Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.174 IF 3.174
  • IF 5-year value: 3.841 IF 5-year
    3.841
  • CiteScore value: 3.48 CiteScore
    3.48
  • SNIP value: 1.078 SNIP 1.078
  • IPP value: 3.38 IPP 3.38
  • SJR value: 1.981 SJR 1.981
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 58 Scimago H
    index 58
  • h5-index value: 42 h5-index 42
Discussion papers
https://doi.org/10.5194/cp-2016-106
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/cp-2016-106
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 25 Oct 2016

Research article | 25 Oct 2016

Status
This preprint has been retracted.

Two Interglacials: Scientific Objectives and Experimental Designs for CMIP6 and PMIP4 Holocene and Last Interglacial Simulations

Bette L. Otto-Bliesner1, Pascale Braconnot2, Sandy P. Harrison3, Daniel J. Lunt4, Ayako Abe-Ouchi5,6, Samuel Albani7, Patrick J. Bartlein8, Emilie Capron9,10, Anders E. Carlson11, Andrea Dutton12, Hubertus Fischer13, Heiko Goelzer14,15, Aline Govin2, Alan Haywood16, Fortunat Joos13, Allegra N. Legrande17, William H. Lipscomb18, Gerrit Lohmann19, Natalie Mahowald20, Christoph Nehrbass-Ahles13, Jean-Yves Peterschmidt2, Francesco S.-R. Pausata21, Steven Phipps22, and Hans Renssen23,24 Bette L. Otto-Bliesner et al.
  • 1National Center for Atmospheric Research, 1850 Table Mesa Drive, Boulder, Colorado 80305, USA
  • 2Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, CEA - CNRS - UVSQ, Université Paris - Saclay, F -91191 Gif - sur - Yvette, France
  • 3Centre for Past Climate Change and School of Archaeology, Geography and Environmental Science (SAGES), University o f Reading, Whiteknights, RG6 6AH, Reading, UK
  • 4School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
  • 5Atmosphere Ocean Research Institute, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277 -20 8564, Japan
  • 6Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawa, Yokohama, Kanagawa, 236-0001, Japan
  • 7Institute for Geophysics and Meteorology, University of Cologne, Cologne, Germany
  • 8Department of Geography, University of Oregon, Eugene, OR 97403-1251, USA
  • 9Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen Ø, Denmark
  • 10British Antarctic Survey, High Cross Madingley Road, Cambridge CB3 0ET, UK
  • 11College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
  • 12Department of Geological Sciences, University of Florida, Gainesville, FL 32611
  • 133 Climate and Environmental Physics, Physics Institute and Oeschger Centre for Climate Change Research, University of Bern, CH - 3012 Bern, Switzerland
  • 14nstitute for Marine and Atmospheric research Utrecht (IMAU), Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
  • 15Laboratoire de Glaciologie, Université Libre de Bruxelles, CP160/03, Av. F. Roosevelt 50, 1050 Brussels, Belgium
  • 16School of Earth and Environment, University of Leeds, Woodhouse Lane, Leeds, West Yorkshire, LS29JT, UK
  • 17NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 , USA
  • 18Group T-3, Fluid Dynamics and Solid Mechanics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
  • 19Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research Bussestr. 24 D - 27570 Bremerhaven Germany
  • 20Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14850 , USA
  • 21Department of Meteorology, Stockholm University, 106 91 Stockholm, Sweden
  • 22Institute for Marine and Antarctic Studies, Uinversity of Tasmania, Hobart, Tasmania 7001, Australia
  • 23Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
  • 24Department of Environmental and Health Studies, University College of Southeast Norway, 3800 Bø i Telemark, Norway

Abstract. Two interglacial epochs are included in the suite of paleoclimate simulations in the present phase of the Coupled Model Intercomparison Project (CMIP6). Equilibrium simulations of the mid-Holocene (midHolocene, 6000 years before present) and the Last Interglacial (lig127k, 127,000 years before present) are designed to examine the impact of changes in orbital forcing at times when atmospheric greenhouse gas levels were similar to those of the preindustrial period and the continental configurations were almost identical to modern. These simulations test our understanding of the interplay between radiative forcing and atmospheric circulation, and the connections among large-scale and regional climate changes giving rise to phenomena such as land-sea contrast and high-latitude amplification in temperature changes, and responses of the monsoons, as compared to today. They also provide an opportunity, through carefully designed additional sensitivity experiments as part of the Paleoclimate Modeling Intercomparison Project (PMIP4), to quantify the strength of atmosphere, ocean, cryosphere, and land-surface feedbacks. Sensitivity experiments are proposed to investigate the role of freshwater forcing in triggering abrupt climate changes within interglacial epochs. These feedback experiments naturally lead to a focus on climate evolution during interglacial periods, which will be examined through transient experiments. Analyses of the sensitivity simulations will also focus on interactions between extratropical and tropical circulation, and the relationship between changes in mean climate state and climate variability on annual to multi-decadal timescales. The comparative abundance of paleoenvironmental data and of quantitative climate reconstructions for the Holocene and Last Interglacial make these two epochs ideal candidates for systematic evaluation of model performance, and such comparisons will shed new light on the importance of external feedbacks (e.g., vegetation, dust) and the ability of state-of-the-art models to simulate climate changes realistically.

This preprint has been retracted.
Bette L. Otto-Bliesner et al.
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Interactive discussion
Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Bette L. Otto-Bliesner et al.
Bette L. Otto-Bliesner et al.
Viewed  
Total article views: 758 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
488 224 46 758 13 53
  • HTML: 488
  • PDF: 224
  • XML: 46
  • Total: 758
  • BibTeX: 13
  • EndNote: 53
Views and downloads (calculated since 25 Oct 2016)
Cumulative views and downloads (calculated since 25 Oct 2016)
Viewed (geographical distribution)  
Total article views: 740 (including HTML, PDF, and XML) Thereof 735 with geography defined and 5 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 
Cited  
Saved  
No saved metrics found.
Discussed  
No discussed metrics found.
Latest update: 18 Jun 2019
Publications Copernicus
Download
Retraction notice

This preprint has been retracted.

Citation