Dear Dr. Luterbacher,

My coauthors and I thank you for your invitation to revise our manuscript. Here we will comment on, one-by-one, the referee comments/suggestions.

Sincerely,
Nesibe Köse

Response to RC1 comments

Thank you for your time and comments. We would like to thank you for your time and comments.

General comments:

We could not use only the chronologies that have significant relationship to temperature, because at the same time they have significant precipitation signal (except ART chronology, Figure 2). On the other hand, we would like to show that it is possible to make a climate reconstruction from a tree-ring network, even if this climate variable is not the most important limiting factor on radial growth. In our case, May to August precipitation was the most important factor, and the second one was March-April TMP for almost all the chronologies. Classical approach in Dendroclimatology, is to use the PC 1 and/or high order PCs reconstruct precipitation. But here, we would like show that PC 1 could be a signal for precipitation but a noise for temperature. On the other hand the other PC’s, which explain less variance, could be noise for precipitation and but a signal for temperature.

Specific Comments:

1. Thank you for your attention we corrected it in the manuscript.

2. We cited the investigators produced the chronologies.

3. We replaced the sentence by: “Third, the final reconstruction is based on bootstrap regression (Till and Guiot, 1990), a method designed to calculate appropriate confidence intervals for reconstructed values and explained variance even in cases of short time-series.”

4. We will replace by “… but bootstrap has the advantage to produce confidence intervals for such statistics without theoretical probability distribution and finally we accept the RE and CE for which the lower confidence margin at 95% are positive. This is more constraining than just accepting all positive RE and CE.”

5. We added information in the text under the titles “Data and Method”, “Temperature reconstruction” explaining which method we used stepwise regression. We combined forward selection with backward elimination, checking for entry, then removal, until no more variables can be added or removed. Each procedure requires only that we set significance levels (or critical values) for entry and/or removal. We used \(p \leq 0.05 \) as entrance tolerance and \(p \leq 0.1 \) as exit tolerance. Actually, for almost all PCs it was \(p \leq 0.01 \) in entire regression. The
final model obtained when the regression reaches a local minimum of RMSE. We also calculated Mallows Cp values. See the relation Cp and p (the number of parameters in the model, including the intercept) in (Figure1).

We did not use a split-sample procedure to verify the model stability. We used bootstrap method. Therefore we run SR for the whole period. Bootstrap is only applied to the selected set of predictors by stepwise regression. Then it is not concerned by the bootstrap. We did not calculated RE, CE at each step of the stepwise regression. But based on the suggestion of both reviewer, for additional verification we also give split-sample procedure results using the same variables that were suggested for the whole period.

6. We added a column to Table 3, to show the chronologies represented by higher magnitudes of the eigenvectors.

7. We tried to say with this sentence that no temperature reconstruction has been made, which mean that it is difficult to do that.

8. We did suggested changes in the figures.

Response to RC2 comments:

Thank you for your time and valuable comments. We would like to thank you for your time and comments.

1. We give detailed information: “……to produce time series with a strong common signal and without biological persistence. The residual chronologies may be more suitable to understand the effect of climate on tree-growth, even if any persistence due to climate might be removed by pre-whitening. ……. In this research we used residual chronologies obtained from ARSTAN to reconstruct temperature.

2. We added suggested information “Principle Component Analysis (PCA) was done over the entire period in common to the tree-ring chronologies. The significant PCs were selected by
stepwise regression. We combined forward selection with backward elimination setting $p \leq 0.05$ as entrance tolerance and $p \leq 0.1$ as exit tolerance. The final model obtained when the regression reaches a local minimum of RMSE. The order of entry of the PCs into the model was PC$_3$, PC$_{21}$, PC$_4$, PC$_{15}$, PC$_5$, PC$_{17}$, PC$_7$, PC$_9$, PC$_{10}$.

3. We replaced the sentence by: “Third, the final reconstruction is based on bootstrap regression (Till and Guiot, 1990), a method designed to calculate appropriate confidence intervals for reconstructed values and explained variance even in cases of short time-series.” We calculate RE and CE values for 1901-29 and obtained low values. Therefore we removed discussion this part from the text and figure. For additional verification we present split calibration/verification results, which you mentioned that it may provide a more religious test, for the period 1930-2002 in Table 5.

4. Eq. (1) was removed as you suggested.

The suggested reference was added.
Spring temperature variability over Turkey since 1800 CE reconstructed from a broad network of tree-ring data

Nesibe Köse(1),*, H. Tuncay Güner(1), Grant L. Harley(2), Joel Guiot(3)

(1)Istanbul University, Faculty of Forestry, Forest Botany Department 34473 Bahçeköy-Istanbul, Turkey
(2)University of Southern Mississippi, Department of Geography and Geology, 118 College Drive Box 5051, Hattiesburg, Mississippi, 39406, USA
(3)Aix-Marseille Université, CNRS, IRD, CEREGE UM34, ECCOREV, 13545 Aix-en-Provence, France

*Corresponding author. Fax: +90 212 226 11 13
E-mail address: nesibe@istanbul.edu.tr
Abstract

The 20th century was marked by significant decreases in spring temperature ranges and increased nighttime temperatures throughout Turkey. The meteorological observational period in Turkey, which starts ca. 1929 CE, is too short for understanding long-term climatic variability. Hence, the historical context of this gradual warming trend in spring temperatures is unclear. Here we use a network of 23 tree-ring chronologies to provide a high-resolution spring (March–April) temperature reconstruction over Turkey during the period 1800–2002. The reconstruction model accounted for 67% (Adj. $R^2 = 0.64, p \leq 0.0001$) of the instrumental temperature variance over the full calibration period (1930–2002). During the pre-instrumental period (1800-1929) we captured more cold events ($n = 23$) than warm ($n = 13$), and extreme cold and warm events were typically of short duration (1–2 years). Compared to coeval reconstructions of precipitation in the region, our results are similar with durations of extreme wet and dry events. The reconstruction is punctuated by a temperature increase during the 20th century; yet extreme cold and warm events during the 19th century seem to eclipse conditions during the 20th century. During the 19th century, annual temperature ranges are more volatile and characterized by more short-term fluctuations compared to the 20th century. During the period 1900–2002, our reconstruction shows a gradual warming trend, which includes the period during which diurnal temperature ranges decreased as a result of increased urbanization in Turkey.

KEYWORDS: Dendroclimatology, Climate reconstruction, Pinus nigra, Principle component analysis, Spring temperature.
1 Introduction

Significant decreases in spring diurnal temperature ranges (DTR) occurred throughout Turkey from 1929 to 1999 (Turkes & Sumer 2004). This decrease in spring DTRs was characterized by day-time temperatures that remained relatively constant while a significant increase in night-time temperatures were recorded over western Turkey and were concentrated around urbanized and rapidly-urbanizing cities. The historical context of this gradual warming trend in spring temperatures is unclear as the high-quality meteorological records in Turkey, which start in 1929, are relatively short for understanding long-term climatic variability.

Tree rings have shown to provide useful information about the past climate of Turkey and were used intensively during the last decade to reconstruct precipitation in the Aegean (Hughes et al. 2004, Griggs et al. 2007), Black Sea (Akkemik et al. 2005, 2008; Martin-Benitto et al. 2016), Mediterranean regions (Touchan et al. 2005a), as well as the Sivas (D’Arrigo & Cullen 2001), southwestern (Touchan et al. 2003, Touchan et al. 2007; Köse et al. 2013), south-central (Akkemik & Aras 2005) and western Anatolian (Köse et al. 2011) regions of Turkey. These studies used tree rings to reconstruct precipitation because available moisture is often found to be the most important limiting factor that influences radial growth of many tree species in Turkey. These studies revealed past spring-summer precipitation, and described past dry and wet events and their duration. Recently, Heinrich et al. (2013) provided a winter-to-spring temperature proxy for Turkey from carbon isotopes within the growth rings of Juniperus excelsa since AD 1125. Low-frequency temperature trends corresponding to the Medieval Climatic Anomaly and Little Ice Age were identified in the record, but the proxy failed to identify the recent warming...
trend during the 20th century. In this study, we present a tree-ring based spring temperature reconstruction from Turkey and compare our results to previous reconstructions of temperature and precipitation to provide a more comprehensive understanding of climate conditions during the 19th and 20th centuries.

2 Data and Methods

2.1 Climate of the Study Area

The study area, which spans 36–42° N and 26–38° E, was based on the distribution of available tree-ring chronologies. This vast area covers much of western Anatolia and includes the western Black Sea, Marmara, and western Mediterranean regions. Much of this area is characterized by a Mediterranean climate that is primarily controlled by polar and tropical air masses (Türkeş 1996, Deniz et al. 2011). In winter, polar fronts from the Balkan Peninsula bring cold air that is centered in the Mediterranean. Conversely, the dry, warm conditions in summer are dominated by weak frontal systems and maritime effects. Moreover, the Azores high-pressure system in summer and anticyclonic activity from the Siberian high-pressure system often cause below normal precipitation and dry sub-humid conditions over the region (Türkeş 1999, Deniz et al. 2011). In this Mediterranean climate, annual mean temperature and precipitation range from 3.6 °C to 20.1 °C and from 295 to 2220 mm, respectively, both of which are strongly controlled by elevation (Deniz et al. 2011).
2.2 Development of tree-ring chronologies

To investigate past temperature conditions, we used a network of 23 tree-ring site chronologies (Fig. 1). Fifteen chronologies were produced by previous investigations (Mutlu et al. 2011, Ak kemik et al. 2008, Köse et al. unpublished data, Köse et al. 2011, Köse et al. 2005) that focused on reconstructing precipitation in the study area. In addition, we sampled eight new study sites and developed tree-ring time series for these areas (Table 1). Increment cores were taken from living Pinus nigra Arn. and Pinus sylvestris L. trees and cross-sections were taken from Abies nordmanniana (Steven) Spach and Picea orientalis (L.) Link tree trunks.

Samples were processed using standard dendrochronological techniques (Stokes & Smiley 1968, Orvis & Grissino-Mayer 2002, Speer 2010). Tree-ring widths were measured, then visually crossdated using the list method (Yamaguchi 1991). We used the computer program COFECHA, which uses segmented time-series correlation techniques, to statistically confirm our visual crossdating (Holmes 1983, Grissino-Mayer 2001). Crossdated tree-ring time series were then standardized by fitting a 67% cubic smoothing spline with a 50% cutoff frequency to remove non-climatic trends related to the age, size, and the effects of stand dynamics using the ARSTAN program (Cook 1985, Cook et al. 1990a). These detrended series were then pre-whitened with low-order autoregressive models to produce time series with a strong common signal and without biological persistence to remove persistence not related to climatic variations. These series may be more suitable to understand the effect of climate on tree-growth, even if any persistence due to climate might be removed by pre-whitening. For each chronology, the
individual series were averaged to a single chronology by computing the biweight robust means

to reduce the influences of outliers (Cook et al. 1990b). In this research we used residual

cronologies obtained from ARSTAN to reconstruct temperature.

The mean sensitivity, which is a metric representing the year-to-year variation in ring width

(Fritts 1976), was calculated for each chronology and compared. The minimum sample depth for
each chronology was determined according to expressed population signal (EPS), which we used
as a guide for assessing the likely loss of reconstruction accuracy. Although arbitrary, we
required the commonly considered threshold of EPS > 0.85 (Wigley et al. 1984; Briffa & Jones
1990).

2.3 Temperature reconstruction

We extracted monthly temperature and precipitation records from the climate dataset CRU TS
3.23 gridded at 0.5º intervals (Jones and Harris 2008) from KNMI Climate Explorer
(http://climexp.knmi.nl) for 36–42 ºN, 26–38 ºE. The period AD 1930–2002 was chosen for the
analysis because it maximized the number of station records within the study area.

First, the climate-growth relationships were investigated with response function analysis (RFA)
(Fritts 1976) for biological year from previous October to current October using the
DENDROCLIM2002 program (Biondi & Waikul 2004). This analysis is done to determine the
months during which the tree-growth is the most responsive to temperature. Second, the climate
reconstruction is performed by regression based on the principal component (PCs) of the 23
chronologies within the study area. Principle Component Analysis (PCA) was done over the entire period in common to the tree-ring chronologies. The significant PCs were selected by stepwise regression. We combined forward selection with backward elimination setting $p \leq 0.05$ as entrance tolerance and $p \leq 0.1$ as exit tolerance. The final model obtained when the regression reaches a local minimum of RMSE. The order of entry of the PCs into the model was PC3, PC21, PC4, PC15, PC3, PC17, PC7, PC9, PC10. The regression equation is calibrated on the common period (1930–2002) between robust temperature time-series and the selected tree-ring series.

Third, the final reconstruction is based on bootstrap regression (Till and Guiot, 1990), the best method to assess the quality of the regression and to calculate appropriate confidence intervals. Third, the final reconstruction is based on bootstrap regression (Till and Guiot, 1990), a method designed to calculate appropriate confidence intervals for reconstructed values and explained variance even in cases of short time-series. It consists in randomly resampling the calibration datasets to produce 1000 calibration equations based on a number of slightly different datasets.

The quality of the reconstruction is assessed by a number of standard statistics. The overall quality of fit of reconstruction is evaluated based on the determination coefficient (R^2), which expresses the percentage of variance explained by the model and the root mean squared error (RMSE), which expresses the calibration error. This does not insure the quality of the extrapolation which needs additional statistics based on independent observations, i.e. observations not used by the calibration (verification data). They are provided by the observations not resampled by the bootstrap process. The prediction RMSE (called RMSEP), the reduction of error (RE) and the coefficient of efficiency (CE) are calculated on the verification data and enable to test the predictive quality of the calibrated equations (Cook et al, 1994).

Traditionally, a positive RE or CE values means a statistically significant reconstruction model,
but bootstrap is much more interesting as it produces confidence intervals and finally we accept the RE and CE which are significantly larger than zero, which is more constraining than being just positive in mean. But bootstrap has the advantage to produce confidence intervals for such statistics without theoretical probability distribution and finally we accept the RE and CE for which the lower confidence margin at 95% are positive. This is more constraining than just accepting all positive RE and CE. An early common period (1902–1929) is available for additional verification, during which some climatic series are available but are not of sufficient quality to insure an optimal calibration. We also present traditional split-sample procedure results that divided the full period into two subsets of equal length (Meko and Graybill, 1995).

To identify the extreme March–April cold and warm events in the reconstruction, standard deviation (SD) values were used. Years one and two SD above and below the mean were identified as warm, very warm, cold, and very cold years, respectively. Finally, as a way to assess the spatial representation of our temperature reconstruction, we conducted a spatial field correlation analysis between reconstructed values and the gridded CRU TS3.23 temperature field (Jones and Harris 2008) for a broad region of the Mediterranean over the early common period (1901–1929), and over the entire instrumental period (ca. 1930–2002).

3 Results and Discussion

3.1 Tree-ring chronologies

In addition to 15 chronologies developed by previous studies, we produced six *P. nigra*, one *P. sylvestris*, one *A. nordmanniana / P. orientalis* chronologies for this study (Table 2). The Çorum district produced two *P. nigra* chronologies: one the longest (KAR; 627 years long) and the other
the most sensitive to climate (SAH; mean sensitivity value of 0.25). Previous investigations of climate-tree growth relationships reported a mean sensitivity range of 0.13–0.25 for *P. nigra* in Turkey (Köse 2011, Akkemik et al. 2008). The KAR, SAH, and ERC chronologies (with mean sensitivity values from 0.22 to 0.25) were classified as very sensitive, and the SAV, HCR, and PAY chronologies (mean sensitivity values range 0.17–0.18) contained values characteristic of being sensitive to climate. The lowest mean sensitivity value was obtained for the ART *A. nordmanniana / P. orientalis* chronology. Nonetheless, this chronology retained a statistically significant temperature signal (*p* < 0.05).

3.2 March-April temperature reconstruction

RFA coefficients of May to August precipitation are positively correlated with most of the tree-ring series (Fig. 2) and among them, May and June coefficients are generally significant. The first principal component of the 23 chronologies, which explains 47% of the tree-growth variance, is highly correlated with May–August total precipitation, statistically (*r* = 0.65, *p* ≤ 0.001) and visually (Fig. 3). The high correlation was expected given that numerous studies also found similar results in Turkey (Akkemik 2000a, Akkemik 2000b, Akkemik 2003, Akkemik et al. 2005, Akkemik et al. 2008, Akkemik & Aras 2005, Hughes et al. 2001, D’Arrigo & Cullen 2001, Touchan et al. 2003; Touchan et al. 2005a, Touchan et al. 2005b, Touchan et al. 2007, Köse et al. 2011, Köse et al. 2013, Martin-Benitto et al. 2016).

The influence of temperature was not as strong as May–August precipitation on radial growth, although generally positive in early spring (March and April) (Fig. 2). Conversely, the ART chronology from northeastern Turkey contained a strong temperature signal, which was
significantly positive in March. In addition to this chronology, we also used the chronologies that revealed the influence of precipitation, as well as temperature to reconstruct March–April temperature.

The higher order PCs of the 23 chronologies are significantly correlated with the March–April temperature and, by nature, are independent on the precipitation signal (Table 3). The best selection for fit temperature are obtained with the PC3, PC4, PC5, PC7, PC9, PC10, PC15, PC17, PC21, which explains together 25% of the tree-ring chronologies. So the temperature signal remains important in the tree-ring chronologies and can be reconstructed. The advantage to separate both signals through orthogonal PCs enable to remove an unwanted noise for our temperature reconstruction. Thus, PC1 was not used as potential predictor of temperature because it is largely dominated by precipitation (Table 3, Fig. 3). The last two PCs contain a too small part of the total variance to be used in the regressions. However, even if Jolliffe (1982) and Hadi & Ling (1998) claimed that certain PCs with small eigenvalues (even the last one), which are commonly ignored by principal components regression methodology, may be related to the independent variable, we must be cautious with that because they may be much more dominated by noise than the first ones. So, the contribution of each PC to the regression sum of squares is also important for selection of PCs (Hadi & Ling 1998). The findings of Jolliffe (1982) and Hadi & Ling (1998) provide a justification for using non-primary PCs, (e.g., of second and higher order) in our regression, given that correlations with temperature may be over-powered by affects from precipitation in our study area (Cook 2011, personal communication).
Using this method, the calibration and verification statistics indicated a statistically significant reconstruction (Table 4, Fig. 4). The regression model for the calibration period was:

\[
\text{Eq. (1): } \text{TMP} = 7.53 - 2.94 \text{PC}_3 + 4.02 \text{PC}_4 + 2.50 \text{PC}_5 + 2.77 \text{PC}_7 + 2.73 \text{PC}_9 - 2.67 \text{PC}_{10} - 5.17 \text{PC}_{15} + 1.98 \text{PC}_{17} - 5.82 \text{PC}_{21}
\]

The regression model accounted for 67% (\(\text{Adj. } R^2 = 0.64, p \leq 0.0001\)) of the actual temperature variance over the calibration period (1930–2002). Also, actual and reconstructed March–April temperature values had nearly identical trends during the period 1930–2002 (Fig. 4). Moreover, the tree-ring chronologies successfully simulated both high frequency and warming trends in the temperature data during this period. The reconstruction was more powerful at classifying warm events rather than cold events. Over the last 73 years, eight of ten warm events in the instrumental data were also observed in the reconstruction, while five of nine cold events were captured. Similarly, previous tree-ring based precipitation reconstructions for Turkey (Köse et al. 2011; Akkemik et al. 2008) were generally more successful in capturing dry years rather than wet years.

Our temperature reconstruction on the 1800–2002 period is obtained by bootstrap regression, using 1000 iterations (Fig. 5). The confidence intervals are obtained from the range between the 2.5th and the 97.5th percentiles of the 1000 simulations. For the pre-instrumental period (1800–1929), a total of 23 cold (1813, 1818, 1821, 1824, 1837, 1848, 1854, 1858, 1860, 1869, 1877–
1878, 1880–1881, 1883, 1897–1898, 1905–1907, 1911–1912, 1923) and 13 warm (1801–1802, 1807, 1845, 1853, 1866, 1872–1873, 1879, 1885, 1890, 1901, 1926) events were determined. After comparing our results with event years obtained from May–June precipitation reconstructions from western Anatolia (Köse et al. 2011), the cold years 1818, 1848, and 1897 appeared to coincide with wet years and 1881 was a very wet year for the entire region. Furthermore, these years can be described as cold (in March–April) and wet (in May–June) for western Anatolia.

Spatial correlation analysis revealed that our network-based temperature reconstruction was representative of conditions across Turkey, as well as the broader Mediterranean region (Fig. 6). During the period 193001–2002, estimated temperature values were highly significant (r range 0.5–0.6, $p < 0.01$) with instrumental conditions recorded from southern Ukraine to the west across Romania, and from northern areas of Libya and Egypt to the east across Iraq. The strength of the reconstruction model is evident in the broad spatial implications demonstrated by the temperature record. Thus, we interpret warm and cold periods and extreme events within the record with high confidence.

Among the warm periods in our reconstruction, conditions during the year 1879 were dry, 1895 wet, and 1901 very wet across the broad region of western Anatolia (Köse et al. 2011). Hence, we defined 1879 as a warm (in March–April) and dry year (in May–June), and 1895 and 1901 were warm and wet years. In the years 1895 and 1901 the combination of a warm early spring and a wet late spring-summer caused enhanced radial growth in Turkey, interpreted as longer growing seasons without drought stress.
Of these event years, 1897 and 1898 were exceptionally cold and 1845, 1872 and 1873 were exceptionally warm. During the last 200 years, our reconstruction suggests that the coldest year was 1898 and the warmest year was 1873. The reconstructed extreme events also coincided with accounts from historical records. Server (2008) recounted the winter of 1898 as characterized by anomalously cold temperatures that persisted late into the spring season. A family, who brought their livestock herds up into the plateau region in Kirşehir seeking food and water were suddenly covered in snow on 11 March 1898. This account of a late spring freeze supports the reconstruction record of spring temperatures across Turkey, and offers corroboration to the quality of the reconstructed values.

Seyf (1985) reported that extreme summer temperature during the year 1873 resulted in widespread crop failure and famine. Historical documents recorded an infamous drought-derived famine that occurred in Anatolia from 1873 to 1874 (Quataert, 1996, Kuniholm, 1990), which claimed the lives of 250,000 people and a large number of cattle and sheep (Faroqhi, 2009). This drought caused widespread mortality of livestock and depopulation of rural areas through human mortality, and migration of people from rural to urban areas. Further, the German traveler Naumann (1893) reported a very dry and hot summer in Turkey during the year 1873 (Heinrich et al, 2013). Conditions worsened when the international stock exchanges crashed in 1873, marking the beginning of the "Great Depression" in the European economy (Zürcher, 2004). Our temperature record suggests that dry conditions during the early 1870s were possibly exacerbated by warm spring temperatures that likely carried into summer. A similar pattern of intensified
drought by warm temperatures was demonstrated recently by Griffin and Anchukaitis (2014) for the current drought in California, USA.

Extreme cold and warm events were usually one year long, and the longest extreme cold and warm events were two and three years, respectively. These results were similar with durations of extreme wet and dry events in Turkey (Touchan et al. 2003, Touchan et al. 2005a, Touchan et al. 2005b, Touchan et al. 2007, Akkemik & Aras, 2005, Akkemik et al. 2005, Akkemik et al. 2008, Köse et al. 2011). Moreover, seemingly innocuous short-term warm events, such as the 1807 event, were recorded across the Mediterranean and in high elevations of the European regions. Casty et al. (2005) reported the year 1807 as being one of the warmest alpine summers in the European Alps over the last 500 years. As such, a drought record from Nicault et al. (2008) echoes this finding, as a broad region of the Mediterranean basin experienced drought conditions.

Low frequency variability of our spring temperature reconstruction showed larger variability in nineteenth century than twentieth century. Similar results observed on previous tree-ring based precipitation reconstructions from Turkey (Touchan et al. 2003, D’Arrigo et al. 2001, Akkemik and Aras 2005, Akkemik et al. 2005, Köse et al. 2011). Moreover, cold periods observed in our reconstruction are generally appeared as generally wet in the precipitation reconstructions, while warm periods generally correlated with dry periods (Fig. 7).

Heinrich et al. (2013) analyzed winter-to-spring (January–May) air temperature variability in Turkey since AD 1125 as revealed from a robust tree-ring carbon isotope record from Juniperus
excelsa. Although they offered a long-term perspective of temperature over Turkey, the reconstruction model, which covered the period 1949–2006, explained 27% of the variance in temperature since the year 1949. In this study, we provided a short-term perspective of temperature fluctuation based on a robust model (calibrated and verified 1930–2002; Adj. $R^2 = 0.64; p \leq 0.0001$). Yet, the Heinrich et al. (2013) temperature record did not capture the 20th century warming trend as found elsewhere (Wahl et al. 2010). However, their temperature trend does agree with trend analyses conducted on meteorological data from Turkey and other areas in the eastern Mediterranean region. The warming trend seen during our reconstruction calibration period (1930–2002) was similar to the data shown by Wahl et al. (2010) across the region and hemisphere. Further, the warming trends seen in our record agrees with data presented by Turkes & Sumer (2004), of which they attributed to increased urbanization in Turkey. Considering long-term changes in spring temperatures, the 19th century was characterized by more high-frequency fluctuations compared to the 20th century, which was defined by more gradual changes and includes the beginning of decreased DTRs in the region (Turkes & Sumer, 2004).

4 Conclusions

In this study, we used a broad network of tree-ring chronologies to provide the first tree-ring based temperature reconstruction for Turkey and identified extreme cold and warm events during the period 1800–1929 CE. Similar to the precipitation reconstructions against which we compare our air temperature record, extreme cold and warm years were generally short in duration (one year) and rarely exceeded two-three years in duration. The coldest and warmest years over
western Anatolia were experienced during the 19th century, and the 20th century is marked by a temperature increase.

Reconstructed temperatures for the 19th century suggest that more short-term fluctuations occurred compared to the 20th century. The gradual warming trend shown by our reconstruction calibration period (1930–2002) is coeval with decreases in spring DTRs. Given the results of Turkes and Sumer (2004), the variations in short- and long-term temperature changes between the 19th and 20th centuries might be related to increased urbanization in Turkey.

The study revealed the potential for reconstructing temperature in an area previously thought impossible, especially given the strong precipitation signals displayed by most tree species growing in the dry Mediterranean climate that characterizes broad areas of Turkey. Our reconstruction only spans 205 years due to the shortness of the common interval for the chronologies used in this study, but the possibility exists to extend our temperature reconstruction further back in time by increasing the sample depth with more temperature-sensitive trees, especially from northeastern Turkey. Thus future research will focus on increasing the number of tree-ring sites across Turkey, and maximizing chronology length at existing sites that would ultimately extend the reconstruction back in time.
Acknowledgements

This research was supported by The Scientific and Technical Research Council of Turkey (TUBITAK); Projects ÇAYDAG 107Y267 and YDABAG 102Y063. N. Köse was supported by the Council of Higher Education of Turkey. We are grateful to the Turkish Forest Service personnel and Ali Kaya, Umut Ç. Kahraman and Hüseyin Yurtseven for their invaluable support during our field studies. J. Guiot was supported by the Labex OT-Med (ANR-11-LABEX-0061), French National Research Agency (ANR).
References

Akkemik, Ü.: Tree-ring chronology of *Abies cilicica* Carr. in the Western Mediterranean Region of Turkey and its response to climate, Dendrochronologia, 18, 73–81, 2000b.

Jones, P. D. and Harris, I.: Climatic Research Unit (CRU) time-series datasets of variations in climate with variations in other phenomena. NCAS British Atmospheric Data Centre, 2008.

http://catalogue.ceda.ac.uk/uuid/3f8944800cc48e1cbc29a5ee12d8542d

Table 1. Site information for the new chronologies developed by this study in Turkey.

<table>
<thead>
<tr>
<th>Site name</th>
<th>Site code</th>
<th>Species</th>
<th>No. trees/cores</th>
<th>Aspect</th>
<th>Elev. (m)</th>
<th>Lat. (N)</th>
<th>Long. (E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Çorum, Kargi, Karakise kayalıkları</td>
<td>KAR</td>
<td>Pinus nigra</td>
<td>22 / 38</td>
<td>SW</td>
<td>1522</td>
<td>41°11'</td>
<td>34°28'</td>
</tr>
<tr>
<td>Çorum, Kargi, Şahinkayası mevkii</td>
<td>SAH</td>
<td>P. nigra</td>
<td>12 / 21</td>
<td>S</td>
<td>1300</td>
<td>41°13'</td>
<td>34°47'</td>
</tr>
<tr>
<td>Bilecik, Muratdere</td>
<td>ERC</td>
<td>P. nigra</td>
<td>12 / 25</td>
<td>SE</td>
<td>1240</td>
<td>39°53'</td>
<td>29°50'</td>
</tr>
<tr>
<td>Bolu, Yedigöller, Ayıkaya mevkii</td>
<td>BOL</td>
<td>P. sylvestris</td>
<td>10 / 20</td>
<td>SW</td>
<td>1702</td>
<td>40°53'</td>
<td>31°40'</td>
</tr>
<tr>
<td>Eskişehir, Mihaliççık, Savaş alanı mevkii</td>
<td>SAV</td>
<td>P. nigra</td>
<td>10 / 18</td>
<td>S</td>
<td>1558</td>
<td>39°57'</td>
<td>31°12'</td>
</tr>
<tr>
<td>Kayseri, Aladağlar milli parkı, Hacer ormanı</td>
<td>HCR</td>
<td>P. nigra</td>
<td>18 / 33</td>
<td>S</td>
<td>1884</td>
<td>37°49'</td>
<td>35°17'</td>
</tr>
<tr>
<td>Kahramanmaraş, Göksun, Payanburnu mevkii</td>
<td>PAY</td>
<td>P. nigra</td>
<td>10 / 17</td>
<td>S</td>
<td>1367</td>
<td>37°52'</td>
<td>36°21'</td>
</tr>
<tr>
<td>Artvin, Borçka, Balei işletme</td>
<td>ART</td>
<td>Abies nordmanniana, Picea orientalis</td>
<td>23 / 45</td>
<td>N</td>
<td>1200–2100</td>
<td>41°18'–41°54'</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Summary statistics for the new chronologies developed by this study in Turkey.

<table>
<thead>
<tr>
<th>Site Code</th>
<th>Total chronology</th>
<th>Common interval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time span</td>
<td>Time span</td>
</tr>
<tr>
<td></td>
<td>1st year</td>
<td>Mean</td>
</tr>
<tr>
<td></td>
<td>(*EPS > 0.85)</td>
<td>sensitivity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KAR</td>
<td>1307–2003</td>
<td>1620</td>
</tr>
<tr>
<td>SAH</td>
<td>1663–2003</td>
<td>1738</td>
</tr>
<tr>
<td>ERC</td>
<td>1721–2008</td>
<td>1721</td>
</tr>
<tr>
<td>BOL</td>
<td>1752–2009</td>
<td>1801</td>
</tr>
<tr>
<td>SAV</td>
<td>1630–2005</td>
<td>1700</td>
</tr>
<tr>
<td>HCR</td>
<td>1532–2010</td>
<td>1704</td>
</tr>
<tr>
<td>PAY</td>
<td>1537–2010</td>
<td>1790</td>
</tr>
<tr>
<td>ART</td>
<td>1498–2007</td>
<td>1624</td>
</tr>
</tbody>
</table>

*EPS = Expressed Population Signal [Wigley et al., 1984]
Table 3. Statistics from reconstruction model principal components analysis.

<table>
<thead>
<tr>
<th>Explained variance (%)</th>
<th>Correlation coefficients with May–August PPT</th>
<th>Correlation coefficients with March–April TMP</th>
<th>The chronologies represented by higher magnitudes** in the eigenvectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1 46.57</td>
<td>0.65</td>
<td>0.19</td>
<td>KAR, KIZ, TEF, BON, USA, TUR, CAT, INC, ERC, YAU, SAV, TAN, SIU</td>
</tr>
<tr>
<td>PC2 7.86</td>
<td>−0.07</td>
<td>0.15</td>
<td>KAR, SAV, TIR, BOL, YAU, ESK, TEF, BON, SIU</td>
</tr>
<tr>
<td>PC3* 4.93</td>
<td>0.04</td>
<td>−0.48</td>
<td>HCR, PAY, BOL, YAU, SIA</td>
</tr>
<tr>
<td>PC4* 4.68</td>
<td>0.11</td>
<td>0.17</td>
<td>TEF, KEL, FIR, SIA, KIZ, SIU, ART</td>
</tr>
<tr>
<td>PC5* 4.42</td>
<td>−0.25</td>
<td>0.27</td>
<td>SAH, TIR, FIR, ART</td>
</tr>
<tr>
<td>PC6 3.73</td>
<td>0.15</td>
<td>−0.14</td>
<td>KIZ, FIR, SAV, KAR, TIR, PAY, ESK, TEF, BON, ART</td>
</tr>
<tr>
<td>PC7* 3.56</td>
<td>0.19</td>
<td>0.18</td>
<td>KIZ, BON, BOL, YAU, HCR, PAY, INC</td>
</tr>
<tr>
<td>PC8 2.87</td>
<td>0.26</td>
<td>0.01</td>
<td>HCR, ESK, BON, FIR, ERC, SIA</td>
</tr>
<tr>
<td>PC9* 2.45</td>
<td>0.16</td>
<td>0.17</td>
<td>PAY, USA, BOL, YAU, TIR, HCR, FIR, SIA, SIU</td>
</tr>
<tr>
<td>PC10* 2.21</td>
<td>0.14</td>
<td>−0.08</td>
<td>TUR, CAT, SAV, SIA, KEL, ERC, SIU</td>
</tr>
<tr>
<td>PC11 2.09</td>
<td>−0.36</td>
<td>−0.20</td>
<td>HCR, TEF, USA, INC, PAY, TUR, SAV, SIU</td>
</tr>
<tr>
<td>PC12 1.80</td>
<td>−0.12</td>
<td>0.05</td>
<td>TEF, CAT, YAU HCR, ESK, USA, BOL, SIA</td>
</tr>
<tr>
<td>PC13 1.63</td>
<td>−0.06</td>
<td>0.17</td>
<td>TEF, TUR, BOL, KAR, YAU, SIA</td>
</tr>
<tr>
<td>PC14 1.55</td>
<td>−0.14</td>
<td>0.06</td>
<td>TIR, USA, FIR, TUR, YAU, KAR, BON</td>
</tr>
<tr>
<td>PC15* 1.50</td>
<td>−0.20</td>
<td>−0.14</td>
<td>KIZ, BON, USA, ESK, INC, BOL</td>
</tr>
<tr>
<td>PC16 1.31</td>
<td>0.04</td>
<td>0.08</td>
<td>SAH, HCR, INC, YAU, SAV, KAR, FIR, BOL, SIU</td>
</tr>
<tr>
<td>PC17* 1.25</td>
<td>0.15</td>
<td>0.19</td>
<td>SAH, SIU, KAR, ESK, TUR, ERC</td>
</tr>
<tr>
<td>PC18 1.14</td>
<td>0.13</td>
<td>0.02</td>
<td>KAR, TEF, TUR, SAV, BON, CAT</td>
</tr>
<tr>
<td>PC19 1.09</td>
<td>0.16</td>
<td>−0.11</td>
<td>PAY, INC, SAV, HCR, KEL, CAT, TAN</td>
</tr>
<tr>
<td>PC20 0.95</td>
<td>−0.15</td>
<td>−0.01</td>
<td>TIR, SAH, CAT</td>
</tr>
<tr>
<td>PC21* 0.89</td>
<td>0.06</td>
<td>−0.28</td>
<td>TUR, INC, TIR, SAV</td>
</tr>
<tr>
<td>PC22 0.85</td>
<td>0.44</td>
<td>0.10</td>
<td>KIZ, SAH, BON, YAU, SIU</td>
</tr>
<tr>
<td>PC23 0.67</td>
<td>−0.22</td>
<td>−0.02</td>
<td>TAN, KEL, TUR, CAT</td>
</tr>
</tbody>
</table>

*** indicates the PCs, which used in the reconstruction as predictors

** indicates which exceed ±0.2 value.
Table 4. Calibration and verification statistics of bootstrap method (1000 iterations applied) showing the mean values based on the 95% confidence interval (CI)

<table>
<thead>
<tr>
<th></th>
<th>Mean (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration</td>
<td>RMSE 0.65 (0.52; 0.77)</td>
</tr>
<tr>
<td></td>
<td>(R^2) 0.73 (0.60; 0.83)</td>
</tr>
<tr>
<td>Verification</td>
<td>RE 0.54 (0.15; 0.74)</td>
</tr>
<tr>
<td></td>
<td>CE 0.51 (0.04; 0.72)</td>
</tr>
<tr>
<td></td>
<td>RMSEP 0.88 (0.67; 1.09)</td>
</tr>
</tbody>
</table>

\(RMSE \) root mean squared error; \(R^2 \) coefficient of determination; \(RE \) reduction of error; \(CE \) coefficient of efficiency; \(RMSEP \) root mean squared error prediction

Table 5. Results of the statistical calibrations and cross-validations between March–April temperature and tree growth

<table>
<thead>
<tr>
<th>Calibration Period</th>
<th>Verification Period</th>
<th>Adj. (R^2)</th>
<th>F</th>
<th>RE</th>
<th>CE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1930–1966</td>
<td>1967–2002</td>
<td>0.55</td>
<td>5.91</td>
<td>0.64</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p \leq 0.0001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967–2002</td>
<td>1930–1966</td>
<td>0.71</td>
<td>10.45</td>
<td>0.63</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(p \leq 0.0001)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Tree-ring chronology sites in Turkey used to reconstruct temperature. Circles represent the new sampling efforts from this study and the triangles represent previously-published chronologies (YAY, SIA, SIU: Mutlu et al. 2011; TIR: Akkemik et al. 2008; TAN: Köse et al. unpublished data; KIZ, ESK, TEF, BON, KEL, USA, FIR, TUR: Köse et al. 2011; CAT, INC: Köse et al. 2005). The box (dashed line) represents the area for which the temperature reconstruction was performed.
Figure 2. Summary of response function results of 23 chronologies. Red color represents negative effects of climate variability on tree ring width; blue color represents positive effects of climate variability on tree ring width. "*" indicates statistically significant response function confidents \((p \leq 0.05) \). Each response function includes 13 weights for average monthly temperatures and 13 monthly precipitations from October of the prior year to October of current year.
Figure 3. The comparison of May-August total precipitation (mm) and the first principal component of 23 tree-ring chronologies.
Figure 4. Actual (instrumental) and reconstructed March–April temperature (°C). Dashed lines (dark grey) represent actual values and solid lines (black) represent reconstructed values shown with trend line (linear black line). Note: y-axes labels range 5–13 °C.
Figure 5. March–April temperature reconstruction for Turkey for the period 1800–2002 CE. The central horizontal line (dashed white) shows the reconstructed long-term mean; dark grey background denotes Monte Carlo ($n = 1000$) bootstrapped 95% confidence limits; and the solid black line shows 13-year low-pass filter values. Note: y-axis labels range 2–16 °C.
Figure 6. Spatial correlation map for the March–April temperature reconstruction. Spatial field correlation map showing statistical relationship between the temperature reconstruction and the gridded temperature field at 0.5° intervals (CRU TS3.23; Jones and Harris 2008) during the period 1930–2002 [A] and 1901–1929 [B] over the Mediterranean region.
Figure 7. Low-frequency variability of previous tree-ring based precipitation reconstructions from Turkey and spring temperature reconstruction. Each line shows 13-year low-pass filter values. Z-scores were used for comparison.