Selmo E., Severi M., Stocker T., and Udisti R.: Expression of the bipolar see-saw in Antarctic climate records during the last deglaciation, Nat. Geosci., 4, 46-49, doi: 10.1038/NGEO1026, 2011.

Thomas, E. R., Dennis, P. F., Bracegirdle, T. J., and Franzke, C.: Ice core evidence for significant 100-year regional warming on the Antarctic Peninsula, Geophys. Res. Lett., 36, L20704, doi:10.1029/2009GL040104, 2009.

Thomas, E. R., Bracegirdle, T. J., Turner, J., and Wolff, E. W.: A 308 year record of climate variability in West Antarctica, Geophys. Res. Lett., 40, 5492–5496, doi:10.1002/2013GL057782, 2013.

Thomas, E. R., and Bracegirdle, T. J.: Precipitation pathways for five new ice core sites in Ellsworth Land, West Antarctica, Clim. Dyn., 44, 2067-2078, doi: 10.1007/s00382-014-2213-6, 2015.

Thompson, L. G., Peel, D. A., Mosley-Thompson, E., Mulvaney, R., Dai, J., Lin, P. N., Davis, M. E., and Raymond, C. F.: Climate since A.D. 1510 on Dyer Plateau, Antarctic Peninsula: Evidence for recent climate change, Ann. Glaciol., 20, 420-426, 1994.

Vladimirova, D. O., and Ekaykin, A. A.: Climatic variability in Davis Sea sector (East Antarctica) for the last 250 years based on geochemical investigations of "105 km" ice core, Probl. Arktiki i Antarktiki, 1, 102–113, 2014 (in Russian).