Sulphur-rich volcanic eruptions triggered extreme hydrological events in Europe since AD 1850

Cristina Di Salvo¹ Gianluca Sottili¹²

[1] Istituto di Geologia Ambientale e Geoingegneria IGAG-CNR, Rome [Italy].

#Correspondence to: gianluca.sottili@uniroma1.it

Keywords: sulphate aerosols, volcanic forcing, European climate, hydrological cycle
Abstract. Volcanic and anthropogenic aerosols, by reflecting solar radiation and acting as cloud condensation nuclei, play a key role in the global climate system. Given the contrasting microphysical and radiative effects of SO$_2$ on rainfall amounts and intensities, the combined effects of these two factors are still poorly understood. Here, we show how concentrations of volcanic sulphate aerosols in the atmosphere, as derived from Greenland ice core records, are strictly correlated with dramatic variations of hydrological cycle in Europe. Specifically, since the second half of the 19th century, the intensity of extreme precipitations in Western Europe, and associated river flood events, changed significantly during the 12-24 months following sulphur-rich eruptions. During the same period, volcanic SO$_2$ exerts divergent effects in central and Northern Europe, where river flow regimes are affected, in turn, by the substantial reduction of rainfall intensity and earlier occurrences of ice break-up events. We found that the high sensitivity of North Atlantic Sea Surface Temperature (SST) and North Atlantic Oscillation (NAO) to atmospheric SO$_2$ concentrations reveals a complex mechanism of interaction between sulphur-rich eruptions and heat exchange between Ocean and atmosphere with substantial impacts on hydrological regime in Europe.
1. Introduction

Fundamental for life, precipitation also plays a fundamental role in the redistribution of energy in the atmosphere as ~37% of the solar energy influx into the Earth's atmosphere is involved in the evaporation–condensation–freezing cycle. Highly variable in space, time and intensity, the emission of aerosols by volcanic eruptions may result into dramatic changes in precipitation patterns with large disagreement among models. It is widely accepted that global precipitation decreases one to two years after large explosive volcanic eruptions (Broccoli et al., 2003; Trenberth and Dai, 2007; Gu et al., 2007; Schneider et al., 2009; Gu and Adler, 2011; Iles et al., 2013). The decrease in global mean precipitation by volcanic aerosols is explained by the stabilization of the atmosphere due to the reduction of short-wave radiation reaching the surface thus resulting in a reduction of the evaporation (Bala et al., 2008; Cao et al., 2012). In addition, global circulation changes induced by sulphur-rich eruptions may also result into complex precipitations variations on a regional scale (e.g. in monsoon regions), with seasonal precipitation changes not yet well constrained by climate models. (Gu and Adler, 2011; Joseph and Zeng, 2011; Cao et al., 2012). Concerning the dynamics of volcanic forcing on seasonal and regional precipitation patterns, aerosols may produce slow or fast effects on hydrological cycle depending on whether ocean-atmosphere dynamics are involved or not (Rosenfeld et al., 2008). The fast effect of aerosol forcing, mostly related to solar radiation and cloud physics, has been investigated in more detail (Iles et al., 2013). On the other hand, the physical mechanisms of ocean-atmosphere interaction driving the slow effects (i.e., changes in seasonal and/or regional distribution of precipitation) are still poorly understood (Joseph and Zeng, 2011). In this perspective, evaluating the intensity of the effects of volcanic SO$_2$ concentrations on hydrological cycle in different Europe climate zones may provide the needed evidence to support modelling work.

Here, we examine rainfall and river flow regimes since the second half of the 19th century in different European climate zones, as they relate to variations in volcanic SO$_2$ concentrations in the atmosphere. Specifically, we analyse short-term changes of river flows and rainfall regime in order to evaluate quantitatively the effects of sulphate aerosols on extreme precipitation, streamflow events and on hydrological cycle dynamics in Europe.
Precipitation and river flow data sets are analysed separately in four main climate zones (Schneider et al., 2013) i.e., Mediterranean (MED), Temperate continental (TEMC), Temperate transition (TEMT) and Temperate oceanic (TEMO) zones (Fig.1). The trigger mechanism for extreme hydrological events by sulphur-rich eruptions may involve the radiative forcing of sulphate aerosol over North Atlantic, as evidenced by anomalies in North Atlantic sea surface temperature (SST) and in North Atlantic Oscillation values recorded after sulphur-rich eruptions since 1850 AD.

2. Dataset and analysis

The analysed sulphate aerosol record (1850-1985 period), with an annual resolution based on layer counting, derives from Greenland ice core analysis (Meese et al., 1997) in the context of the Greenland Ice Sheet Project 2, (GISP2; Fig.1). The sulphate dataset clearly record the thirteen VEI≥5 eruptions occurred on a global scale over the same time period (Zielinski, 1995). The clear signatures of Icelandic sulphur-rich eruptions are also well documented in the GISP2 record; the 1970 Hekla VEI3 eruption produced the highest SO$_2$ peak (i.e., 88 ppb) over the whole time series.

Rivers daily discharge data are from BfG Global Runoff Data Center and from local governmental Institutions (Table 1); daily rain data are from NOAA Global Historical Climatology Network. Specifically, for the MED climate zone, we examine the Tiber River and the Collegio Romano rain gauge, for the TEMC zone, the Nemunas River and the Vilnius Rain gauge, for the TEMT zone, the Elbe River and the Kremsmuenster rain gauge, for the TEMO zone, the Thames River and the Armagh rain gauge (Fig. 1, Table 1).

Although the impact of strong volcanic SO$_2$ emissions on rainfall intensities and flash floods are still poorly known, the land precipitation responses, in terms of monthly or yearly amounts, to volcanic aerosols are reported to be significant from 1 to 3 years (Bala et al., 2008). In particular, the maximum land mean precipitation reduction after volcanic eruptions, as revealed by latent heat flux anomaly, occurs about 12 months after the maximum reduction in the shortwave flux (Church et al., 2005). On this basis, we average rainfall intensities response across multiple sulphate peaks beyond a fixed threshold.
through a superposed epoch analysis. Specifically, we relate the annual SO$_2$ concentrations to the intensities of the twenty-five (ERE$_{25}$) and ten (ERE$_{10}$) most intense precipitation episodes, recorded during year +1, as expressed in millimetres per 48 hours. Then, we average ERE$_{25}$ data within two classes of SO$_2$ concentrations, i.e., years with no detectable SO$_2$ and years with SO$_2$ ≥20 ppb. After that, the relationship between annual SO$_2$ record and rainfall and streamflow records during year +1 is considered.

A Monte Carlo technique was applied to assess the significance of the changes in extreme rainfall intensities as a function of atmospheric SO$_2$ concentrations and to filter possible effects of multiyear trends. Missing values of rainfall records were also assigned as missing values in the Monte Carlo simulations. The statistical significance of the rainfall intensity changes, ERE$_{25}$ and ERE$_{10}$, after SO$_2$-rich eruptions was evaluated by replacing observed rainfall records with data from randomly selected years through 10,000 iterations. Mean ERE$_{25}$ and ERE$_{10}$ values were calculated from all years following sulphur-rich eruptions associated to SO$_2$ concentrations above 40 ppb in the GISP2 record (Fig. 2). Then, the obtained mean ERE$_{25}$ and ERE$_{10}$ values were compared with results from Monte Carlo simulations (10,000 iterations). The $p$ values associated to rainfall intensities changes after sulphur-rich eruptions is defined as the probability that the observed pattern of ERE$_{25}$ and ERE$_{10}$, within individual climatic zones may derive from a random sampling of the rainfall historical record. Thus, $p$ values provide a quantitative estimation of the significance of the detected relationship between SO$_2$ concentrations on rainfall intensities.

For each climate zone, the number of years with high-SO$_2$ concentrations within each record and results from statistical analysis are summarised in Table 2.

The analysis of river streamflows is based on daily flow datasets for the Tiber, Nemunas, Elbe and Thames rivers to calculate extreme day-to-day river flow increases ($\Delta Q_{\text{day}}$; Table 1). Specifically, for each year, $\Delta Q_{\text{day}}$ is defined as the 90th percentile of day-to-day streamflow changes. All the considered rivers are characterised by dam systems for the mitigation of flooding episodes in urbanised areas with potential effects on the analysed $\Delta Q_{\text{day}}$ values. Thus, for each river drainage basin, we evaluated quantitatively the effects of dam on the streamflow analysis with a statistical approach: concerning the Tiber river, since 1921, (i.e., the starting point of present MED river flow analysis; Table 1), a possible
change-point in the flood record at the Ripetta hydrometric gauge took place in 1965, thus possibly affecting ~31% of the total duration of the record. In fact, the Corbara dam, the most important artificial structure to protect Rome from floods, operates since 1965 with a water reservoir of 0.17 km$^3$ of active storage and a catchment area of 6,070 km$^2$. The Corbara dam, by delaying the arrival time of flood waves from the upper Tiber, prevents the superposition of flood waves so that the resulting flood waves can be smoothed (Natale and Savi, 2007; Villarini et al., 2011)

In the Nemunas river, ice break-up events, rather than rainfall intensities, are the most important controlling factor the discharge rate peaks. Long-term trends (1812-2006) indicate that in the nineteenth century, ice cover remain unbroken on average for 30 days longer than in the twentieth century (Stonevičius et al., 2008). Moreover, the construction of the Kaunas Hydro Power Plant in 1959, recognised as the to the most impacting dam on the Nemunas ice processes, decreased ice duration between 5 and 15 days on average (Stonevičius et al., 2008).

The dominant flood threat for the Thames River, under favourable atmospheric conditions, derives from surge tides. A complex system of embankments and floodwalls defends London from the tidal regime. In recent times, re-profiling of beds and improvements to the efficiency of weirs resulted in fewer floods in the lower Thames (Bell et al., 2012). To note, we analysed the flow record at Teddington, the principal gauging station on the River Thames, located at the tidal limit. The progressive construction of dams and embankments on Elbe river (both in Czech Republic and Germany) and its tributaries (Vltava and Saale in the Thuringian Forest) over the last two centuries makes difficult the definition of specific major changing points in the day-to-day peak discharge series. A further element of uncertainties in the streamflow record is determined by outflows and inundations occurring as consequence of dike breaches during floods; (e.g., during the May-June 2013 flood in central Europe when diffuse dike breaches took place along the Elbe river). On the other hand, the role of tidal ranges on Elbe streamflow strongly decreases in the upstream direction with no effect at the Neu-Darchau station (Table 1), about 220 km from the Elbe mouth. To note, the middle Elbe part, including the Neu-Darchau station, is considered as a semi-natural river without any river-regulating dams (Haberlandt et al., 2001).
Given the possible presence of changing points daily river flow records, firstly we analysed the $\Delta Q_{\text{day}}$ time series of Tiber, Nemunas, Thames and Elbe rivers through the Mann–Whitney approach (see Additional Informations). From $p$ obtained in the Mann–Whitney statistical analysis (see Methods), we detected two main change points; the first concerns the Tiber river with a change point ($p \approx 0.02$) of $\Delta Q_{\text{day}}$ time series in 1965. The second change point ($p \approx 0.04$) is detected in the Nemunas river $\Delta Q_{\text{day}}$ time series in 1959. No changes points were detected in the Thames and Elbe streamflow records. When no statistically significant change-points are evidenced, we performed the $\Delta Q_{\text{day}}$ analysis, as related to sulphate aerosol atmospheric records, over the entire record. On the other hand, for the Tiber and Nemunas records, we split the record into two sub-series (i.e, before and after the change-point); then we performed the $\Delta Q_{\text{day}}$ analysis of the sub-series separately (table 3).

The statistical significance of the $\Delta Q_{\text{day}}$ vs. sulphate concentrations relationship was derived by applying the Monte Carlo method; specifically, the statistical analysis is based on 10,000 iterations, by randomly sampling a number of SO$_2$ concentration value from the historical record per iteration as the number of years within each quintile class (i.e., 20% of years of the entire record). For each randomised quintile class, the mean SO$_2$ value is calculated (Fig.3). Then, we evaluated quantitatively the probability, $p$, that the difference of SO$_2$ concentrations between the first and the fifth $\Delta Q_{\text{day}}$ quintile in the historical record may derive from a random sampling of the SO$_2$ record. For the Tiber and Nemunas rivers, we analysed separately the two subsseries after the detected changing points in 1965 and 1959, respectively. The subseries analysis gives level of significance $p<0.05$ for the Tiber River and $p<0.02$ for the Nemunas rivers, thus excluding statistically significant effects of change points on the $\Delta Q_{\text{day}}$ vs. SO$_2$ concentrations relationship (results in Table 3).

The Monte Carlo method was applied by assigning the pertinent SO$_2$ concentration value (i.e., mean of the annual concentration values recorded during the earlier year) to the first (lowest $\Delta Q_{\text{day}}$ values) and to the fifth (highest $\Delta Q_{\text{day}}$ values) quintiles interval obtained from the 10,000 iterations. The null hypothesis of no changes of $\Delta Q_{\text{day}}$ values as a function of SO$_2$ concentrations is verified from the width of the SO$_2$ concentration ranges within randomised quintile classes.
The radiative forcing of sulphate aerosol over North Atlantic after sulphur-rich eruptions was evaluated by considering seasonal SST and NAO variations since 1850 as a function of SO$_2$ concentrations in the GISP2 record. Multiyear NAO trends are filtered by normalising, within each year, the January to December monthly values between 0 and 1. The SST and NAO datasets are available at [www.esrl.noaa.gov](http://www.esrl.noaa.gov) and [www.cpc.ncep.noaa.gov](http://www.cpc.ncep.noaa.gov), respectively.

3. Results

Figure 2 shows the response of ERE$_{25}$ intensities to increasing SO$_2$ concentrations in the different European climate zones. In the MED area, years with SO$_2$≥20 ppb are characterised by ERE$_{25}$ intensities higher by 13.5 mm on average (standard deviation of the mean, $\sigma_m$, 0.8; p<0.03) with respect to pristine atmosphere years. In the TEMO zone, SO$_2$ polluted conditions are associated with an increase of ERE$_{25}$ intensities by 13.1 mm on average ($\sigma_m$=2.6; p<0.01). By contrast, in the TEMC zone, the values of ERE$_{25}$ decrease by 11.9 mm on average ($\sigma_m$=2.7; p<0.19). This trend is similar to that recorded in the TEMT zone, where ERE$_{25}$ decreases by 16.0 mm on average ($\sigma_m$=2.9; p<0.13). To note, when considering the most intense ten precipitation episodes, ERE$_{10}$, the effects of SO$_2$ concentrations appear even more pronounced; in fact, in the MED area ERE$_{10}$ intensities increase by 13.9 mm on average ($\sigma_m$=1.9; p<0.13), while in the European temperate oceanic zone they increase by 21.9 mm ($\sigma_m$=5.3; p<0.01). A more pronounced trend concerns the ERE$_{10}$ values both in the TEMC zone (ERE$_{10}$ = -23.8 mm; $\sigma_m$=3.9; p<0.16) and in the TEMT zone (ERE$_{10}$ = -19.9 mm; $\sigma_m$=2.6, p<0.16). This general trend in rainfall intensity anomalies is relatively more evident when considering the effects of single large volcanic eruptions; for example one year after the VEI6 1883 Krakatoa eruption, ERE$_{10}$ values in the TEMO zone was affected by a +58.6 mm ($\sigma_m$=9.2) change, with respect to pristine atmosphere years (Fig.2). By contrast, in the TEMC and TEMT zones, ERE$_{10}$ intensities changed by -62.3 mm ($\sigma_m$=7.5) and -95.9 mm ($\sigma_m$=13.8), respectively.

Now, we consider an independent dataset to verify if the observed SO$_2$-induced rainfall extreme anomalies may have also induced detectable short-term effects on European rivers flow regime. We analysed the daily streamflow data since the second half of the
19th century into the four European climate zones (Fig.1). In Figure 3, the plot of trends was conducted by averaging the SO$_2$ concentration values (i.e., mean of the annual concentration values recorded during the year preceding SO$_2$ peaks within fixed concentration thresholds) to each $\Delta Q_{\text{day}}$ quintile interval. Results show that in the MED, European TEMO and TEMC zones, $\Delta Q_{\text{day}}$ values increased significantly for increasing values of atmospheric SO$_2$. Specifically, in the TEMO zone, the increase of SO$_2$ annual mean concentrations from 11.9±3.5 to 28.5±7.6 ppb is followed by a factor ~2.3 $\Delta Q_{\text{day}}$ increase. This trend is even more marked in the MED region, where an increase of SO$_2$ by a factor ~2.4 is followed by a factor >4 enhancement of $\Delta Q_{\text{day}}$. Even in the TEMC zone the response of flow regime to increasing SO$_2$ concentrations shows a similar trend, with an increase of $\Delta Q_{\text{day}}$ by a factor ~4.6 following an increase of SO$_2$ by a factor ~4.3. By contrast, in the TEMT zone, to an increase of SO$_2$ by a factor ~4 corresponds a net decrease of $\Delta Q_{\text{day}}$ by a factor ~3. The statistical significance of the river flow changes, $\Delta Q_{\text{day}}$ values, as a function of SO$_2$ concentrations is summarised in table 3.

4. Discussion

Overall, it appears that, the response of rainfall and streamflow intensities to atmospheric SO$_2$ concentrations defines a composite yet coherent geographical pattern in Europe. In fact, after sulphur-rich eruptions, both rainfall and flash-flood intensities increase significantly in the MED and TEMO zones, whilst an opposite trend is observed in the TEMT zone. The TEMC zone represents an interesting exception, with a clear discrepancy between the decrease of rainfall intensities and the increase of extreme streamflow episodes following intense SO$_2$ peak concentrations. We note that annual discharge rate peaks of the Nemunas River are mostly controlled by ice break-up events rather than by rainfall intensities (Yoo and D’Odorico, 2002). Thus, the inconsistency between rainfall intensities and river flow regimes might be related to some effect of atmospheric SO$_2$ concentrations on ice break-up events. In this perspective, it is widely accepted that premature ice break-up events are associated with relatively more rapid runoff, usually due to a combination of rapid melt and heavy rain (Beltaos and Prowse, 2001). Interestingly, after sulphur-rich eruptions associated to SO$_2$ concentration values higher than 40 ppb in the
GISP2 record (twelve events since 1850) we found significant warmer temperatures of the atmosphere in late winter and early spring in the TECM zone (Fig.4). This atmospheric warming is associated to a shift of ice break-up to early dates (i.e., by ~10 days, on average), as revealed by spring discharge rate peaks in the Nemunas hydrograph. Notably, the timing of ice break-up in northern Europe has been related to large-scale atmospheric circulation processes over North Atlantic, as also evidenced by its close relationship with the NAO (Livingstone 1999; Yoo and D’Odorico, 2002).

This picture suggests that the influence of sulphur-rich eruptions on the timing of ice breaks and, more in general, on extreme hydrological events in Europe, can be related to continental scale phenomena rather than to local-scale effects of SO$_2$ on hydrological cycle dynamics.

5. Conclusions

We found that, since 1850, high SO$_2$ atmospheric concentrations are followed, during year +1, by significant delayed responses of both the North Atlantic SST and NAO index (Fig.5). This finding suggests a radiative forcing effect of sulphur-rich eruptions, as we found that the twelve most intense SO$_2$ peaks (i.e., >40 ppb) since 1850 AD are followed, during the year +1, by a North Atlantic SST negative summer anomaly up to ~0.1 °C. This anomaly is followed, within 2-3 months, by a negative NAO phase. In addition, a clear NAO positive phase is observed in February-March of the year +1. Interestingly, the magnitude of positive and negative NAO anomalies increases for increasing SO$_2$ concentrations (Fig.5).

Although low latitude eruptions are reported to weakly enhance the NAO with relatively warmer winter in the northern hemisphere (Robock and Mao, 1992; 1995; Stenchikov et al., 2002; Hegerl et al., 2011) the response of NAO to sulphur-rich eruptions is not clearly solved by climate models (Driscoll et al., 2012; Charlton-Perez et al., 2013). In this regard, the Atlantic sea surface temperature (SST) is one of the most important governing factors for the NAO and the atmosphere dynamics over most parts of the Northern Hemisphere (Hurrell, 1995). Moreover, the lagged decrease of the NAO index following SO$_2$-induced negative SST anomalies is coherent with the reported lagged covariability between
monthly SST and NAO (Czaja and Frankignoul, 2002; Wang et al., 2004). Negative NAO phases corresponds to relatively weaker westerlies in the TEMC and TEMT zones with a tendency toward blocking and greater frequency of meridional winds (Dettinger and Diaz, 2000; Wang et al., 2004). Under these blocked conditions, storms are steered toward northern Europe or else directly into southern Europe; as a result, rainfall and streamflow can be lowered over central Europe with negative NAO index. By consequence, in the MED zone, negative NAO is associated to moist weather, as recorded by an increase in river flow (Trigo et al., 2002; 2004). Regarding the TEMO zone, significant negative correlations between NAO and regional rainfall amounts were observed in southern England (Wilby et al., 1997) while positive correlations found in Scotland suggest a non homogeneous geographical response of hydrological cycle to atmospheric circulation. We propose a teleconnected mechanism for volcanically induced extreme hydrological events in Europe. Specifically, the triggering mechanism of extreme rainfall and streamflow events in Europe since 1850 after sulphur-rich eruptions can be explained by sulphate aerosol radiative forcing over North Atlantic causing a net decrease of heat exchange between Ocean and atmosphere through evaporation, precipitation and atmospheric-heating processes. The results of this study display how sulphur-rich eruptions have relevant significance in driving the frequency and intensity of rainfall and related floods in Europe, with variable effects in different climate zones. Consequently, volcanic forcing of hydrological cycle dynamics, superimposed to long term effects of the anthropogenic climate change, needs to be addressed carefully in the context of densely populated areas. As a consequence, this work can furnish a starting point for climate modelling investigation, for reproducing past scenario and predictions at local scale and small temporal resolution.

Supplementary informations
Since the exact time of possible changing points on day-to-day peak discharge series of the investigated rivers is unknown, we applied a non-parametric approach (Pettitt, 1979) for determining the occurrence of a change point. This method allows the detection of significant change in the mean of a time series. From the Mann–Whitney statistic $U_{i,N}$, we verified if two
samples \( x_t, \ldots, x_t \) and \( x_{(t+1)}, \ldots, x_N \) are from the same population. The test statistic \( U_{t,N} \) is given by:

\[
U_{t,N} = U_{t-1,N} + \sum_{j=1}^{N} \text{sgn}(x_i - x_j) \quad \text{for} \quad t = 2, \ldots, N
\]

The test determines the number of times a member of the first sample exceeds a member of the second sample. The null hypothesis is the absence of one or more changing points. The associated probabilities for the significance testing are given as:

\[
K_t = \text{Max}_{1 \leq t \leq N} |U_{t,N}|
\]

and

\[
p \equiv 2 \exp[-6(K_t)^2 / (N^3 + N^2)]
\]

For \( p < 0.05 \), a significant change point exists and represents the location of the division point of the time series into two subseries.
References


Cao L, Bala G and Caldeira K (2012) Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks. Environ. Res. Lett. 7, 034015


Figure 1: Location of hydrometric and rainfall gauges considered in the present study; the six European climate zones (Meese et al., 1997) are also shown.
Figure 2: Intensities of the 25 most rainy days (ERE\textsubscript{25}) for years with no detectable volcanic SO\textsubscript{2} (black line) and years with SO\textsubscript{2} $\geq$ 20 ppb (red line). Vertical bars are the standard deviations of the mean. Concentrations of volcanic aerosols above 20 ppb are associated to a significant increase of the ERE\textsubscript{25} intensities both in the MED area (mean value +10.7\% at Collegio Romano rain gauge) and in the TEMO climatic zone (+1.4\% at Armagh rain gauge) with respect to pristine atmosphere years. By contrast, in the TEMC (Vilnius rain gauge) and in the TEMT (Kremsmunster rain gauge) climatic zones, ERE\textsubscript{25} values decrease by 3.2 \% and by 5.2 \% on average, respectively. This general trend is more pronounced after large eruptions as, for example, after the 1883 VEI6 Krakatoa eruption (green line). SO\textsubscript{2} concentrations derive from GISP2 Greenland ice core record. (Schneider et al., 2013).
Figure 3. Extreme day-to-day river flow increases ($\Delta Q_{\text{day}}$) vs. SO$_2$ concentrations in Greenland ice core records (GISP2). The Probability Distribution Function (PDF, black dots) of $\Delta Q_{\text{day}}$ values was divided into five equal-sized groups (quintiles) and ordered from low to high $\Delta Q_{\text{day}}$ values. SO$_2$ concentration values are the mean of the annual concentrations as determined within each $\Delta Q_{\text{day}}$ quintile interval.
Figure 4: Impact of volcanic SO$_2$ on the timing of ice breaks at the Nemunas River. Nemunas River discharge at Smalininkai stream gauge (m$^3$ s$^{-1}$) and maximum and minimum atmospheric temperatures at Vilnius (°C), for years with SO$_2$>50 ppb, years with SO$_2$=0 (pristine atmosphere). Both maximum and minimum temperatures show an increased trend during years with SO$_2$>50 ppb, with respect to pristine atmosphere years. The trend of discharge for years with SO$_2$>50 ppb clearly shows earlier dates for maximum flows, due to an earlier ice-break up, with respect to years with pristine atmosphere. Shaded areas are the standard deviation of the mean. Data source are reported in the text.
Figure 5: Monthly impact of volcanic sulphate aerosols on Atlantic Sea Surface temperature (SST) and NAO index since 1850. Post-volcanic Atlantic SST anomalies produced by the twelve most intense SO$_2$ peaks in the GISP2 record (i.e., SO$_2$≥40 ppb compared with SO$_2$ = 0 ppb). Curves represent lag 0, lag +1 and lag +2 years, respectively, from sulphate peaks. Dashed lines denote the 1σ standard deviation from the monthly mean values over the entire record (upper). Sensitivity of NAO (normalised values) to increasing SO$_2$ concentrations values (lag +1 year) (lower). Vertical bars are the standard deviations of the mean.
Table 1. Dataset, periods, hydrometric and rain gauge stations and references considered in the river flow and rainfall analyses.

<table>
<thead>
<tr>
<th>Climate zone</th>
<th>Period</th>
<th>Missing years</th>
<th>Station (Country)</th>
<th>Hydrometric (H) Rain gauge (R)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>MED</td>
<td>1922 - 1985</td>
<td>1928; 1934; 1937; 1941</td>
<td>Collegio Romano (Italy)</td>
<td>R</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>1921 - 1985</td>
<td>1984</td>
<td>Ripetta (Italy)</td>
<td>H (Tiber River)</td>
<td>**</td>
</tr>
<tr>
<td>TEMC</td>
<td>1881 - 1985</td>
<td>1915-17; 1943-44</td>
<td>Vilnius (Lithuania)</td>
<td>R #</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>1877 - 1985</td>
<td>1930-32; 1943-45</td>
<td>Smalininkai (Lithuania)</td>
<td>H (Nemunas River)</td>
<td>**</td>
</tr>
<tr>
<td>TEMT</td>
<td>1876 - 1985</td>
<td>-</td>
<td>Kremsmuenster (Austria)</td>
<td>R</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>1875 - 1985</td>
<td>-</td>
<td>Neu-Darchau (Germany)</td>
<td>H (Elbe River)</td>
<td>**</td>
</tr>
<tr>
<td>TEMO</td>
<td>1880 - 1985</td>
<td>-</td>
<td>Armagh (United Kingdom)</td>
<td>R</td>
<td>***</td>
</tr>
<tr>
<td></td>
<td>1883 - 1985</td>
<td>-</td>
<td>Kingston (United Kingdom)</td>
<td>H (Thames River)</td>
<td>**</td>
</tr>
</tbody>
</table>

Notes:

* Ufficio Idrografico e Mareografico Regione Lazio [UIRL], Centro Funzionale (http://www.idrografico.roma.it/)

** Global Runoff Data Centre [GRDC], Koblenz, Federal Institute of Hydrology (BIG), (2014).

*** Global Historical Climatology Network [GHCN], NOAA Satellite and Information Service,

R Temperature analysed in figure 4 are from the Vilnius station.
Table 2. Statistical significance of the effects of SO$_2$ on rainfall intensities from Monte Carlo method. Within individual climate zones, the number of years with high-SO$_2$ concentrations ($\geq$40 ppb) corresponds to the number of randomly selected years within the GISP2 record for Monte Carlo simulations ($10^4$ iterations).

<table>
<thead>
<tr>
<th>Climate zone</th>
<th>Station (Country)</th>
<th>Record duration yrs (missing yrs)</th>
<th>yrs with SO$_2$ $\geq$40 ppb</th>
<th>$p$ (ERE$_{25}$)</th>
<th>$p$ (ERE$_{10}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MED</td>
<td>Collegio Romano (Italy)</td>
<td>65 (4)</td>
<td>9</td>
<td>&lt;0.03</td>
<td>&lt;0.13</td>
</tr>
<tr>
<td>TEMC</td>
<td>Vilnius (Lithuania)</td>
<td>106 (5)</td>
<td>12</td>
<td>&lt;0.01</td>
<td>&lt;0.16</td>
</tr>
<tr>
<td>TEMT</td>
<td>Elbe (Germany)</td>
<td>111 (0)</td>
<td>12</td>
<td>&lt;0.01</td>
<td>&lt;0.16</td>
</tr>
<tr>
<td>TEMO</td>
<td>Thames (UK)</td>
<td>107 (0)</td>
<td>12</td>
<td>&lt;0.01</td>
<td>&lt;0.01</td>
</tr>
</tbody>
</table>

Table 3. Results from Monte Carlo method for the statistical significance of the effects of SO$_2$ on streamflow extreme events.

<table>
<thead>
<tr>
<th>Climate zone</th>
<th>River (Country)</th>
<th>Record duration yrs (missing yrs)</th>
<th>Mean SO$_2$ concentration ($\sigma_m$) in ppb</th>
<th>$\Delta Q_{day}$ lowest (1st) quintile</th>
<th>$\Delta Q_{day}$ highest (5th) quintile</th>
<th>$p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>MED</td>
<td>Tiber (Italy)</td>
<td>65 (1)</td>
<td>11.9 ($3.5$)</td>
<td>28.5 ($7.6$)</td>
<td></td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>TEMC</td>
<td>Nemunas (Lithuania)</td>
<td>109 (6)</td>
<td>6.1 ($2.3$)</td>
<td>28.2 ($5.7$)</td>
<td></td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>TEMT</td>
<td>Elbe (Germany)</td>
<td>110 (0)</td>
<td>7.5 ($3.0$)</td>
<td>20.1 ($4.8$)</td>
<td></td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>TEMO</td>
<td>Thames (UK)</td>
<td>103 (0)</td>
<td>18.2 ($4.0$)</td>
<td>4.6 ($2.8$)</td>
<td></td>
<td>&lt;0.02</td>
</tr>
</tbody>
</table>