Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
17 Feb 2015
Review status
This discussion paper is a preprint. A revision of the manuscript for further review has not been submitted.
Climate dependent contrast in surface mass balance in East Antarctica over the past 216 kyr
F. Parrenin2,1,*, S. Fujita4,3,*, A. Abe-Ouchi6,5, K. Kawamura4,3, V. Masson-Delmotte7, H. Motoyama4,3, F. Saito5, M. Severi8, B. Stenni9, R. Uemura10, and E. Wolff11 1CNRS, LGGE, 38041 Grenoble, France
2Univ. Grenoble Alpes, LGGE, 38041 Grenoble, France
3National Institute of Polar Research, Research Organization of Information and Systems, Tokyo, Japan
4Department of Polar Science, The Graduate University for Advanced Studies (SOKENDAI), Tokyo, Japan
5Japan Agency for Marine–Earth Science and Technology, Yokohama, Japan
6Atmosphere and Ocean Research Institute (AORI), University of Tokyo, Chiba, Japan
7Laboratoire des Sciences du Climat et de l'Environnement, Institut Pierre Simon Laplace, UMR CEA-CNRS-UVSQ 8212, Gif-sur-Yvette, France
8Department of Chemistry, University of Florence, Florence, Italy
9Department of Geosciences, University of Trieste, Trieste, Italy
10Department Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
11Department of Earth Sciences, University of Cambridge, UK
*These authors contributed equally to this work.
Abstract. Documenting past changes in the East Antarctic surface mass balance is important to improve ice core chronologies and to constrain the ice sheet contribution to global mean sea level. Here we reconstruct the past changes in the ratio of surface mass balance (SMB ratio) between the EPICA Dome C (EDC) and Dome Fuji (DF) East Antarctica ice core sites, based on a precise volcanic synchronisation of the two ice cores and on corrections for the vertical thinning of layers. During the past 216 000 years, this SMB ratio, denoted SMBEDC/SMBDF, varied between 0.7 and 1.1, decreasing during cold periods and increasing during warm periods. While past climatic changes have been depicted as homogeneous along the East Antarctic Plateau, our results reveal larger amplitudes of changes in SMB at EDC compared to DF, consistent with previous results showing larger amplitudes of changes in water stable isotopes and estimated surface temperature at EDC compared to DF. Within interglacial periods and during the last glacial inception (Marine Isotope Stages, MIS-5c and MIS-5d), the SMB ratio deviates by up to 30% from what is expected based on differences in water stable isotope records. Moreover, the SMB ratio is constant throughout the late parts of the current and last interglacial periods, despite contrasting isotopic trends. These SMB ratio changes not closely related to isotopic changes are one of the possible causes of the observed gaps between the ice core chronologies at DF and EDC. Such changes in SMB ratio may have been caused by (i) climatic processes related to changes in air mass trajectories and local climate, (ii) glaciological processes associated with relative elevation changes, or (iii) a combination of climatic and glaciological processes, such as the interaction between changes in accumulation and in the position of the domes. Our inferred SMB ratio history has important implications for ice sheet modeling (for which SMB is a boundary condition) or atmospheric modeling (our inferred SMB ratio could serve as a test).

Citation: Parrenin, F., Fujita, S., Abe-Ouchi, A., Kawamura, K., Masson-Delmotte, V., Motoyama, H., Saito, F., Severi, M., Stenni, B., Uemura, R., and Wolff, E.: Climate dependent contrast in surface mass balance in East Antarctica over the past 216 kyr, Clim. Past Discuss.,, in review, 2015.
F. Parrenin et al.
F. Parrenin et al.


Total article views: 1,238 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
957 212 69 1,238 31 90

Views and downloads (calculated since 17 Feb 2015)

Cumulative views and downloads (calculated since 17 Feb 2015)



Latest update: 23 Oct 2017
Publications Copernicus