Editors and Reviewers notes are indicated in black in this note. Authors comments are in blue. All changes made in the manuscript are also in blue (we added in the comment sections some specific response to RC1, RC2, SL, and EC)

RC1 and RC2: Reviewer #1 and #2, respectively
SL: Sebastian Luening
EC: Editor’s comments/Editor

We would like to note that the manuscript has been thoroughly revised (major revision), and thus some comments/suggestions of changes by RC are no longer applicable (in fact, several sentences were removed). However, we tried our best to refer Editors and Reviewers to sections that correspond to the requested changes.

Although we indicated specific lines to address the comments, we kindly invite editor and reviewers to read the manuscript and its accompanying supplementary documents anew. Thank you for considering this manuscript.

Major changes:

1) After fully revising the submitted manuscript, its title has been updated to: “*Three distinct Holocene intervals of stalagmite deposition and non-deposition revealed in NW Madagascar, and their paleoclimate inferences*”

2) The abstract has been fully revised to reflect the changes made to the manuscript

3) Many figures were removed and updated to address major comments from RC1, RC2, and EC.

4) Here is a list of major changes in response to RC1, RC2, EC (detailed responses are given further below):
 a. Radiometric dating (please see lines 180–198 and lines 256–284)
 b. Stable isotopes (please see lines 221–253 and 287–309), also please see Figs 5–6 and their corresponding supplementary Figures S6–S8.
c. Most of the figures have been fully revised as indicated in the Author’s Responses to Reviewers and Editor
d. Some subsections have been added to clarify ideas (e.g., Sect. 3. Methods, now with three distinct subsections)
e. Interpretation of the three intervals of the Holocene in Madagascar has been revised (Sect. 5.2. Lines 398–524)
f. The section 5.3. on the ITCZ implications has been shortened (Lines 505-524) in response to RC2
g. New sections have been added, and they are:
 i. Sect. 2.1. Stalagmites and their setting (lines 76–98): this section was moved as suggested by RC1
 ii. Sect. 2.3. Climate of Madagascar: new and inserted in response to RC2
 iii. Sect. 5.4. Regional comparison, added in response to RC2
 iv. Sect. 5.6. Beyond the ITCZ: IOD and ENSO influence on Madagascar’s climate (Lines 576–605), added in response to RC2

h. Several changes have been made to the Supplementary materials (in fact we added several figures and texts)

Specific responses to Reviewers and Editors

Editor:
In addition to responding to the reviewer comments I would also ask that you pay particular attention to:

*detailing the mineralogical assignment of the speleothems and how this leads to the isotopic correction along the length of the samples. In particular it is unclear how each isotopic sample is corrected for it’s aragonite:calcite composition when only a small number of discrete XRD analyses have been completed.

• Please see specifically Lines 228–229 and 239–240
• Also, please see Lines 200–241
• (The excel file with the data were color coded to account for the difference in mineralogy, and thus to ease mathematical correction for stable isotopes). Those data will be made available publicly and submitted to NOAA upon acceptance of this manuscript.

• Additional explanation: we run a total of 15 XRD samples to identify the nature of mineralogy with similar fabrics. For the isotopic correction, the mineralogy at the crest was mostly monomineralic, but we specified the correction at lines 239–240. (If this is very confusing, I am happy to discuss this via skype if necessary).

*detailing the U-series and age model details. In particular more detail needs to be given on initial 230/232 values and the effect that the chosen values have on bringing U-series ages into stratigraphic alignment. Age information also needs to be included on plots showing the isotopic time-series so that readers can evaluate how much “movement” of the records is possible based on age uncertainty.

 • Please see Lines 180–198 and Lines 256–277
 • Age information: please see Figs. 5–6

*be careful with “wiggle matching”. The examples in the proposed revised figures are not convincing to me. Please be careful in how you approach this and in how robust your climatic interpretations are.

 • We removed all wiggle matching to avoid biases in interpretation.

*more thoroughly compare your data with other records from the region (not just a map of the locations of other sites). The Scroxton et al 2017 QSR paper that also presents speleothem data from Madagascar should also be included in the revised interpretation of your records.

 • Done, please see Figure 11 (also see Sect. 5.4 at Lines 527–574)
 • For Scroxton et al. (2017), please see Lines 127 and 579–580
Anonymous Referee #1 (RC1):

Received and published: 18 January 2017

This study focuses on speleothems from two caves in Madagascar. Several types of analysis are performed including stable isotopes, laminae, and mineralogy, each of which is anchored using U-Th dates.

- We added a paragraph to indicate that we used Layer-Specific Width (LSW) and not laminae. Please see lines 211–218.

The age models appear robust (although an adequate discussion of age determinations and age model calculations is lacking) but there are several problems.

- Please see lines 180–198 and lines 256–284

First, the time slices spanned by these stalagmites are quite short, being punctuated by long hiatuses. As a result, the larger context of this record is difficult to identify.

- To specifically address this, please see Lines 278–284
- We also revised the interpretation of the three intervals of the Holocene (Lines 398–524)

Second, I am not convinced of the corrections for differential fractionation between calcite and aragonite d13C values. And associated with this is my concern that there may be microscopically intermingled aragonite and calcite that can only be corrected for isotopically using quantitative XRD, something that was not done here.

- Please see specifically Lines 228–229 and 239–240
- Also, please see Lines 200–241
- Figures S9–S11
- (The excel file with the data were color coded to account for the difference in mineralogy, and thus to ease mathematical correction for stable isotopes). Those data will be made available publicly and will submitted to NOAA upon acceptance of this manuscript.
Third, replication among samples of the same age is not particularly convincing, raising questions about the controls on isotopic values.

- Please see Lines 301–309

Fourth, several claims are poorly substantiated, incompletely referenced, or (to some degree or another) unsupported by the data.

- The manuscript has been fully revised

Fifth, the writing is at times hard to follow.

- We did our best to carefully revise the manuscript. We incorporated requested changes in the specific comments by RC1 below. We also incorporated changes according to RC2’s comment (e.g. narrowing discussion of the ITCZ and inserting discussion on other climate forcings, like IOD). Please see our responses to specific comments and please see our response to RC2.

1. Does the paper address relevant scientific questions within the scope of CP? Yes
2. Does the paper present novel concepts, ideas, tools, or data? No
 - Please see Authors’ responses
3. Are substantial conclusions reached? No
 - Please see Authors’ responses
4. Are the scientific methods and assumptions valid and clearly outlined? No
 - Please see Sect. 3 Methods (with three new subsections to make this clearer) at lines 179–253
5. Are the results sufficient to support the interpretations and conclusions? No
 - Please see Authors’ responses
6. Is the description of experiments and calculations sufficiently complete and precise to allow their reproduction by fellow scientists (traceability of results)?
7. Do the authors give proper credit to related work and clearly indicate their own new/original contribution? Not always
8. Does the title clearly reflect the contents of the paper? No
 - Please see Authors’ responses
9. Does the abstract provide a concise and complete summary?
10. Is the overall presentation well structured and clear? No
 • Please see Authors’ responses
11. Is the language fluent and precise? No
 • Please see Authors’ responses
12. Are mathematical formulae, symbols, abbreviations, and units correctly defined and used?
13. Should any parts of the paper (text, formulae, figures, tables) be clarified, reduced, combined, or eliminated?
14. Are the number and quality of references appropriate?
15. Is the amount and quality of supplementary material appropriate?

Specific comments follow:

The comments below no. 18–40 belong to the Abstract. We fully revised the Abstract to account for the changes made in the manuscript, thus responses to specific comments no. 18–40 become N/A.

18 – is this one cave or two?
23 – why no dates associated with the middle Holocene?
27 – when?
27 - “globally colder” is a little confusing; the interhemispheric temperature gradient is responsible for determining mean global ITCZ position.
30 – when?
33 – is “exemplified” the correct word here?
37 – here is the missing mention of hemispheric temp gradient. I suggest making this explicit earlier in the abstract.
39-40 – delete this sentence

43 – delete “the”
 • deleted

49 – delete “the”
 • deleted
51 – reword as “a particularly”
 • sentence revised (Lines 58–59)

52 – ITCZ was previously defined
 • In the previous version of the manuscript, the ITCZ was defined in the abstract. In the revised manuscript, we defined the first acronym at the beginning in the introduction, and used the ITCZ acronym for the remainder of the text. (Lines 56–57)

61 – reword “variability of growth-specific width” as “growth laminae”
 • We already explained this above (LSW)

61 - do not capitalize “cave”
 • corrected

90 – wasn’t replication already discussed on line 42
 • Section revised (Lines 101–117), repeated ideas/texts were removed.

100 – “long-term” is vague; records of what?
 • Please see lines 173–176

101 – “longer” vague (see previous comment)
 • see our response to line 100 (above)

112 – “chronologies were”
 • Corrected (Lines 193)

133 – I am not sure that the correction for carbon isotopic fractionation between calcite and aragonite in speleothems has been adequately explored. As a result, I am uncertain if this part of the results will hold up.
 • Please see Sect. 3.3. (Lines 220–241)
142 – looking at the data table in Supp Materials, it appears that ANJB-2 (sometimes labeled as ANJ-B-2) has a wide range in U abundance. So why the s.d. of 0? 144 – Providing this level of U and Th abundance data is not particularly useful. I would simply refer the reader to the relevant data table. What is missing that should be included here is a discussion of 238/232 ratios in each sample, what 232/232 value was used to correct for inherited 230 (and how this value was derived), and how well the ages fall in correct stratigraphic order. Most ages look quite good but some late Holocene dates have larger errors. These deserve some discussion.

- Considered, please see lines 257–277
- The labels were also corrected (thank you!)

148 – The wording here is confusing. Why argue for some continuous growth intervals but define others as separated by hiatuses?

- This section was revised, please see lines 278–284

154 – these are enormous ranges in d18O and d13C. 161 – drop the hundredths place in the stable isotope values (where they are included). It complicates the paper but doesn’t have any relevance for interpretation.

- Considered, please see lines 287–293 and 294–300 (we also revised these paragraphs)

205 – this basic introduction should be presented much earlier in the paper if readers who require it are going to glean any meaningful information from the stable isotope results.

- Done, and moved to Sect. 2.1 (Lines 76–98)

272 – relative to what time interval?

- Relative to modern climate (Lines 402)

276 – I guess, but the record spans so little time that it’s hard to get a clear sense of how anomalous this 8.2 isotopic excursion actually is.

- Instead of arguing that this is anomalous, and to avoid over-interpretation of the data, we revised the sentence (please see Lines 406–407) and its corresponding figure 12.
278 – “suggest”? The mineralogical composition should be defined precisely (even down to percent calcite or aragonite). Or do you mean to suggest that it may have originally been aragonite but was altered to calcite?

- Please see lines 406–416

291 – missing a chance to fit this finding into a large context. What other regional records (African, south Asian) record the 8.2 event and what is the nature of these records?

- We dedicated an updated section on the 8.2 ka (Lines 549–574)

295–297 – I don’t understand this sentence. Is this saying what you mean it to say?

- We deleted as we revised the manuscript

373 – there are a lot studies to cite here. I am not sure self-citing is most appropriate in this context.

- Since the sections on ITCZ have been shortened (in response to RC2), that sentence was deleted. However, please see Sect. 5.3 (Lines 505–524)

377 – my reading of much of the SH paleoclimate literature suggests a dominance of NH insolation.

- Since the sections on ITCZ have been shortened (in response to RC2), that sentence was deleted. However, please see Sect. 5.3 (Lines 505–524)

408 – is “he” appropriate useage for Climates of the Past?

- Sentence deleted after major revision

416 – similar findings were made based on lakes and speleothems in South America, and thus it may be worth citing some of this work here.

- See lines 517–524

475 – does the Gulf Stream actually shut down when AMOC slows? Need to cite a modeling stud to support this claim.
• The section on the 8.2 ka was fully revised (Lines 549–574)

729 – is the name for this reference correct? It is a hyphenated name in the text.
 • Good eyes! The reference is now corrected. (Line 1106)

Fig 5 and Fig 6 – It would be helpful to have the isotopes presented on the same scales oriented along the same horizontal lines so that the reader can assess how each stalagmite’s isotopic trends and values compare with the other.

Fig 6 – I don’t see the connection between solar and stalagmite isotopes here.

For any comments pertaining to figures, we revised many of them (as listed in the Authors’ Responses summary submitted earlier). We kindly invite reviewers to look at the new Figures and the supplementary materials.

Short Comment by Sebastian Luening (SL)
luening@uni-bremen.de
Received and published: 12 February 2017

This is an important new contribution on the palaeoclimate of Madagascar and the greater southeast African region. The link to the migrating / oscillating ITCZ and the influence of solar activity changes is very important and helps to better understand natural climate variability in the region.

Thank you!

The isotope curves contain additional information which is not fully covered in the discussion section of the paper. For example, I took a closer look at the time of the Medieval Climate Anomaly (1000-1200 AD) and noticed that the Anjohibe Cave records a general wet phase 850-1100 AD based on d18O.
 • Please see lines 484–488

Notably, the d18O development in Anjokipoty Cave differs. Why?
 • Please see Lines 301–309
A wetter MCA fits well with the bulk of other regional studies from the region (green dots in this regional MCA mapping project: http://t1p.de/mwp).

It is unfortunate that the two d\textsubscript{18}O curves in Fig. 5b are plotted on top of each other, making it very hard to see the individual curves. I suggest you separate them for better readability.

- Figures were revised

In the data supplement figure S7 you show datasets AB2 and AB3 without properly introducing them. Please add information on these datasets.

- The manuscript has been fully revised, and this figure is no longer needed, thus it was deleted.

Anonymous Referee #2 (RC2):

Received and published: 22 March 2017

This papers presents climate reconstruction obtained from two speleothems located in northwestern Madagascar. Three climatic episodes are identified based on change in δ\textsubscript{18}O and δ\textsubscript{13}C. The mid Holocene interval is represented by a hiatus that lasted from 7.8 to 1.6 ka. Petrology, mineralogy and stable isotopes are inferred to discuss changes in stalagmite physiognomy and geochemical composition and relate to climatic changes. The discussion on how to detect hiatuses in speleothems is very interesting with issues of broad interest. However several concerns that are listed below are preventing from allowing a publication of these results in their actual presentation.

1) a discussion on age results and age model is lacking.

- please see lines 180–198 and lines 256–284

2) results show several discrepancies between the two speleothems at a same age which are not commented. A presentation of the curves separately is needed with a discussion on the results.

- Figures were separated, thank you for this suggestion!
- Discrepancies discussed in text (please see Lines 301–309)
3) the results are never discussed at a regional scale and some important references are lacking from paleoclimate reconstructions in eastern Africa and Indian Ocean. The Holocene wet-dry-wet succession was already identified in several studies never cited here. The climate boundaries of the Holocene might be spatially limited but not nonexistent.

- New section on regional comparison was added (please see Sect. 5.4. at Lines 526–547)

4) the ITCZ is presented as the main and only driving force to explain the regional hydrological changes ignoring the Indian Ocean Dipole.

- New section on other factors than ITCZ was added (please see Sect. 5.6. at Lines 576–605)

Setting Describe the climatic anomalies that are observed today.

- Please see Sect. 2.3. at Lines 119–164. This is a new section added to the manuscript.

Discussion 8.2 ka: all right I can see a decrease in $\delta^{18}O$ and $\delta^{13}C$. However before and after 8.2 k we observe that Δn the similar patterns as the $\delta^{18}O$ of Greenland Δz is absent. Is similarity only detected at 8.2k?

- Since the 8.2 represents an interval of interest of the early Holocene, we focused on its interpretation (section 5.5 was revised)

The discussion on ITCZ is too long and includes too many generalities nd no novelties. New scientific questions should arise at the end of the paper.

- Considered (the section on ITCZ has been shortened, please see Sect. 5.3. at lines 505–524)

- New critical points added at the end of the paper (Lines 621–629). Good suggestion, thank you!

Figures We need a map with the location of the other paleoclimate reconstructions around the Indian Ocean and Eastern Africa

- Done, and we added another figure (Fig. 11) showing comparison of time series (as suggested by EC)
Figure 5 I can see many differences between the two sites at a same age.

Figure 6 I do not understand this figure.

- We revised several figures, including figure 5 and 6. We kindly invite RC2 to have a look at the revised figures and the supplementary figures. Thank you!
Three distinct Holocene intervals of stalagmite deposition and non-deposition revealed in NW Madagascar, and their paleoclimate inferences

Voarintsoa, Ny Riavo G.1*, L. Bruce Railsback2, George A. Brook2, Lixin Wang3, Gayatri Kathayat3, Hai Cheng3,4, Xianglei Li3, R. Lawrence Edwards4, Rakotondrazafy Amos Fety Michel5, Madison Razanatseheno Marie Olga5

1 Department of Geology, University of Georgia, Athens, GA 30602-2501 U.S.A.
2 Department of Geography, University of Georgia, Athens, Georgia, 30602-2502 U.S.A.
3 Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, P.R. China
4 Department of Earth Sciences, University of Minnesota, Minneapolis, Minnesota 55455, U.S.A.
5 Department of Geology, University of Antananarivo, Madagascar

*Correspondence to: Ny Riavo Voarintsoa (nv1@uga.edu or nyriavony@gmail.com)

ABSTRACT

Petrographic features, mineralogy, and stable isotopes from two stalagmites collected from Anjohibe and Anjokipoty caves allow distinction of three intervals of the Holocene in NW Madagascar. The Malagasy early Holocene (between c. 9.8 and 7.8 ka) and late Holocene (after c. 1.6 ka) intervals (MEHI and MLHI, respectively) record evidence of stalagmite deposition. The Malagasy middle Holocene interval (MMHI, between c. 7.8 ka and 1.6 ka), however, is marked by a depositional hiatus lasting for c. 6500 years.

Deposition of Stalagmites ANJB-2 and MAJ-5 from Anjohibe and Anjokipoty caves, respectively, during the MEHI and the MLHI suggests that these caves were sufficiently supplied with water to allow stalagmite formation. These MEHI and MLHI intervals may have been comparatively wet. In contrast, the long-term depositional hiatus likely suggests that the MMHI was relatively drier than the MEHI and the MLHI. This dry condition could have influenced the amount of water supplied to the cave, and thus prevented formation of the stalagmites.

The alternating “wet/dry/wet” during each of these Holocene intervals could be generally linked to the long-term migration of the Inter-Tropical Convergence Zone (ITCZ). When the ITCZ’s mean position is farther south, NW Madagascar experiences wetter conditions, such as during the MEHI and MLHI, and when it moves north, NW Madagascar climate becomes drier, such as during
A similar wet/dry/wet succession during the Holocene has been reported in neighboring locations, such as southeastern Africa.

Stable isotope records also suggest that although the MEHI and MLHI were wetter, the stronger correlation between δ^{18}O and δ^{13}C suggest that the early Holocene vegetation closely responded to changes in climate. In contrast, the weaker correlation between δ^{18}O and δ^{13}C and the positive shift in δ^{13}C suggest that the late Holocene vegetation was controlled by something other than climate, and the plausible explanation for such changes is the practice of swidden agriculture, as reported in previous literature.

Beyond these three subdivisions, the evidence of the 8.2 ka event in the stalagmite records also suggests that climate in Madagascar was sensitive to abrupt climate changes, such as the abrupt influx of the Laurentide Ice Sheet meltwater to the North Atlantic. The freshwater influx into the N. Atlantic, known to have weakened the Atlantic Meridional Overturning Circulation (AMOC), also led to an enhanced temperature gradient between the two hemispheres, i.e. cold NH and warm SH, shifting the mean position of the ITCZ further south. This brought wet conditions in the SH monsoon regions, such as NW Madagascar, and dry conditions in the NH monsoon regions, including the Asian Monsoon and the East Asian Summer Monsoon.

1. Introduction

Although much is known about Holocene climate change worldwide (Mayewski et al., 2004; Wanner and Ritz, 2011; Wanner et al., 2011; 2015), high-resolution climate data for the Holocene period is still regionally limited in the Southern Hemisphere (SH) (e.g., Wanner et al., 2008; Marcott et al., 2013; Wanner et al., 2015). This uneven distribution of data hinders our understanding of the spatio-temporal characteristics of Holocene climate change, and the forcings involved. For example, some of these forcings would have an influence on Inter-Tropical Convergence Zone (ITCZ) behavior and monsoonal response in low- to mid-latitude regions (e.g., Wanner et al., 2015; Talento and Barreiro, 2016). The island of Madagascar, in the southwest Indian Ocean (Fig. 1a), is seasonally visited by the ITCZ with a karst region crossing latitudinal belts (Fig. 1c). Thus, it is a natural laboratory to study changes in the ITCZ over time. New records from Madagascar could fill gaps in paleoclimate reconstruction in the SH that might help refine paleoclimate simulations, which in turn could provide better understanding of the global circulation and the land–
atmosphere–ocean interaction during the Holocene.

In this paper, we present multiproxy records (stable isotopes, petrography, mineralogy, variability of layer-specific width, or LSW) from stalagmites from Anjohibe and Anjokipoty caves. Stalagmites are used because of their potential to store significant climatic information (e.g., Fairchild and Baker, 2012, p. 9–10), and in Anjohibe Cave, recent studies have shown the replicability of paleoclimate records from stalagmites (e.g., Burns et al., 2016).

Two stalagmites were investigated, and these allowed us to characterize Holocene climate change in NW Madagascar. First, we developed a record of climate change from the multiproxy data. With a better understanding of Madagascar’s paleoclimate, we then investigated possible climate drivers of tropical climate change to draw a more comprehensive conclusion on the major factors controlling the hydrological cycle in NW Madagascar and surrounding regions during the Holocene.

2. Setting

2.1. Stalagmites and their setting

Stalagmites are secondary cave deposits that are CaCO₃ precipitates from cave dripwater. Calcium carbonate precipitation occurs mainly by CO₂ degassing, which increases the pH of the dripwater and thus increases the concentration of CO₃²⁻. In some cases, evaporation may also contribute to increased Ca²⁺ and/or CO₃²⁻ concentration in dripwater. CO₂ degassing occurs when high-PCO₂ water from the epikarst encounters low-PCO₂ cave air. Evaporation occurs when humidity inside the cave is relatively low. The fundamental equation for stalagmite deposition is shown in Eq. 1.

\[\text{Ca}^{2+} + 2HCO_3^{-} \Rightarrow \text{CaCO}_3(s) + CO_2(g) + H_2O(l) \] (Eq. 1)

Growth and non-growth of stalagmites depends on conditions that affect the reaction of Eq. 1 above. An increase in Ca²⁺ drives the equation to the right (towards precipitation) and an increase in CO₂ of the cave air and/or H₂O drives it to the left (towards dissolution). All components of the equation are influenced by the supply of water to the cave, which is generally climate-dependent.

More water enters the cave during warm/rainy seasons than during cold/dry seasons. Stalagmites will form when cave dripwater is saturated with respect to calcite and/or aragonite. If the water
passes through the bedrock too quickly to dissolve significant carbonate rock, and/or enters the cave and reaches the stalagmite too quickly to degas significant CO₂, it will not be saturated with respect to CaCO₃, inhibiting stalagmite formation. Stalagmite growth will slow as dripwater declines and will stop entirely if flow ceases. Vegetation provides CO₂ to the soil via root respiration so the vegetation cover above the cave and the type of vegetation can promote or limit stalagmite growth. Overall, the karst hydrological system plays a crucial role in the deposition and non-deposition of stalagmites, and this is closely linked to changes in local and regional environment and climate.

2.2. Regional environmental setting

Stalagmites ANJB-2 and MAJ-5 were collected from Anjohibe and Anjokipoty caves, respectively, in the Majunga region of NW Madagascar (Fig. 1). Sediments and fossils from these caves have already provided many insights about the paleoenvironmental and archaeological history of NW Madagascar (e.g., Burney et al., 1997, 2004; Brook et al., 1999; Gommery et al., 2011; Jungers et al., 2008; Vasey et al., 2013; Burns et al., 2016; Voarintsoa et al., 2017b).

Anjohibe (S15° 32' 33.3"; E046° 53' 07.4") and Anjokipoty (S15° 34' 42.2"; E046° 44' 03.7") are about 16.5 km apart (Fig. 1c). Their location in the zone visited by the ITCZ (e.g., Nassor and Jury, 1998) makes them ideal sites to test the hypothesis that latitudinal migration of the ITCZ influenced the Holocene climate of NW Madagascar (e.g., Chiang and Bitz, 2005; Broccoli et al., 2006; Chiang and Friedman, 2012; Schneider et al., 2014). The ITCZ brings north or northwesterly monsoon winds to Madagascar during austral summers, in a pattern that the Service Météorologique de Madagascar calls the “Malagasy monsoon”. Majunga has a tropical savanna climate (Aw) according to the Köppen-Geiger climate classification, with a distinct wet summer (from October to April) and dry winter (May-September). The mean annual rainfall is around 1160 mm. The mean maximum temperature in November, the hottest month in the summer, is about 32°C. The mean minimum temperature in July, the coldest month of the dry winter, is about 18°C (Fig. 1b).
2.3. Climate of Madagascar

The climate of Madagascar is unique because of its varied topography and its position in the Indian Ocean. Some scientists refer Madagascar as a “laboratory” for paleoecological study (e.g., Burney, 1997) because it is not only susceptible to several climatic forcing mechanisms but also an island with recent anthropogenic interaction, living imprints in the geological records (e.g., Burney et al., 2003, 2004; Matsumoto and Burney, 1994; Crowley and Samonds, 2013; Burns et al., 2016; Voarintsoa et al., 2017b). Its climate has been reviewed in several recent works (e.g., Jury, 2003; DGM, 2008, Douglas and Zinke, 2015, p. 281-299; Voarintsoa et al., 2017b, p.138-139; Scroxton et al., 2017). Regionally distinct rainfall gradients from east to west and from north to south are evident across the country (Jury, 2003; Dewar and Richard, 2007), and these are linked to easterly trade-winds in winter (May-October) and northwesterly tropical storms in summer, respectively. The Malagasy monsoon is modulated by the seasonal north-south migration of the ITCZ, which is the main driver of austral summer rainfall in Madagascar. The ITCZ’s mean position has shifted northward or southward depending on the global climate conditions, but most generally it migrates towards the Earth’s warmer hemisphere (Frierson and Hwang, 2012; Kang et al., 2008; McGee et al., 2014; Sachs et al., 2009). A relationship between this long-term migration of the ITCZ and climate in Madagascar was reported in NW Madagascar between c. 370 CE and 800 CE (see Fig. 8 of Voarintsoa et al., 2017b).

Beyond ITCZ, climate of Madagascar is also influenced by changes in Indian Ocean sea surface temperatures (SST) (Zinke et al., 2004; see also Kunhert et al., 2014) and changes in SST of the adjacent current off southwestern Madagascar, the Aghulas Current (Lutjeharms, 2006; Beal et al., 2011; Zinke et al., 2014). The most immediate signal is the Indian Ocean Dipole (IOD), or Indian Ocean Zonal Mode (Li et al., 2003). IOD-like patterns have been proposed as possible contributors to Holocene climate variability in tropical Indian Ocean (Abram et al., 2009; Tierney et al., 2013). IOD is as a coupled atmosphere-ocean mode in the tropical Indian Ocean (e.g., Saji et al., 1999; Webster et al., 1999; Brown et al., 2009; Yagamata et al., 2004; Behera et al., 2013). It is characterized by a reversal of the climatological SST gradient and winds across the Indian Ocean basin (Saji et al., 1999; Webster et al., 1999; Abram et al., 2007; Brown et al., 2009). A positive IOD event starts with anomalous SST cooling along the Sumatra-Java coast in the eastern Indian Ocean.
(Abram et al., 2007, 2008), along with positive SST anomaly in the western part of the basin (e.g., Saji et al., 1999; Abram et al., 2007). Such positive IOD events are observed to result in increased precipitation, sometimes causing devastating floods, over East Africa (Black et al., 2003; Saji et al., 1999; Webster et al., 1999; Saji and Yamagata, 2003; Weller and Cai, 2014). Such events have also enhanced precipitation over the northern part of India, the Bay of Bengal, Indochina, and southern part of China in 1994 (e.g., Behera et al., 1999; Guan and Yamagata, 2003; Saji and Yamagata, 2003). In the eastern Indian Ocean, a positive IOD is found to intensify El-Niño related drought, often as severe droughts, over Indonesia (Webster et al., 1999; Weller and Cai, 2014). It is however, important to note that the relationship between IOD and El-Nino Southern Oscillation (ENSO) is still debated. While some researchers found no relationships (e.g., Saji et al., 1999; Li et al., 2003; Lee et al., 2008), others found some relationships (e.g., Brown et al., 2009; Schott et al., 2009; Shinoda et al., 2004; Venzke et al., 2000; Abram et al., 2008; Saji and Yamagata, 2003; Meyers et al., 2007).

Apart from the coral study of Zinke et al. (2004) and the stalagmite study of Scroxton et al. (2017), very little is known about the effect of the IOD on Madagascar. One objective of this stalagmite study is to better understand how such mechanisms influenced climate in Madagascar during the Holocene.

2.4. The Holocene in NW Madagascar

Little is hitherto known about Holocene climate change in NW Madagascar nor about the major drivers of long-term climatic changes there. Most paleoclimate information from this region covers the last two millennia with more focus on the anthropogenic effects on the Malagasy ecosystems (e.g., Crowley and Samonds, 2013; Burns et al., 2016; Voarintsoa et al., 2017b). This is because several studies show that megafaunal extinctions in Madagascar coincide with the arrival of humans around 2-3 ka BP (e.g., see Table 1 of Virah-Sawmy et al., 2010; MacPhee and Burney, 1991; Burney et al., 1997; Crowley, 2010). There are even fewer long-term paleoclimate records for the NW region, with only sediments from Lake Mitsinjo (3,500 yr. BP; Matsumoto and Burney, 1994) and stalagmites from Anjohibe Cave (40,000 yr. BP; Burney et al. 1997) providing records of more than 3 kyr. Even though these records provided useful information about the
paleoenvironmental changes in NW Madagascar, their linkages to global climatic change, such as the linkages to the ITCZ, are not yet fully understood.

3. Methods

3.1. Radiometric dating

A total of 22 samples were drilled from Stalagmite ANJB-2 and 9 samples for Stalagmite MAJ-5 for U-series dating (Table S1 and S2). Each sample is a long (~5 to 20 mm), narrow (~1-2 mm), and shallow (~1 mm) trench, allowing us to extract 50–250 mg of CaCO$_3$ powder. We followed the chemical procedures described in Edwards et al. (1987) and Shen et al. (2002) when separating uranium and thorium. U/Th measurements were performed on the multi-collector ICP-MS of the University of Minnesota, USA and on a similar instrument in the Stable Isotopes Laboratory of Xi’an, in Jiaotong, China. Instrument details are provided in Cheng et al. (2013).

Corrected 230_Th ages assume an initial 230_Th/232_Th atomic ratio of $4.4 \pm 2.2 \times 10^{-6}$. This is the ratio for “bulk earth” or crustal material at secular equilibrium with a 232_Th/238_U value of 3.8. The uncertainty in the “bulk earth” value is assumed to be ±50% (see footnotes to Table S1 and S2). The error in the final “corrected age” incorporates this uncertainty. The radiometric data are reported as year BP, where BP is Before Present, and “Present” is A.D. 1950. Stalagmite chronologies were constructed using the StalAge1.0 algorithm of Scholz and Hoffman (2011) and Scholz et al. (2012), an algorithm using a Monte-Carlo simulation designed to construct speleothem age models. The algorithm can identify major and minor outliers and age inversions. The StalAge scripts were run on the statistics program R version 3.2.2 (2015-08-14). The age models were adjusted considering hiatus surfaces identified in the samples, using the approach of Railsback et al. (2013; see their Fig. 9).

3.2. Petrography and mineralogy

Petrography and mineralogy of the two stalagmites were investigated 1) by examining both the polished surfaces and the scanned images of the sectioned stalagmites, and by identifying any diagenetic fabrics (e.g., Zhang et al., 2014) that could potentially affect stable isotope values, 2) by observing eleven oversized thin sections (3x2 in) under the Leitz Laborlux 12 Pol microscope and the Leica DMLP equipped with QCapture in the Sedimentary Geochemistry Lab at the University
of Georgia, 3) by using scanning electron microscopy (SEM) to better understand the mineralogical fabrics at locations of interest (Fig. S13, and 4) by analyzing about 30–100 mg of powdered spelean layers \(\text{(n=15)} \) on a Bruker D8 X-ray Diffractometer in the Department of Geology, University of Georgia. For calcite and aragonite identification, we used CoKα radiation at a 20 angle between 20° and 60°.

Layer-specific width (LSW) of clearly-defined layers was measured at selected locations on the stalagmite polished surfaces (Fig. S4; Sletten et al., 2013; Railsback et al., 2014; Voarintsoa et al., 2017b). LSW is the horizontal distance between two points on the flanks of the stalagmite where convexity is greatest. It is the width near the top of the stalagmite when the layer being examined was deposited. LSW is measured at right angles to the growth axis of the stalagmite; it is the horizontal distance between points on the layer growth surface becomes tangent to a line inclined at 35° to the growth axis (Fig. S4). LSW may vary along the length of the stalagmite, with smaller values suggesting drier conditions and larger values wetter conditions.

3.3 Stable isotopes

Stable isotope samples of 50–100 µg were manually drilled along the stalagmite’s growth layers at the crest. The trench size is very small (1.5 x 0.5 x 0.5 mm). Since a small mixture of calcite and aragonite could potentially change the δ^{18}O and δ^{13}C of the measured spelean layers (see for example Frisia et al., 2002), drilling and sample extraction was carefully done on individually discrete layers using the smallest drill-bit head (SSW-HP-1/4) to avoid potential mixing between calcite and aragonite. The polished surface of the two stalagnites were examined to see if features of diagenetic alteration are present (see for example fig. 2 of Zhang et al., 2014), but none was found. During sampling, the mineralogy at the crest, where stable isotope samples were extracted, was recorded for future mineralogical correction.

Aragonite oxygen and carbon isotopic corrections were performed to compensate for aragonite’s inherent fractionation of heavier isotopes (e.g., Romanek et al., 1992; Kim et al., 2007; McMillan et al., 2005) and to remove the mineralogical bias in isotopic interpretation between calcite and aragonite. The correction consists of subtracting 0.8‰ for δ^{18}O (Kim and O’Neil, 1997; Tarutani et al., 1969; Kim et al., 2007; Zhang et al., 2014) and 1.7‰ for δ^{13}C (Rubinson and Clayton, 1969; Zhang et al., 2014). A 1.7‰ correction was applied for calcite and aragonite. The correction consists of subtracting 0.8‰ for δ^{18}O (Kim and O’Neil, 1997; Tarutani et al., 1969; Kim et al., 2007; Zhang et al., 2014) and 1.7‰ for δ^{13}C (Rubinson and Clayton, 1969; Zhang et al., 2014).
For the analytical methods, oxygen and carbon isotope ratios were measured using the Finnigan MAT-253 mass spectrometer fitted with the Kiel IV Carbonate Device of the Xi’an Stable Isotope Laboratory in China (ANJB-2; n=654) and using the Delta V Plus at 50°C fitted with the GasBench-IRMS machine of the Alabama Stable Isotope Laboratory in USA (MAJ-5; n=286). Analytical procedures using the MAT 253 are identical to those described in Dykoski et al. (2005), with isotopic measurement errors of less than 0.1 ‰ for both δ¹³C and δ¹⁸O. Analytical methods and procedures using the GasBench-IRMS machine are identical to those described in Skrzypek and Paul (2006), Paul and Skrzypek (2007), and Lambert and Aharon (2011), with ±0.1 ‰ errors for both δ¹³C and δ¹⁸O. In both techniques, the results are reported relative to Vienna PeeDee Belemnite (VPDB) and with standardization relative to NBS19. An inter-lab comparison of the isotopic results was conducted, and it involved replicating every tenth sample of Stalagmite MAJ-5 at both labs. This exercise showed a strong correlation between the lab results (Fig. S5).

4. Results

4.1. Radiometric data

Results from radiometric analyses of the two stalagnites are presented in Tables S1 and S2. Corrected ²³⁰Th ages suggest that Stalagmite ANJB-2 was deposited between c. 8977±50 and c. 161±64 yr. BP, and Stalagmite MAJ-5 was deposited between c. 9796±64 and c. 150±24 yr. BP. These ages collectively indicate stalagmite deposition at the beginning (between 9.8 and 7.8 ka BP) and at the end of the Holocene (after c. 1.6 ka BP). In both stalagnites, the older ages have small 2σ errors and they generally fall in correct stratigraphic order, except sample ANJB-2-120 and its replicate ANJB-2-120R, which were not used because of the sample’s high porosity and high detritus content. In contrast, many of the younger ages have larger uncertainties. This is
mainly because many of the younger samples have very low uranium concentration and the
detrital thorium concentration is also high, similar to what Dorale et al. (2004) reported. We also
understand that the value for initial ^{230}Th correction, i.e. the initial $^{230}\text{Th}/^{232}\text{Th}$ atomic ratio of 4.4
$\pm 2.2 \times 10^{-6}$ for a bulk earth with a $^{232}\text{Th}/^{238}\text{U}$ value of 3.8, in these samples could have slightly
altered the ^{230}Th age of these younger samples, leading to larger uncertainties (such as discussed
in Lachniet et al., 2012). We encountered similar problems while working on other younger
samples from the same cave, but we compared the stable isotope profile with other published
records using isochron corrections, and results did not differ significantly (see Fig. 9 of Voarintsoa
et al., 2017b). Since this work does not focus on decadal or centennial interpretation of the Late
Holocene stable isotope data, additional chronology adjustment has not been made, and we used
the chronology from StalAge to construct the time series. However, in Figures 5 and 6, age
uncertainties are given below the stable isotope profiles so that comparisons with other records
can accommodate these uncertainties.

The key finding from our age and petrographic data for the two stalagmites is that they
suggest that there were three distinct intervals of growth and non-growth during the Holocene
(Figs. 2–4, 7). The information suggesting this includes: (1) CaCO$_3$ deposition between c. 9.8 and
7.8 ka B.P., (2) a long depositional hiatus between c. 7.8 and 1.6 ka B.P., and (3) resumption of
CaCO$_3$ deposition after c. 1.6 ka B.P. In the rest of the paper, we will refer to these intervals as the
Malagasy Early Holocene Interval (MEHI), Malagasy Mid-Holocene Interval (MMHI), and Malagasy
Late Holocene Interval (MLHI), respectively.

4.2. Stable isotopes

Raw values of $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ for Stalagmite ANJB-2 range from -8.9 to -2.3% (mean = -5.0%), and from -11.0 to $+5.2\%$ (mean = -4.2%), respectively, relative to VPDB. Raw values of
$\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ for Stalagmite MAJ-5 range from -8.8 to -0.9% (mean = -4.9%), and from -9.4 to
$+2.6\%$ (mean = -4.4%), respectively, relative to VPDB. Mean $\delta^{18}\text{O}$ and $\delta^{13}\text{C}$ values are
distinguishable between the MEHI and the MLHI. In both stalagmites, the amplitude of $\delta^{18}\text{O}$
fluctuations was fairly constant throughout the Holocene; whereas the $\delta^{13}\text{C}$ profile shows a
dramatic shift toward higher values (i.e. from -10.9% to $+3.8\%$, VPDB) at c. 1.5 ka BP.
The MEHI and MLHI are isotopically distinct (Fig. 4). The MEHI is characterized by statistically correlated $\delta^{18}O$ and $\delta^{13}C$ ($r^2=0.65$ and 0.53), and much depleted $\delta^{13}C$ values ($c=-11.0$ to -4.0‰). The 8.2 ka event, a widespread cold event in the NH (e.g., Alley et al., 1997), is also apparent in the stalagmite records. Stalagmite $\delta^{18}O$ and $\delta^{13}C$ ratios reach their lowest values of -6.8 and -10.9‰, respectively during that interval (Figs. 5, 12). In contrast to the MEHI, the values of $\delta^{18}O$ and $\delta^{13}C$ during the MLHI are poorly correlated ($r^2=0.25$ and 0.17), and $\delta^{13}C$ values are more enriched (Figs. 4, 6).

Since Stalagmites ANJB-2 and MAJ-5 were collected from two different caves 16 km apart, discrepancies between the stable isotopes at the same age are expected, suggesting that local conditions could be one of the discrepancy factors. Another potential source for the discrepancy is the larger uncertainty of the younger ages due to low uranium and high detrital concentrations. This U-Th aspect has been a challenge for several young stalagmites (e.g., Dorale et al., 2004; Lachniet et al., 2012) including samples from NW Madagascar (this study). While the utility of speleothems as a climate proxy largely depends on replication of stable isotope values, it is important to note that perfect stable isotope replication can only occur between stalagmites collected from the same cave chamber (e.g., Dong et al., 2010; Burns et al., 2016).

4.3. Mineralogy, petrography, and layer-specific width

In both stalagmites, the hiatus of deposition is characterized by a well-developed Type L surface (Figs. 2, 3, S15). Petrography and mineralogy are distinct before and after this hiatus (Fig. 3). Below the hiatus, laminations are well preserved in both stalagmites. Above the hiatus, laminations are not well-preserved, although noted in some intervals.

In Stalagmite ANJB-2, the layer-specific width varies from 37 to 26.5 mm with a mean of 30 mm. It decreases to 28 mm at the hiatus (Fig. 3). Below the hiatus, mineralogy is dominated by aragonite, although a few thick layers of calcite are also identified. A thin (~2-3 mm) but remarkable layer of white, very soft, and porous aragonite is identified just below the hiatus (Fig. S15). This layer is covered by a very thin layer of dirty carbonate. Above the hiatus, mineralogy is also composed of calcite and aragonite, with calcite dominant, and the calcite layers contain macro-cavities that are mostly off-axis macroholes (Shtober-Zisu et al., 2012).
In Stalagmite MAJ-5, LSW varies from 50 to 22 mm with a mean of 35.5 mm. It decreases to 22 mm at the hiatus (Fig. 3). Below the hiatus, mineralogy is a mixture of calcite and aragonite. Above the hiatus, mineralogy is mainly calcite and macro-cavities are also present throughout that upper part of the stalagmite.

4.4. Summary of results

The various records from Stalagmites ANJB-2 and MAJ-5 suggest three distinct climate/hydrological intervals of the Holocene. The MEHI (c. 9.8 to 7.8 ka BP), with evidence of stalagmite deposition, is characterized by statistically correlated δ^{18}O and δ^{13}C (r^2=0.65 and 0.53) and more negative δ^{13}C values (c. -11.0 to -4.0%). The MMHI (c. 7.8 to 1.6 ka BP) is marked by a long-term hiatus in deposition, which is preceded by a well developed Type L surface in both Stalagmite ANJB-2 and MAJ-5 (Figs. 3, S15). The Type L surface is observed as an upward narrowing of the stalagmite’s width and layer thickness. It is particularly well developed in Stalagmite MAJ-5 (Fig. S15). In Stalagmite ANJB-2, the hiatus at the Type L surface is preceded by a c. 3 mm thick layer of highly porous, very soft, and fibrous white crystals of aragonite (the only aragonite with such properties). This aragonite is topped by a thin and well-defined layer of detrital materials (Fig. S15), further supporting the presence of a hiatus. Finally, the MLHI (after c. 1.6 ka BP) is characterized by poorly correlated δ^{18}O and δ^{13}C (r^2=0.25–0.17). This interval is additionally marked by a shift in δ^{13}C toward higher values (Figs. 4, 6).

5. Discussion

5.1. Paleoclimate significance of stalagmite growth and non-growth: implications for paleohydrology

Growth and non-growth of stalagmites depends on several factors linked to water availability, which is largely determined by climate (more water during warm/rainy seasons and less water during cold/dry seasons). Water is the main dissolution and transporting agent for most chemicals in speleothems. Cave hydrology varies significantly over time in response to climate, and this variability influences the formation or dissolution of CaCO$_3$. In this regard, calcium carbonate does not form if there is little or no water entering the cave, or if there is too much (see...
Sect. 2.1). Absence of groundwater recharge most typically occurs during extremely dry conditions, whereas excessive water input to the cave occurs during extremely wet conditions. In the latter scenario, water is undersaturated and flow rates are too fast to allow degassing. Often, water availability is reflected in the extent of vegetation above and around the cave, as plants require soil moisture or shallow groundwater to survive and propagate, and this contributes to the stalagmites’ processes of formation. The linkage of stalagmites’ growth and non-growth to cave dripwater and soil CO$_2$ is broadly influenced by changes in climate.

Major hiatuses in stalagmite deposition could be marked by a variety of features, including the presence of erosional surfaces, chalkification, dirt bands/detrital layers, offsetting of the growth axis, and/or sometimes by color changes (e.g., Holmgren et al., 1995; Dutton et al., 2009; Railsback et al., 2013; Railsback et al., 2015; Voarintsoa et al., 2017a). Railsback et al. (2013) were specifically able to identify significant features in stalagmites that allow distinction between non-deposition during extremely wet (Type E surfaces; Fig. 3). Physical properties of stalagmites that are evidence of extreme dry and wet events are summarized in Table 1 of Railsback et al. (2013) and the mechanism is explained in their Figure 5.

Type E surfaces are layer-boundary surfaces between two spelean layers when the underlying layers show evidence of truncation. The truncation results from dissolution or erosion (thus the name “E”) of previously-formed layers of stalagmites by abundant undersaturated water. Type E surfaces are commonly capped with a layer of calcite (Railsback et al., 2013). This mineralogical trend is not surprising as calcite commonly forms under wetter conditions (e.g., Murray, 1954; Pobeguin, 1965; Siegel, 1965; Thrailkill, 1971; Cabrol and Coudray, 1982; Railsback et al. 1994; Frisia et al., 2002). Additionally, non-carbonate detrital materials are commonly abundant with varying grain size (i.e., from silt- to sand-size; Railsback et al., 2013).

Type L surfaces, on the other hand, are layer-boundary surfaces where the layers became narrower upward and thinner towards the flanks of the stalagmite. Decreases in layer thickness and stalagmites width of the stalagmites upward are indications of lessening deposition (thus the name “L”; Railsback et al., 2013). Aragonite is a very common mineralogy below a Type L surface, especially in warmer settings. Layers of aragonite commonly form under drier conditions (Murray,
5.2. Holocene climate in NW Madagascar

Although the specific boundaries between the Early, Mid, and Late Holocene have been proposed for global application (Walker et al., 2012; Head and Gibbard, 2015), their use is still spatially limited (e.g., Wanner et al., 2015). The age models and petrographic features of Stalagmites ANJB-2 and MAJ-5 suggest three distinct but different Holocene climate intervals (MEHI, MMHI, and MLHI; see Sect. 4.1) in NW Madagascar. These intervals are illustrated in the sketches of Figure 4. In this paper, these Malagasy intervals are intended not to argue against the previously proposed intervals of the Holocene (Walker et al., 2012; Head and Gibbard, 2015). Instead, they are presented to aid discussion of the available records. For comparison, the intervals are shown in Fig. 7d.

5.2.1. Malagasy early Holocene interval (c. 9.8 –7.8 ka BP)

Stalagmite deposition during the early Holocene suggests that the chambers, where stalagmites ANJB-2 and MAJ-5 were collected, were sufficiently supplied with water to allow CaCO$_3$ precipitation, in accord with Eq.1. This in turn implies relatively wet conditions that could indicate longer summer rainy seasons relative to modern climate in NW Madagascar (see Supplementary Text 4 and Fig. 8). The correlative δ^{13}C and δ^{18}O values further suggest that vegetation consistently responded to changes in moisture availability, which in turn was dependent on climate.

One striking aspect of the Stalagmite ANJB-2 δ^{18}O and δ^{13}C records is that they parallel the δ^{18}O of the Greenland ice core records at c. 8.2 ka BP (Figs. 5 and 12). An X-ray diffraction spectrum for this period, at 195–202 mm from the top of the stalagmite, suggests that the mineralogy at 8.2 ka BP is 100% calcite (Figs. S14, S16–S17). This calcite is not a diagenetic product of aragonite for...
three reasons. First, the laminations in the thick layer of calcite were not altered (Figs. S16–S17). Second, the polished surface of the stalagmite shows no evidence of fiber relics and textural ghosts such as observed in Juxtlahuaca Cave in southwestern Mexico (Lachniet et al., 2012) and in Shennong Cave in southeastern China (Zhang et al., 2014). Third, petrographic comparison with known examples of primary and secondary calcite observation under microscope (e.g., Railsback, 2000; Perrin et al., 2014) suggests that there is no strong evidence of aragonite–to–calcite transformation. The decrease in δ^{18}O and δ^{13}C values and the presence of calcite mineralogy at the same interval combine to suggest a wet 8.2 ka BP event in NW Madagascar. The 8.2 ka BP event is a prominent cold event in the North Atlantic records and many NH terrestrial records. It may have been triggered by a release of freshwater from the melting Laurentide Ice Sheet into the North Atlantic basin (e.g., Alley et al., 1997; Barber et al., 1999). Freshwater influx to the Atlantic could have altered the Atlantic Meridional Overturning Circulation (AMOC, e.g., Clark et al., 2001), and could eventually have influenced the climate of Madagascar (Sect. 5.5). Our records reveal a strong link between paleoenvironmental changes in Madagascar and abrupt climatic events in the NH records, suggesting causal relationships.

The MEHI terminated when conditions became much drier, as suggested by increasing δ^{18}O and δ^{13}C values in Stalagmite ANJB-2, by decreasing LSW of both stalagmites, and by major Type L surfaces in both stalagmites. The thin (c. 3 mm), porous, and white aragonite layer in Stalagmite ANJB-2, a very similar deposit to that described in Niggemann et al. (2003), suggests that the terminal drought was at times severe. Aragonite is a CaCO$_3$ polymorph that forms preferentially under drier conditions (Murray, 1954; Pobeguin, 1965; Siegel, 1965; Thrailkill, 1971; Cabrol and Coudray, 1982; Railsback et al. 1994; Frisia et al., 2002). The porous aragonite layer in Stalagmite ANJB-2 is capped by a very thin layer of non-carbonate, brown detritus, which may have been transported to the stalagmite as an aerosol and accumulated on the dry stalagmite surface over time. Accumulation of the detritus must take place in the absence of dripwater (e.g., Railsback et al., 2013). A shift to drier conditions is also supported by isotopic data from Stalagmite ANJ94-5 from Anjohibe Cave (Wang and Brook, 2013; Wang, 2016) in which relatively low δ^{13}C and δ^{18}O values prior to 7600 BP give way to episodically greater values thereafter.
5.2.2. **Malagasy mid-Holocene interval (c. 7.8–1.6 ka BP)**

The only data we have for the MMHI is the long term (~6.5 ka) depositional hiatus in both stalagmites (Figs. 2–3), that potentially indicate dry conditions. The question is why did neither stalagmite grow during the MMHI? Here, we try to explain the factors and the climatic conditions that may have been responsible for it.

The documented severe dry conditions at the end of the MEHI (see Sect. 5.2.1) could have had a significant influence (1) on the cave hydrological system (e.g., Fig. 5 of Asrat et al., 2007; Bosak, 2010), such as the water conduits (primary or secondary porosity) to the chambers, and (2) on the vegetation cover above the caves, particularly above the chambers where Stalagmites ANJB-2 and MAJ-5 were collected. On one hand, it is possible that the dry conditions late in the MEHI could not only bring lesser water recharge to the cave, but also lowered the hydraulic head, and increased the rate of evapo-transpiration in the vadose zone. This condition possibly allowed more air to penetrate the aquifer, perhaps enhancing prior carbonate precipitation (PCP) in pores and conduits above the caves (e.g., Fairchild and McMillan, 2007; Fairchild et al., 2000; Johnson et al., 2006; Karmann et al., 2007; McDonald et al., 2007). This process must have blocked water moving towards Stalagmites ANJB-2 and MAJ-5. On the other hand, the late MEHI drying trend (Sect. 5.2.1) could have challenged vegetation to grow, and we assume that some areas above Anjohibe and Anjokipoty caves must have been devoid of vegetation. Consequently, biomass activities could have been reduced. Because vegetation contributes CO₂ to the carbonic acid dissolving CaCO₃, its absence in certain areas above the cave could decrease the pH of the percolating water, and perhaps dissolution did not occur. Under these conditions, even if water reached the stalagmites, it may not have precipitated carbonate.

Whatever factors were responsible for the long term-depositional hiatus in Stalagmite ANJB-2 and MAJ-5, we believe that the hiatus was caused by disturbances to water catchments that feed the chambers at Anjohibe and Anjokipoty caves. The disturbances could be inherited from the very dry conditions at the end of the MEHI, and/or due to the lack of water supply, perhaps associated with an increase in epikarst ventilation, and/or by the absence of vegetation. Water and vegetation are two components of the karst system that play an important role in...
CaCO₃ dissolution and precipitation (see Eq. 1). Their disturbance may have limited limestone dissolution in the epikarst and then carbonate precipitation in the cave zone.

Other evidence supports the idea of at least episodic dryness during the MMHI. A work on a 2-meter long stalagmite (ANJ94-5) from Anjohibe Cave suggests episodic dryness during the MMHI and a depositional hiatus around the time when Stalagmites ANJB-2 and MAJ-5 stopped growing (Wang and Brook, 2013; Wang, 2016). For regional comparison, dry spells were also felt in Central and Southeastern Madagascar (e.g., Gasse and Van Campo, 1998; Virah-Sawmy et al., 2009).

In summary, several lines of evidence suggest relatively drier climate in NW Madagascar during the MMHI compared to the MEHI. Drier intervals generally imply drier summer seasons with less rainfall (Fig. 8), perhaps reflecting shorter visits by the ITCZ. In this regard, even though the region received rainfall, the necessary conditions could not have been attained to activate the growth of Stalagmites ANJB-2 and MAJ-5, thus the hiatuses.

5.2.3. Malagasy Late Holocene Interval (c. 1.6 ka–present)

Resumption of stalagmite deposition after c. 1.6 ka BP suggests a wetter climate in NW Madagascar with reactivation of the previous epikarst hydrologic system. Conditions must have been similar to those of the early Holocene. Wet conditions between c. 850 and 1100 AD in Stalagmite ANJB-2 and Stalagmite MAJ-5, specifically coincide with glacial advances at northern high latitudes (Holzhauser et al., 2005) and a cooler interval of the Medieval Climate Anomaly, as suggested by a negative temperature anomaly in the NH (e.g., Büntgen et al., 2011; Mann et al., 1998; Mann and Bradley, 1999, see also Fig. S18). The sudden beginning of stalagmite growth during the MLHI and the large δ¹³C shift from depleted to enriched values at c. 1.5 ka BP (Fig. 6), after such long hiatuses may have been associated with changes in vegetation cover above the cave linked to recent human activities (e.g., Burns et al., 2016; Crowley and Samonds, 2013; Crowther et al., 2016; Vhaarintsoa et al., 2017b). Lower δ¹³C values in Stalagmite MAJ-5 after 0.8 ka BP (Fig. 3), compared to higher values in Stalagmite ANJB-2, suggests different conditions in or above the two caves. More human disturbance at one site could account for the different trends,
or alternatively changes in cave micro-climate, or in the hydrologic catchments of the two stalagmites.

Although the stalagmite data indicate overall wetter conditions during the last c. 1.6 kyr, there were occasional dry periods, as suggested by several positive peaks in the stalagmite δ¹⁸O records. Drier intervals during the Late Holocene are observed in the Anjohibe data between c. AD 755 and 795 (i.e., 1195–1155 yr. BP; Voarintsoa et al., 2017b). Similar conditions have been recorded in other paleoenvironmental studies, in which a peak drought c. 1300–950 cal BP was reported (Burney, 1987a, b; Burney, 1993; Matsumoto and Burney, 1994; Virah-Sawmy et al., 2009).

5.3. Holocene climate in NW Madagascar: implications for ITCZ dynamics

Figures 7 and 8 depict possible conditions in NW Madagascar during the MEHI, the MMHI, and the MLHI. Figure 9 summarizes the possible forcings mechanisms linked to the latitudinal migration of the ITCZ.

In NW Madagascar, stalagmite deposition during the MEHI and the MLHI could suggest there was sufficient dripwater for stalagmite growth and therefore wetter conditions. This could have been linked to a more southerly mean position of the ITCZ. Factors that could influence the mean position of the ITCZ include changes in insolation (e.g., Haug et al., 2001; Wang et al., 2005; Cruz et al., 2005; Fleitmann et al., 2003, 2007; Schefuß et al., 2005; Suzuki, 2011; Kutzbach and Liu, 1997; Partridge et al., 1997; Verschuren et al., 2009; Voarintsoa et al., 2017a) and difference in temperature between the two hemispheres (e.g., Chiang and Bitz, 2005; Broccoli et al., 2006; Chiang and Friedman, 2012; Kang et al., 2008; McGee et al., 2014; Talento and Barreiro, 2016).

In contrast, the depositional hiatuses during the MMHI could suggest drier conditions, and thus a northward migration of the mean ITCZ. It seems to agree with the paleoclimate simulation of Braconnot et al. (2007) of the 6 ka event, suggesting that the NH insolation increased (Braconnot et al., 2000; see also Chiang, 2009). This northward shift in the mean position of the ITCZ is consistent with drier conditions, i.e. weaker South American Summer Monsoon (e.g., Cruz et al., 2005; Seltzer et al., 2000; Wang et al., 2007; but see also Fig. 9 of Zhang et al., 2013) but
wetter conditions in the northern tropics (e.g., Dykoski et al., 2005; Fleitmann et al., 2007; Gasse, 2000; Haug et al., 2001; Weldeab et al., 2007; Zhang et al., 2013).

5.4. Regional comparison

Despite differences in Holocene paleoclimate reconstructions for southern Africa, comparison of the NW Madagascar records with records from neighboring locations (Figs. 10–11; Table S3) shows that the Holocene wet/dry/wet succession reported in this study has also been identified at other locations. For example, hydrogen isotope compositions of the n-C31 alkane in GeoB9307-3 from a 6.51 m long marine sediment core retrieved about 100 km off the Zambezi delta suggest a similar wet/dry/wet climate during Early, Middle, and Late Holocene respectively (Schefuß et al., 2011). Those changes correspond to changes in temperature from ~26.5° to 27.25° to 27°C, respectively, in the Mozambique Channel, as suggested by alkenone SST records from sediment cores MD79257 (Bard et al., 1997; Sonzogni et al., 1998). The Zambezi catchment is specifically relevant here because it is located at the southern boundary of the modern ITCZ, and so has similar climatic setting as NW Madagascar, and its sensitivity to the latitudinal migration of the ITCZ could parallel that of Madagascar. Likewise, temperature reconstruction from the Mozambique Channel could be used to link regional changes in paleorainfall with regional changes in temperature. A general overview of the Holocene climate in the African neighboring locations to Madagascar suggests a roughly consistent wetter and drier climate during the early and middle Holocene, respectively (Fig. 11, Table S3, also see Gasse, 2000; Singarayer and Burrough, 2015). However, Late Holocene paleoclimate reconstructions vary. A single answer to this variability is unlikely, but several overlapping factors, including the latitudinal migration of the ITCZ, changes in ocean oscillations and sea surface temperatures, volcanic aerosols, and anthropogenic influences could have played a major role in such variability (e.g., Nicholson, 1996; Gasse, 2000; Tierney et al., 2008; Truc et al., 2013). Assessing these factors is beyond the scope of this study.

5.5. The 8.2 ka event in Madagascar: linkage to ITCZ and AMOC

The 8.2 ka event was a significant short-lived cooling of the N Atlantic and NH during the Early Holocene (Alley et al., 1997). It is apparent in the ANJB-2 and MAJ-S stalagmite records as a wet
interval (Sect. 5.2.1; Figs. 5, 12). The 8.2 ka event is a known interval of abrupt freshwater influx from the melting Laurentide Ice Sheet into the North Atlantic (Alley et al., 1997; Barber et al., 1999; Kleiven et al., 2008; Carlson et al., 2008; Renssen et al., 2010; Wiersma et al., 2011; Wanner et al., 2015). It is equivalent to the sharp peak of Bond cycle number 5 (Bond et al. 1997, 2001). This influx of meltwater altered the density and salinity of the NADW. Thornalley et al. (2009) report that there was a decrease in NADW salinity to approximately 34 p.s.u. during the Early Holocene.

Understanding the AMOC’s influence on Madagascar’s hydroclimate could help us better understand global atmospheric and oceanic circulation, particularly in the SH. An increase in the flow of freshwater to the North Atlantic decreases the formation of North Atlantic Deep Water, reducing the meridional heat transport (Barber et al., 1999; Clark et al., 2001; Daley et al., 2011; Vellinga and Wood 2002; Dong and Sutton 2002, 2007; Dahl et al. 2005; Zhang and Delworth 2005; Daley et al., 2011; Renssen et al., 2001). Weakening of the AMOC would ultimately cause a widespread cooling in the NH regions (e.g., Clark et al., 2001; Thomas et al., 2007) but warming in the SH regions (Wiersma et al., 2011; Wiersma and Renssen, 2006). This “cold NH–warm SH” climate response is similar to the “bipolar seesaw” effect, well-known during the last glacial (e.g., Crowley, 1992; Broecker, 1998). The interhemispheric temperature difference between the NH and SH from such effect could be the driver of the southward displacement of the mean position of the ITCZ during the 8.2 ka abrupt cooling event. This in turn could have led to an intensified Malagasy monsoon in NW Madagascar during austral summers, a phenomenon identical to the South American Summer Monsoon identified in Brazil (e.g., Cheng et al., 2009). In contrast, regions in the NH monsoon regions became dry at 8.2 ka BP as the Asian Monsoon and the East Asian Monsoon became weaker (e.g., Wang et al., 2005; Dykoski et al., 2005; Cheng et al., 2009; Liu et al., 2013).

5.6. Beyond the ITCZ: IOD and ENSO influence on Madagascar’s climate

Although the ITCZ is the main driver of rainfall availability in Madagascar, recent studies have also suggested the importance of SST changes in the surrounding ocean and teleconnection with other climatic phenomena. Scroxton et al. (2017) linked rainfall changes in eastern Indian Ocean with expansion and contraction of the ITCZ along with positive IOD. Zinke et al. (2004) revealed...
strong Indian Ocean subtropical dipole events that were in phase with ENSO indices between AD 1880 and 1920, and between 1930 and 1940, and after 1970 in austral summers. Brook et al. (1999, p. 700) suggested linkages between rainfall and ENSO in NW Madagascar since AD 1550, a relationship that is less clear and complicated. This complication could be associated with an unclear or yet a limited understanding of the relationship between IOD and ENSO, which is not yet fully understood (e.g., Saji et al., 1999; Li et al., 2003; Lee et al., 2008 versus Brown et al., 2009; Schott et al., 2009; Shinoda et al., 2004; Venzke et al., 2000; Abram et al., 2008; Saji and Yagamata, 2003; Meyers et al., 2007).

Our understanding of the oceanic and atmospheric circulation is challenged because IOD and ENSO share similar features in the associated SST and precipitation anomalies (e.g., Saji et al., 1999; Webster et al., 1999; Krishnamurty and Kirtman, 2003; Meyers et al., 2007). In addition, the driving mechanisms of ENSO and IOD during the Holocene are not fully understood, even though linkages with insolation were reported (e.g., Otto-Bliesner et al., 2003; Liu et al., 2000; Timmermann et al., 2007; Zheng et al., 2008; Tudhope et al., 2001; Moy et al., 2002; Koutavas et al., 2006; Conroy et al., 2008; Kuhnert et al., 2014; Liu et al., 2003; Abram et al., 2007). The IOD signals in the tropical Indian Ocean may additionally be overridden by the global mean temperature (e.g., Vecchi and Soden, 2007; Zheng et al., 2013), or the signals could be strongly influenced by monsoonal changes in the surrounding landmasses (e.g., Abram et al., 2007; Qiu et al., 2012).

Despite the complicated relationships, it is possible that climate of NW Madagascar has been influenced by ITCZ, IOD, and ENSO, but this is still poorly understood during the Holocene. We are aware that the temporal and spatial resolution of available records make this investigation challenging, and we understand that the range of uncertainty of radiometric ages of several paleoclimate data could be another barrier to fully evaluate such relationship (see for example Fig. 7 of Kuhnert et al., 2014).

6. Conclusions

Petrography, mineralogy, and stable isotope records from Stalagmite ANJB-2, from Anjothibe Cave, and Stalagmite MAJ-5, from Anjokipoty Cave, combine to suggest three distinct intervals of changing climate in Madagascar during the Holocene: relatively wet conditions during the MEHI,
relatively drier conditions, possibly due to episodic dryness, during the MMHI, and relatively wet conditions during the MLHI. The timing of stalagmite deposition during the MEHI and the MLHI in NW Madagascar could be attributed to a more southward migration and/or an expanded ITCZ, increasing the duration of the summer rainy seasons, perhaps linked to a stronger Malagasy monsoon. This could have been tied to insolation, the temperature gradient between the two hemispheres, and weakening of the AMOC. In contrast, the c. 6500 year depositional hiatus during the MMHI could indicate a northward migration of the ITCZ, leading to relatively drier conditions in NW Madagascar. The evidence of the 8.2 ka event in the Malagasy records further suggests a strong link between paleoenvironmental changes in Madagascar and abrupt climatic events in the NH, suggesting that during the MEHI Madagascar’s climate was very sensitive to abrupt ocean-atmosphere events in the NH.

Although the ITCZ is one of the climatic drivers influencing climate in Madagascar and its surrounding locations, several climatic factors need to be investigated in more detail. For example, we do not fully understand if the latitudinal migration is paired with the expansion and/or expansion of the ITCZ, responsible to changes in several monsoon systems. In addition, the interplay between ITCZ and other factors involving changes in sea surface temperatures, particularly IOD-ENSO, needs to be investigated in details. Data-model comparison seems to be an approach to better understand such relationship. The lack of spatial and temporal resolution of paleoclimate records is still a challenge to fully understand the climate system during the Holocene.

Author Contribution

N.R.G.V. conceived the research and experiments. N.R.G.V, G.K, A.F.M.R, and M.O.M.R did the fieldwork and collected the samples. X.L., G.K., H.C., R.L.E, and N.R.G.V contributed to the 230Th dating analyses. N.R.G.V provided detailed investigation of the two stalagmites, provided stable isotope measurements, prepared thin sections, and conducted X-ray diffraction analyses. G.K. also assisted with the isotopic measurements on Stalagmite ANJB-2. N.R.G.V. wrote the first draft of the manuscript and led the writing. L.B.R. and G.A.B. provided a thorough review of the draft.
Competing Interests

The authors declare no conflict of interest.

Acknowledgments

This work was supported by grants from (1) the National Natural Science Foundation of China (NSFC 41230524, NBRP 2013CB955902, and NSFC 41472140) to Hai Cheng and Gayatri Kathayat, (2) the Geological Society of America Research Grant (GSA 11166-16) and John Montagne Fund Award to N. Voarintsoa, (3) the Miriam Watts-Wheeler Graduate Student Grant from the Department of Geology at UGA to N. Voarintsoa, and (4) the International Association of Sedimentology Post-Graduate Grant to N. Voarintsoa. We also thank the Schlumberger Foundation for providing additional support to N. Voarintsoa’s research. We thank the Department of Geology at the University of Antananarivo, in Madagascar, the Ministry of Energy and Mines, the local village and guides in Majunga for easing our research in Madagascar. We specifically thank Prof. Voahangy Ratrimo, former Department Head of the Department of Geology at the University of Antananarivo, for collaborating with us and for giving us permission to conduct field expedition in Madagascar. We thank Prof. Paul Schroeder for giving us access to use the X-ray diffractometer of the Geology Department to conduct analysis on the mineralogy of the two stalagmites. We thank Prof. John Shields of the Georgia Electron Microscope, University of Georgia, for giving Voarintsoa access to use the Zeiss 1450EP (Carl Zeiss, Inc., Thornwood, NY) for SEM purposes. We also thank Prof. Sally Walker for allowing us to use the microscope of the paleontology lab and for helping us photograph the stalagmites at very high resolution. We also thank Prof. John Chiang of the University of California at Berkeley, for sharing his thoughts and guiding us to literature of relevance to this study.
References

Voarintsoa et al., Madagascar Holocene manuscript—for Climate of the Past

Voarintsoa et al., Madagascar Holocene manuscript–for Climate of the Past

Voarintsoa et al., Madagascar Holocene manuscript–for Climate of the Past

Fairchild, I. J., Borsato, A., Tooth, A. F., Frisia, S., Hawkesworth, C. J., Huang, Y. M., McDermott, F., and Spiro, B.: Controls on trace element (Sr-Mg) compositions of carbonate cave waters:

Karmann, I., Cruz, F. W., Viana, O., and Burns, S. J.: Climate influence on geochemistry parameters of waters from Santana-Perolas cave system, Brazil, Chem Geol, 244, 232-247, 10.1016/j.chemgeo.2007.06.029, 2007.

Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A Reconstruction of Regional and Global Temperature for the Past 11,300 Years, Science, 339, 1199, 2013.

Page 37 of 55
Voarintsoa et al., Madagascar Holocene manuscript–for Climate of the Past

Scott, L.: Vegetation history and climate in the Savanna biome South Africa since 190,000 ka: a comparison of pollen data from the Tsawaing Crater (the Pretoria Saltpan) and Wonderkrater, Quatern Int, 57, 215-223, 1999.

Voarintsoa et al., Madagascar Holocene manuscript–for Climate of the Past

Voarintsoa et al., Madagascar Holocene manuscript–for Climate of the Past

Figure 1: **Climatological and geographic setting of Madagascar and the study area.**

(a) Global rainfall maps recorded by NASA’s Tropical Rainfall Measuring Mission (TRMM) satellite showing the total monthly rainfall in millimeters and the overall position of the ITCZ during November, 2006. Darker blue shades indicate regions of higher rainfall (source: NASA Earth Observatory, 2016).

(c)
Simplified map showing the southwest part of the Narinda karst and the location of the study areas. Inset figure is a map of Madagascar showing the extent of the Tertiary limestone cover that makes up the Narinda karst. (d-e) Maps of Anjohibe (ANJB) and Anjokipoty (ANJK) caves (St-Ours, 1959; Middleton and Middleton, 2002). See Figs. S1–S3 for additional information about the study locations.

Figure 2: Age model of Stalagmite ANJB-2 and MAJ-5 using the StalAge1.0 algorithm of Scholz and Hoffman (2011) and Scholz et al. (2012).
Figure 3: a) Scanned image of Stalagmite ANJB-2 and the corresponding variations in layer-specific width (LSW). b) Scanned image of Stalagmite MAJ-5 and the corresponding layer-specific width (LSW). c) Sketches of typical layer-bounding surfaces (Type E and Type L) of Railsback et al. (2013). Close-up of photographs of the hiatuses are shown in Fig S6.
Figure 4: Stable isotope data. Scatterplots of δ¹³C and δ¹⁸O for Stalagmite MAJ-5 (green) and ANJB-2 (red) during the Malagasy early Holocene interval (circle) and the Malagasy late Holocene interval (triangle). The plot shows distinctive early and late Holocene conditions (roughly highlighted in gray and light blue shade, respectively).
Figure 5: Variations in δ^{13}C and δ^{18}O in Stalagmite ANJB-2 and Stalagmite MAJ-5 during the Malagasy Early Holocene Interval. Supplementary Fig. S6 shows both the corrected and uncorrected values.

Comment [NRG32]: Previous times series were all updated in response to RC1, RC2, and SL.

Figure 6: Variations in δ^{13}C and δ^{18}O in Stalagmite ANJB-2 and Stalagmite MAJ-5 during the Malagasy Late Holocene Interval. Supplementary Fig. S7 shows both the corrected and uncorrected values, and Fig. S8 compares the corrected δ^{18}O for both stalagmites.
Figure 7: **Simplified models portraying the Holocene climate change in NW Madagascar and the possible climatic conditions linked to the ITCZ.**

a) Wetter conditions during the early Holocene with ITCZ south (prior to c. 7.8 ka), favorable for stalagmite deposition.

b) Periodic dry conditions during the mid-Holocene (between c. 7.8 and 1.6 ka) with ITCZ north with no stalagmite formation (refer to Sect. 5.2.2).

c) Wetter conditions during the late Holocene (after c. 1.6 ka) with ITCZ south, favorable for stalagmite deposition. For details about paleo-vegetation reconstruction, drawings are not to scale. The bottom figures are from the same source as Fig. 1a, and they are only used here to give a perspective of the possible position of the ITCZ during the early, mid, and late Holocene.

d) Comparison of the three Malagasy Holocene interval with the Walker et al. (2012) and Head and Gibbard (2015) subdivision (see text for details, Sect. 5.2).
Figure 8: Conceptualizing the different possible outcomes of the long-term latitudinal migration of the ITCZ. a) Highlighting the three possible scenarios of the Holocene. b) Barplots of monthly rainfall in NW Madagascar, using the modern data as a reference to estimating the region’s paleoclimate during drier and wetter conditions. c) Global rainfall maps from NASA (same source as Fig. 1). These maps are modern, but they are only shown here to give a better perspective of the position of Madagascar when the ITCZ is relatively north or south. See supplementary text for details.
Figure 9: Possible Holocene climate forcings that influenced climate of NW Madagascar. a) Average Holocene temperatures in the NH 90°–30°N (blue). b) Average Holocene temperatures in the SH 90°–30°S (red). These temperature data are referenced to the 1961–1990 mean temperature (Marcott et al., 2013), with 1σ uncertainty (gray). c) Timing of deposition of Stalagmite ANJB-2 and MAJ-5. d) Curves representing the sum of glaciers advances from a set of global Holocene time series compiled from natural paleoclimate archives (Wanner et al., 2011). e) Curves representing the sum of cold periods from a set of global Holocene time series compiled.

Figure 10: Regional comparison. Google Earth image showing the location of the sites reported in Table S3 and in Figure 11. Most records reported from these sites are lake sediments, except for GeoB9307-3 (onshore off delta sediments), MD79257 (alkenone from marine sediment core), and Cold Air, Anjohibe, and Anjokipoty caves (stalagmites δ¹⁸O).
Figure 11: Regional comparison. a) Lake Challa BTI index (Verschuren et al., 2009). b) Lake Tanganyika $C_{38} \delta D$ (Tierney et al., 2008, 2010). c) Lake Masoko low field magnetic susceptibility ($10^6 m^3 kg^{-1}$) (Garcin et al., 2006). d) Lake Malawi $C_{38} \delta D$ (Konecky et al., 2011). e) Lake Chilwa OSL dates of shoreline (Thomas et al., 2009). f) Wonderkrater reconstructed paleoprecipitation, PWetQ (Precipitation of the Wettest Quarter; Truc et al., 2013). g) Cold Air Cave corrected (corr.) and uncorrected (uncorr.) $\delta^{18}O$ profiles from Stalagmite T8 (Holmgren et al., 2003). h) Tswaing Crater paleo-rainfall derived from sediment composition (Partridge et al., 1997). i) Indian Ocean SST records from alkenone (Bard et al., 1997; Sonzogni et al., 1998), j-k) Zambezi δD n-C_{31} alkane $\delta^{13}C$ n-C_{31} alkane (Schefuß et al., 2011). l) Lake Tritrivakely stacked magnetic susceptibility (Williamson et al., 1998). m) NW Madagascar (Anjohibe and Anjokipoty) interval of deposition of Stalagmite ANJB-2 and Stalagmite MAJ-5 (this study). The two vertical dashed lines indicate the boundary of the Early, Middle, and Late Holocene by Walker et al. (2012) and Head and Gibbard (2015).

Figure 12: The 8.2 ka event in Madagascar. Oxygen isotope record from Greenland (GRIP and NGRIP) ice cores (Vinther et al., 2009) compared with Stalagmite ANJB-2 $\delta^{18}O$ and $\delta^{13}C$.

Voarintsoa et al., Madagascar Holocene manuscript—For Climate of the Past