Quantifying late-Holocene climate in the Ecuadorian Andes using a chironomid-based temperature inference model

Frazer Matthews-Bird1, matthewsbirdf@fit.edu

Stephen J. Brooks2, S.Brooks@nhm.ac.uk

Philip B. Holden1, philip.holden@open.ac.uk

Encarni Montoya1, encarni.montoya@open.ac.uk

William D. Gosling1,4, W.D.Gosling@uva.nl

1Department of Earth, Environment & Ecosystems, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK.

2Biological Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32901, USA

3Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.

4Palaeoecology & Landscape Ecology, Institute for Biodiversity & Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands

Corresponding author: Frazer Matthews-Bird

Key words: Bayesian, weighted-averaging, transfer function, chironomids, Holocene climate change, Ecuador
Presented here is the first chironomid calibration dataset for tropical South America. Surface sediments were collected from 59 lakes across Bolivia (15 lakes), Peru (32 lakes) and Ecuador (12 lakes) between 2004 and 2013 over an altitudinal gradient from 150 m above sea level (a.s.l) to 4655 m a.s.l, between 0-17°S and 64-78°W. The study sites cover a mean annual temperature (MAT) gradient of 25°C. In total, 55 chironomid taxa were identified in the 59 calibration data-set lakes. When used as a single explanatory variable, MAT explains 12.9% of the variance (λ1/λ2 = 1.431). Two inference models were developed using weighted averaging and Bayesian methods. The best performing model using conventional statistical methods was a WA (inverse) model (R2jack = 0.890, RMSEPjack = 2.404, Mean biasjack = -0.017, Max biasjack = 4.665). The Bayesian method produced a model with R2jack = 0.909, RMSEPjack = 2.373, Mean biasjack = 0.598, Max biasjack = 3.158. Both models were used to infer past temperatures from a c. 3000 yr record from the tropical Andes of Ecuador, Laguna Pindo. Inferred temperatures fluctuated around modern day conditions but showed significant departures at certain intervals (c. 1600 cal yr BP; c. 3000-2500 cal yr BP). Both methods (WA/Bayesian) showed similar patterns of temperature variability; however, the magnitude of fluctuations differed. In general the WA method was more variable often inferring unrealistically cold temperatures (c. -7±2.5°C relative to the modern). The Bayesian method provided temperature anomaly estimates for cool periods that lay within the expected range of the Holocene (c. -3±3.4°C). The chironomid-based MAT reconstruction from the Laguna Pindo fossil record suggests that periods of low solar output not only affect the tropics through changes in precipitation, but also directly affect tropical temperatures. Inferred temperatures were 2-3°C colder relative to the modern during the widely recognised 3500-2500 cal yr BP cooling event. Long-term cooling during the late-Holocene culminating in the Little Ice Age (LIA) is not apparent in the Laguna Pindo record. A cooling by 1-2°C relative to the modern during the LIA is recorded in a single fossil sample.
1. Introduction

Holocene climate variability (11.7 kcal yrs BP – present) offers the most recent opportunity to parameterise climate and ecosystem responses to natural forcing under current boundary conditions in the absence of intense anthropogenic activity (Mayewski et al., 2004; Oldfield and Steffen, 2014). Furthermore, quantitative estimates of past climate over long time scales (>1000 yrs) are vital to improving the reliability of modelling and prediction of present and future climate variability (Mayewski et al., 2004). The spatial distribution of palaeoclimate records, however, is currently uneven around the world. Quantitative reconstructions of past climate are common from mid- to high- latitudes of both hemispheres but data is much scarcer from low-latitude (tropical) regions (Jansen et al., 2007). Tropical climate is the dominant driver of atmospheric circulation (Ivanochko et al., 2005) and the source of intermittent phenomena, such as the El Niño Southern Oscillation (ENSO), which has a global influence on climate (Collins et al., 2010). Quantitative estimates of past climate from the low latitude tropics, therefore, are crucial for investigating not only regional climate processes, but also teleconnections on long timescales (>1000 years) (Garreaud et al., 2009; Jomelli et al., 2009; Vuille et al., 2000). Here we develop the first chironomid-based temperature inference model for tropical South America. The model is applied to a Holocene lake sediment sequence to generate the first quantitative chironomid-inferred temperatures from the tropical East Andean flank.

Chironomidae (non-biting midges) is a family of two-winged aquatic insects of the order Diptera. The family is globally distributed and one of the most diverse within aquatic ecosystems (Armitage et al., 1995). Many species are stenotopic, and their short life-cycles and ability to colonise favourable regions quickly means the insects are extremely sensitive to environmental change (Pinder, 1986). The head capsules of chironomid larvae are well preserved in lake sediments and have been used extensively as palaeoecological proxies (Brooks, 2006; Walker and Cwynar, 2006). Chironomid-based temperature inference models, derived from modern calibration data sets, have been applied across North America (reviewed in Walker and Cwynar, 2006), Eurasia (reviewed in Brooks, 2006), and more recently the method has been applied in the Southern Hemisphere in Patagonia (Massaferro and Larocque, 2013; Massaferro et al., 2014), Central America (Wu et al., 2014), East Africa (Eggermont et al., 2010), and Australasia (Dimitriadis and Cranston 2001; Woodward and Shurlmeister 2006).
Transfer functions make a number of underlying assumptions; particularly the environmental variable to be reconstructed is an ecologically important determinant in the system, and environmental variables other than one being reconstructed have a negligible effect on species assemblages (Juggins, 2013). Rarely are ecological systems as simple as transfer functions would imply and violations of these assumptions will undermine the validity of the environmental reconstruction (Juggins, 2013). Nevertheless, despite known inherent problems associated with transfer functions (Huntley, 2012; Juggins, 2013; Velle et al., 2010), quantitative reconstructions from chironomid assemblages often produce consistent results that compare well with other proxy estimates of past temperature (Brooks, 2000; Brooks et al., 2012; Heiri et al., 2007). The best performing inference models can reconstruct temperatures with errors of c. 1°C (Brooks and Birks, 2001; Eggermont et al., 2010; Heiri et al., 2003; Olander et al., 1999a; Rees et al., 2008; Self et al., 2014), providing high resolution insights into past changes in climate (Brooks and Langdon, 2014), and validation of climate models (Heiri et al., 2014).

1.1 Holocene climate variability

Holocene climate variability is subdued (±2-3°C) (Mayewski et al., 2004; O’Brien et al., 1995) compared with the preceding Late Glacial period (c. 25,000-11,700 years before present [yrs BP], ±7-10°C) (Alley, 2000; Anderson, 1997), nevertheless rapid climate change events are recognised in Holocene palaeoclimate records (Mayewski et al., 2004). Changes in insolation caused by solar forcing is generally regarded as the dominant driver of global climate change during the Holocene (Mayewski et al., 2004; Wanner et al., 2008). The Roman warm period (250 BC-400 AD [2200-1550 yrs BP]), and cooling during the Little Ice Age (LIA) (1350-1850 AD [600-100 yrs BP]) are well established features, notably across the Northern Hemisphere (Johnsen et al., 2001; O’Brien et al., 1995). Growing evidence from the tropics suggests Holocene climate fluctuations such as the LIA are probably global events (Thompson et al., 2002; Wanner et al., 2008); however, additional quantitative palaeoclimate records are needed to understand the expression of such events in the tropics, and to clarify global climate teleconnections. Although the low latitudes receive 47% of planetary insolation, the climate response in the tropics to solar variability is poorly understood (Crowley, 2000; Polissar et al., 2006).
1.2 Holocene climate variability in tropical South America

The most notable feature of current South American climate is the annual migration of the Intertropical Convergence Zone (ITCZ), which affects rainfall patterns across the tropical Andes (Abbott et al., 2003; Bird et al., 2011; Haug et al., 2001). On Holocene timescales, however, there remain large uncertainties regarding the patterns and processes of climate change in the Andes with evidence for both rapid (c. 100-1000 yr) precipitation (Haug et al., 2001) and temperature variability (Thompson et al., 2006; Wanner et al., 2008). A further point to note is the spatial heterogeneity of Holocene climate variability in the tropical Andes (Baker and Fritz, 2015a), particularly regarding precipitation. Ice core records from the Peruvian and Bolivian Andes since c. 5400 cal yrs BP suggest the overall trend is towards a drier climate with high amplitude fluctuations and periods of significant aridity. Precipitation reached a minimum during the period between 3800-2800 cal yrs BP and the LIA (Haug et al., 2001; Thompson et al., 1986; Thompson et al., 1995). Speleothem records from the Central Andes of Peru contradict this, however, and indicate instead that from the 15th to 18th century precipitation was on average about 10% higher than the present day (Reuter et al., 2009).

The mid- to late-Holocene (c. 6000 cal yrs BP to present) is a period of cooling climate in South America. Pollen evidence suggests montane vegetation replaced Andean forest taxa as the treeline lowered with modern vegetation patterns becoming established by c. 3000 cal yrs BP (Markgraf, 1989). Long-term cooling in the late Holocene culminated in a minimum during the 17th and 18th centuries, coinciding with evidence for precipitation minimum during the LIA in northern South America (Haug et al., 2001; Thompson et al., 1986; Thompson et al., 1995). Further south, Patagonian proxy records infer periods that were wet and cold enough to allow glacial advance (Meyer and Wagner, 2008).

Stable isotopic records derived from ice cores and speleothems provide some of the highest resolution archives of South American palaeoclimate (Kanner et al., 2013; Mosblech et al., 2012; Thompson et al., 1986; Thompson et al., 1995). These records must be viewed cautiously, however, as the proxy also reflects a range of environmental factors; changes in water vapour, snow surface histories, source and sink ratios, and the effect of temperature on carbonate-water isotopic fractionation (Baker and Fritz, 2015; Leng and Marshall, 2004; Thompson et al., 1986). Without solid constraints on temperature variability through time it is difficult to be certain of the isotopic signal. In the South American tropics, where the relationship between changes in...
temperature and precipitation are complex (Baker et al., 2001; Garreaud et al., 2009), more independent quantitative estimates of past temperature are needed in order to resolve climate patterns over the tropical Andes during the Holocene.

1.3 Aims

In this study, we have developed the first chironomid-based temperature calibration data set from the tropical Andes (0 to 17°S). Surface sediment samples from 59 lakes along the eastern flank of the Andes to Amazonia are analysed. Two approaches are used to develop the inference model, the widely used weighted averaging method (Brooks and Birks, 2000) and a second using a Bayesian approach (Holden et al., 2008) which has rarely been used before. The models are applied to fossil chironomid assemblages in a late-Holocene lake sediment record from Laguna Pindo, central Ecuador, to reconstruct mean annual temperature (MAT) changes over the past c. 3000 years.

2 Study Sites

2.1 Modern calibration dataset

Surface sediments were collected from 59 lakes across Bolivia (15 lakes), Peru (32 lakes) and Ecuador (12 lakes) between 2004 and 2013 over an altitudinal gradient from 150 m above sea level (a.s.l) to 4655 m a.s.l, between 0-17°S and 64-78°W (Fig 1). The study sites cover an MAT gradient of 25°C; the coldest lake in the data set is 0.8°C MAT and the warmest is 25°C MAT (Table 1). The deepest lake is 25 m and the shallowest is 0.1 m, mean water depth of all the study sites is 5 m. Cold, high elevation lakes are more common within the calibration data set and there are no lakes between 16°C and 20°C. Sediment samples used in this study were taken from the uppermost centimetre (0-1cm) which represents the most recent deposits (approx. 5-20 years) (Frey, 1988) and therefore most comparable with the available climate data for calibration.
2.2 Fossil chironomid record

Laguna Pindo is a small shallow lake on the eastern flank of the Ecuadorian Andes (1°27.132'S; 78°04.847'W) (Fig1). The site is located at an elevation of 1248 m a.s.l. MAT is c. 20°C with little seasonal variation and mean annual precipitation (MAP) can reach c. 4000 mm per year (Hijmans et al., 2005). Currently the lake is not directly fed by a stream in-flow and has no visible stream out-flow; the lake receives water from surface run-off and direct precipitation. There are no obvious geomorphological causes for the escarpment of the lake and we hypothesise it is tectonic in origin.

At the time of field work (January 2013) maximum water depth was c. 1 m, the lake is heavily overgrown with aquatic macrophytes making a detailed bathometric survey difficult. A sedimentary sequence 929 cm long was extracted using a cam-modified piston Livingston corer (Colinvaux et al., 1999) from the centre of the lake to minimise the chance of encountering a sedimentary gap caused by any periods of lake area reductions.

Sediments were recovered in aluminium tubes and sealed on site before being transported to the UK and stored at c. 4°C. A total of 14 samples were analysed for 14C radiocarbon using AMS dating at the SUERC radiocarbon facility, East Kilbride. An age-depth model was created using version 2.2 of the statistical package clam.R (Blaauw, 2010) and the Southern Hemisphere calibration curve SHCal13.14C (Hogg et al., 2013).

3. Methods

3.1 Chironomid analysis

Chironomid preparation and identification from both lake surface and core sediments followed standard methods as described by Brooks et al (2007). The wet sediment was deflocculated in 10% KOH for 2 minutes at 75°C. The sediment was then washed through 212µm and 90µm sieves with water. Chironomids were picked from the residues in a Bogorov counting tray using a stereomicroscope at 25x magnification. Head capsules were mounted in Euparal, ventral side up and identified to the highest possible taxonomic resolution under a compound light microscope at 200-400x magnifications with reference to Wiederholm (1983), Epler (2001) Rieradevall & Brooks (2001), Brooks et al (2007), Cranston (2010) and local taxonomic works including Prat et al (2011), and Trivinho-Strixino (2011). Some taxa could not be formally identified and so were given informal names. Images and descriptions of informally named taxa are provided in Matthews-Bird et al (2015).
3.2 Environmental variables

Environmental variables (depth, pH, conductivity, and water temperature) were measured at each lake in the field. Organic content of the sediment was established through Loss-on-ignition following standard methods as described by Heiri et al. (2001). Climate data (MAT, MAP) were obtained from high resolution, interpolated climate surfaces (Hijmans et al., 2005). Elevation (m a.s.l.), latitude (decimal degrees), and longitude (decimal degrees) were also included as variables in the calibration data set. A summary of all the environmental variables measured can be found in Table 1.

3.3 Exploratory statistics

Detrended Correspondence Analysis (DCA) was initially used as an indirect ordination method to assess the gradient lengths in compositional units of taxon turnover (Hill and Gauch, 1980). The gradient length of DCA axis 1 was 5.2 standard deviation units (SD), which suggests a unimodal response, and that linear ordination methods were not appropriate (ter Braak, 1987). Canonical Correspondence Analysis (CCA) was used to explore the influence of the measured environmental variables on the distribution and abundance of taxa. Highly correlated variables were partialled-out by analysis of the variance of their regression coefficients indicated by their Variance Inflator Factors (VIFs). Variables with high VIFs were systematically removed from the environmental variable data set until the remaining variables had VIFs below 20. Detrended canonical correspondence analysis (DCCA) was used to test how much of the variance in the assemblage data was explained by each individual explanatory variable. The ratio of $\lambda_1:\lambda_2$ (i.e., the ratio of first constrained DCCA axis 1 and second unconstrained DCA axis 2) was used to assess the influence an explanatory variable has in describing the variance in the chironomid community assemblage, and hence its predictive power (Juggins, 2013). All taxa were retained in the statistical analysis and rare taxa were down-weighted in the weighted average transfer function (down-weighting of rare species is implicit in the Bayesian approach). Multivariate analysis was carried out on square root transformed chironomid percentage data.
3.4 Inference models

Inference models were developed using two separate approaches. The first method relied on weighted averaging methods, a tried and tested technique well established in quantitative palaeoecology (Birks, 1998; Birks et al., 2012; ter Braak and Juggins, 1993; ter Braak and Looman, 1986). The second method uses a Bayesian approach, which in general has received less attention (Holden et al., 2008). There are a number of inherent problems associated with quantitative inference models (Huntley, 2012; Juggins, 2013; Velle et al., 2010) so the two independent methods were used to compare results and assess the strengths and weaknesses of each method.

3.5 Weighted averaging

The assemblage data was unimodal suggesting transfer functions using weighted averaging partial least squares (WA-PLS) were appropriate (ter Braak and Juggins, 1993). Inference models were also developed using classical and inverse weighted averaging (WA) to compare performance. The optimal number of components was assessed using leave-one-out cross validation (jack knifing) and a minimum 5% change in prediction error between components. Sample specific errors for the inferred temperatures were obtained through bootstrapping 999 cycles.

3.6 Bayesian

Bayesian model selection was used to generate probability-weighted species response curves (SRCs) for each taxon in the calibration dataset. Each taxon is assigned 8,000 possible SRCs. Each of these SRCs has a probability weight based on its relative ability to describe the training data for that taxon. To perform a reconstruction, likelihood functions (temperature probability distributions) are derived from each taxon in a fossil sample, considering all 8,000 SRCs. Combining the likelihood functions of all the taxa in the fossil sample derives the reconstruction. The power of the Bayesian approach is that it ascribes a probability distribution to the reconstruction, providing a reconstruction-specific uncertainty. An important benefit is that all taxa in the sample provide potentially useful information, even those with low counts that would be largely neglected in a
weighted averaging approach. To illustrate, a few counts of a taxon with a narrow temperature tolerance may constrain the Bayesian reconstruction more than a very high count of a taxon with a broad tolerance.

Although the Bayesian model was developed for application to pH reconstructions from diatom assemblages, it is generally applicable whenever it is appropriate to assume a unimodal species response to an environmental gradient. The only modification required is the specification of appropriate priors. The a priori probability distribution for optimum temperature in the SRCs was assigned to be uniform in the range -4.2 to +30.8°C (training set range ±5°C). The a priori probability for SRC tolerance was assigned to be uniform in the range 2 to 10°C. Other SRC priors were unchanged from those in Holden et al. (2008).

3.7 Reliability of reconstructions

DCCA detrending by segments, non-linear rescaling, and constrained by radiocarbon age was used to determine compositional turnover constrained within the stratigraphic sequence (Birks and Birks, 2008). The goodness-of-fit to temperature was evaluated by including the fossil chironomid samples passively in a CCA ordination space of the modern training set samples constrained by MAT. Fossil samples with a squared residual distance within the extreme 10% of the modern calibration dataset samples are considered as having a poor fit to temperature. The modern analogue technique was used to test if fossil samples had good analogues within the modern calibration data set. Any fossil sample with a squared chord distance larger than the 95% threshold of the calibration data set is considered to have no good modern analogues (Birks, 1998; Velle et al., 2005).

Data were untransformed prior to analysing the dissimilarity using the modern analogue technique. The significance of the final reconstruction was tested by comparing the amount of variance in the fossil data explained by that reconstruction, compared with inferences produced by transfer functions trained on randomly generated environmental data (Telford and Birks, 2011a). In this case, 999 random environmental variables were generated in order to produce the null distribution.
4. Results

4.1 Explanatory variables

The eight remaining explanatory variables, after those with VIFs >20 were removed; together explain 34.03% of the variance (Fig 2). The first two CCA axes explained 61.7% of the variance ($\lambda_1=0.792$, $\lambda_2 = 0.466$). MAT describes most of the variance in the chironomid assemblages and has the highest λ_1:λ_2 ratio (Table 2). When used as a single explanatory variable, MAT explains 12.93% of the variance (λ_2/$\lambda_3= 1.431$).

4.2 Calibration data set taxa

In total, 55 chironomid taxa were identified in the 59 training set lakes (Matthews-Bird et al., 2015). *Chironomus anthracinus*-type was the most widespread taxon, occurring over the entire temperature gradient (Fig 3). Orthocladiinae are generally most abundant towards the cold end of the temperature gradient (Matthews-Bird et al., 2015). *Cricotopus/Paratrichocladius* type III is the dominant taxon of the coldest lake and is not present in sites >10°C MAT. Figure 4 shows the weighted average and Bayesian optima and tolerance of each taxon ordered by lowest to highest optima as modelled in the weighted averaging approach. In general the temperature optima predicted by each method are similar, however, *Tanytarsus* type II and *Cricotopus/Paratrichocladius* type VII have colder optima when modelled using a Bayesian approach. *Cricotopus/Paratrichocladius* type IV has the coldest temperature optima c. 3.3°C (Fig 4). Few Chironominae were found at the cold end of the calibration data set, but, for example, *Parachironomus* and *Tanytarsus* type II were only found in lakes cooler than c. 8°C and had optima of c. 7.5°C and c. 6.5°C respectively. *Paratanytarsus* and *Pseudosmittia* are important components of the chironomid assemblage between 4-12°C, forming >50% of the chironomid community in some lakes, and have optima of c. 9.1 and 8.3°C respectively. *Tanytarsus* type I, *Micropsectra* and *Einfeldia* are dominant taxa at mid-temperatures between c. 10-22°C. The absence of lakes between c. 16°C and c. 20°C limits a complete understanding of the distribution of taxa occurring at these temperatures.

DCCA analysis, constrained by MAT, indicates an assemblage shift across the temperature gradient of 2.2 SD units. The biggest change in assemblage composition occurs above 12°C MAT (Fig 3). *Goeldichironomus*, *Cladotanytarsus* and *Tanytarsus* type III were only found in lakes with MAT warmer than c. 22°C. Tanytodinae
were in greatest abundance at the warm end of the temperature gradient between c. 10-26°C, *Procladius* was the most common Tanypodinae. It occurred between c. 10-26°C and had an optimum of c. 21°C.

4.3 Inference models

Chironomid larval head capsule concentrations can vary significantly between lakes, due to differences in preservation or abundance. Low counts can have adverse effects on the performance of inference models and the reliability of quantitative environmental reconstructions when using conventional methods (Heiri and Lotter, 2001; Quinlan and Smol, 2001). A minimum count size of 50 head capsules per sample is advised (Heiri and Lotter, 2001; Quinlan and Smol, 2001), however, good model performance has been achieved even when several samples include as few as 15-30 head capsules (Massaferro *et al.*, 2014). In some lakes in the current training set head capsule concentrations were as low as two head capsules per gram of sediment. Fifteen lakes in the data set produced fewer than 50 head capsules, and three lakes had fewer than 30. On average 77 individuals were analysed from each lake with a minimum count of 23 and a maximum of 164 (Table 1). Lakes with low head capsule counts were retained in the model in order to maintain as even coverage as possible across the temperature gradient.

Both methods (WA and Bayesian) produced similar performance statistics. The best performing model using conventional statistical methods was a WA (inverse) model (Table 3, Fig 5) ($R^2_{\text{jack}} = 0.890$, RMSEP$_{\text{jack}} = 2.404$, Mean bias$_{\text{jack}} = -0.017$, Max bias$_{\text{jack}} = 4.665$). The Bayesian method produced a slightly higher performing model with $R^2_{\text{jack}} = 0.909$, RMSEP$_{\text{jack}} = 2.373$, Mean bias$_{\text{jack}} = 0.598$, Max bias$_{\text{jack}} = 3.158$.

4.4 Laguna Pindo fossil chironomids and dating

Chironomid remains were found only in the upper 416 cm of the 929 cm sequence of Laguna Pindo (Fig 6). In total, 2489 individual chironomid head capsules were analysed. The entire assemblage was made up of 32 taxa in 26 genera and 4 subfamilies. Among the taxa identified, 17 were Chironomini, eight Orthocladiinae and three Tanypodinae. There was high variation between samples both in number of head capsules (average: 82; range: 24 - 184) and concentration per gram of wet sediment (average: 73; range: 2 - 163). There was a marked decline in head capsule concentration below 200 cm. In younger sediments (200-0 cm) head capsule
concentration averaged 106/gram, in older samples (200-420 cm) the average was 44/gram. Five zones were identified using optimal partitioning with a broken stick model to define significant zones. *Polypedilum nubifer*-type, *Procladius* and *Limnophyes* were the most abundant taxa; abundances are over 10% wherever they occurred. *Tanytarsus* type II was most abundant below 200 cm (1500 cal yr BP) whilst *Polypedilum nubifer*-type was present in low numbers below 340 cm (2300 cal yr BP). During periods of low *Polypedilum nubifer*-type abundance, *Tanytarsus* type II and *Tanytarsus* type I occur in greater numbers (e.g. 420-360; 290-250 cm).

The best-fit age depth model for Laguna Pindo was a smooth spline (Fig S1). Due to the absence of chironomids at the bottom of the sequence, six radiocarbon samples were used for building the model with a total depth of the sediment considered of 461 cm (Table S1). The sedimentation rate ranged between 0.03 and 0.5 cm/yr, with a sampling interval resolution of 97 years between samples on average (range from 27 to 196 years).

4.5 Palaeotemperature reconstruction

Both transfer functions (WA inverse and Bayesian) show similar patterns in the temperature reconstruction (Fig 7). From 3000-2500 cal yr BP inferred temperatures are cold relative to the modern (20.2°C). The minimum WA inverse temperatures are much colder (13.5°C±2.5) than the inferred Bayesian temperatures (17.5°C±3.7) for the early section of the sequence. From 2400 to 1700 cal yr BP inferred temperatures from both methods oscillate around c. 18-19°C but remained depressed relative to the modern. A notable feature of both reconstructions is the sudden drop in inferred temperatures at 1600 cal yr BP. Inferred temperatures fall by c. 2°C to 17.5°C±2.7. This abrupt drop in temperature is short-lived in both reconstructions and temperatures return to previous values in the subsequent sample. From 1500 cal yr BP to the present the chironomid-inferred temperatures stabilise and steadily rise. Peak temperatures for the entire record (21.9°C±3.5) are inferred between 400-700 cal yr BP. Temperatures begin to cool from 400 cal yrs BP in both reconstructions, reaching a minimum of c. 17°C±2.5 c. 100 cal yr BP before rising rapidly to between 20-21°C±2.5 in the most recent sediment sample. On average the Bayesian model infers warmer temperatures than the WA model.

The fossil samples of Laguna Pindo plot within the modern variation of chironomid assemblages when included passively in a CCA analysis of the calibration data set (Fig 8). This suggests that the calibration dataset is appropriate for the fossil sequence of Laguna Pindo. The fossil samples plot along the MAP gradient
suggesting precipitation is an important variable controlling the variance in the fossil assemblages. The sites associated with high precipitation in the calibration dataset are located in the same region of the Ecuadorian Andes as the fossil site. With a modern MAT of c. 20°C, Laguna Pindo is located in a region of the temperature gradient that is poorly covered in the calibration dataset (Fig 3), although the samples plot within the range of modern calibration lakes that lie at similar elevations (1000-3000 m a.s.l). Seven taxa found in the Laguna Pindo sequence do not occur in any of the analysed calibration data set lakes. These include three unknown morphotypes, three *Xestochironomus* morphotypes, and *Metriacnemus eurynotus*-type. These taxa, however, never comprise more than 10% of the chironomid assemblage of any one sample.

Seven of the fossil samples are considered to have a poor goodness-of-fit to temperature and all fossil samples are considered as having poor modern analogues in the calibration data set (Fig 9). Although the modern analogue technique is not used to infer past temperatures the lack of modern analogues in the fossil assemblage is important when considering the reliability of any reconstruction.

DCCA constrained by radiocarbon age shows an abrupt change at 1475 cal yr BP between zones 3 and 4 and a turnover of 1.6 SD units over the whole sequence (Fig 9). The most recent sample is clearly distinct from any other period of the record. Much of the variation in goodness-of-fit and DCCA sample scores is mirrored by changes in count size and head capsule concentration. The sudden drop in head capsule concentration occurs at a step change in DCCA assemblage variation (1475 cal yrs BP) (Fig 9). Periods of increased count size and head capsule concentration in older sediments (2100-2250 cal yrs BP) also coincides with periods of improved goodness-of-fit (Fig 9). The WA classical inferred MAT values using the modern calibration data set explain more of the variance than 95% of randomly generated variables and so the WA classical MAT reconstructions can be deemed statistically significant (*p* = 0.032) (Fig 10) (Telford and Birks, 2011a).

5. Discussion

5.1 Chironomids and environmental variables

Chironomids have been shown to respond to temperature at a variety of spatial scales and taxonomic levels (Brooks, 2006; Eggermont and Heiri, 2011). Temperature is a key variable in controlling chironomid development at all stages of their life cycles, and influences voltinism, behaviour and metabolism (Armitage et
From the Northern Hemisphere, over large temperature gradients, mean July air temperature, the warmest month of the year, which reflects the developmental period of most species, has been shown to be the major determinant of variation in chironomid assemblages (Brooks, 2006; Walker and Cwynar, 2006). As a result, many quantitative temperature inference models have been developed to reconstruct mean July air temperature. Across the tropics however seasonal variation is small and many chironomids are multivoltine (Walker and Mathews, 1987) so temperatures throughout the year are likely to be relatively more influential. In tropical East Africa, Eggermont et al. (2010) demonstrated that mean annual air temperature was a significant driver of chironomid assemblage composition and developed a chironomid-based inference model on this basis.

Similarly, Wu et al. (2014) showed MAT to be the most important environmental variable when developing a chironomid inference model for Central America. When attempting to make quantitative inferences from fossil assemblages it is first crucial to establish that the variable of interest is an important ecological determinant. The variable to be reconstructed must describe a statistically important component of the variance within the assemblage data (Juggins, 2013). Compared to other measured variables, mean annual temperature explained the largest amount of chironomid assemblage variance and had the highest eigenvalue ratio ($\lambda_1:\lambda_2$) in the Andean calibration dataset (Table 2). The explanatory strength of temperature in the calibration data set meets the minimum criterion proposed by Juggins (2013) (i.e. $\lambda_1:\lambda_2 > 1.0$) for temperature being a suitable variable to reconstruct from this calibration dataset.

The DCCA results suggest that precipitation is also a strong ecological determinant ($\lambda_1:\lambda_2=0.9$); the passive plot of fossil samples with calibration samples further supports this conclusion. The fossil samples of Laguna Pindo are strongly associated with MAP. Precipitation in Andean landscapes, however, is spatially heterogeneous and geographically close localities experience significantly different rainfall patterns (Garreaud et al., 2009). Lakes associated with high rainfall (Fig 2) are actually in areas of the northern Andes with two rainy seasons a year. It is very likely that the bimodality of rainfall in these areas is as important in controlling chironomid populations as the total amount of rainfall as measured by MAP. Precipitation is also intrinsically linked to temperature as both temperature and precipitation increase with decreasing latitude in tropical South America (Garreaud et al., 2009). Unlike temperature, precipitation affects chironomids indirectly making any quantitative inference difficult. Precipitation will alter a suite of environmental variables (e.g. pH, conductivity, ...
making quantitative inferences of precipitation problematic. As chironomid life cycles are strongly controlled by temperature and many tropical chironomid species tend to be multivoltine, we suggest the most appropriate variable both ecologically and statistically to reconstruct using the Andean calibration data sets is MAT.

The optima and temperature tolerances (Fig 4) of many taxa found in the current study are similar to that noted in other Neotropical chironomid calibration datasets, further supporting the conclusion of temperature being an important ecological determinant. For example, Wu et al. (2014) in Central America, found taxa of the genera *Beardius, Labrundinia* and *Goeldichironomus* to have optima between 23-24°C whilst *Limnophyes* and *Corynoneura* where more abundant at the colder end of the gradient with optima of 15°C and 18°C respectively. In the current dataset *Beardius, Labrundinia*, and *Goeldichironomus* all have optima between 23-24°C and *Limnophyes* and taxa of *Corynoneura* also have optima of 15°C and 19°C, respectively. *Limnophyes* also has one of the broadest tolerances of all taxa in both calibration datasets suggesting the genus is probably represented by many species (Matthews-Bird et al., 2015). More work is needed in order to refine chironomid larval taxonomy in South America, however the current data suggest the potential for a larger calibration dataset applicable to wider area incorporating the Northern Neotropics and Central America.

5.2 Model performance

Although both models (WA inverse and Bayesian) perform well (WA RMSEP= 2.4°C and Bayesian RMSEP= 2.3°C), some of the best performing chironomid-based temperature inference models have prediction errors closer to 1.0°C (Brooks and Birks, 2001; Heiri *et al*., 2011, 2007; Olander *et al*., 1999). The highest performing chironomid inference models often have in excess of 100-150 calibration sites compared with just 59 in the current model and this may account for its reduced performance. Furthermore the lakes in the calibration data set are not evenly distributed over the temperature gradient. The cold end of the gradient has a higher number of lakes (34 cold, high elevation lakes) than at warm and intermediate temperatures (15 warm, mid-low elevation lakes). Uneven sampling has been shown to lead to biases which may reduce RMSEP (Telford and Birks, 2011b). Furthermore the over-representation of cold lakes in the current dataset may result in under-estimation of the temperature optima of some taxa and, therefore, bias temperature estimates towards cold
values. In the Andean dataset, as analysis of residuals shows, temperatures around 10°C are often underestimated (Fig 5). Furthermore, the inferred temperatures of Laguna Pindo are on average cooler than the modern day conditions.

The absence of lakes in part of the temperature gradient may limit the reliability of estimates of optima and tolerances of taxa and also create ‘edge effects’ in the middle of the temperature range, in addition to those that occur at the cold and warm end of the temperature gradient (Eggermont et al., 2010). Such problems are inherent to WA models as predicted values are pulled towards the mean of the training set resulting in under- and over-estimations of high and low values (ter Braak and Juggins 1993). However, despite having no lakes between 16-20°C in the calibration data set, additional edge effects are not a feature of the current inference model. The gap of c. 4°C does not appear to have compromised model performance, probably as the interval is not significant and taxa have tolerances that span these temperatures.

Polypedilum nubifer-type and *Chironomus anthracinus*-type make up a large component of the chironomid assemblages in lakes across the entire temperature gradient (Fig 3). Such eurythermic taxa probably include several different species. It is difficult to model reliable, or even meaningful, optima for eurythermic taxa. Poor model performance or unreliable reconstructions may result if the assemblage is dominated by eurythermic taxa. We note that eurythermic taxa are described by high tolerance SRCs in the Bayesian approach, leading to increased uncertainty in reconstructions through broad likelihood functions that contribute little information to the posterior. Inferred temperature of c. 10°C, are likely to be underestimated as many taxa found at these temperatures also occur in cold lakes, which are over-represented in the calibration data-set. In African lakes Eggermont et al. (2010) found that the presence of eurythermic taxa such as *Chironomus* type Kibos caused an overestimation of temperatures in lakes at the warm end of the gradient. They also found that the occurrence of *Limnophyes minimus*-type and *Paraphaenocladius* type Ol Bolossat overestimated the temperature of lakes close to where gaps occurred in the gradient (Eggermont et al., 2010).

Similarly, in a New Zealand calibration data set developed by Woodward and Shulmeister (2006), *Chironomus* was present in both high elevation, cold, oligotrophic lakes and lower elevation, warm, eutrophic lakes. The intermediate temperature optimum estimated for this taxon resulted in over-estimated temperatures of cold lakes and under-estimates of warm lakes (Woodward and Shulmeister, 2006). Eurythermic taxa may be
contributing to the over-estimation of cold temperatures and the under-estimation of temperatures in the middle of the gradient in the Andean inference model.

5.3 WA vs Bayesian

Despite similar performance statistics between the Bayesian and WA methods, the inferred pattern of late-Holocene temperature change is different. Temperatures inferred c. 2700 cal yr BP (400 cm) (Fig 7) using the WA inverse method is extremely cold (c. 14°C) compared with the rest of the record. This reconstruction is driven by the high abundance of Tanytarsus type II, a taxon that has a WA temperature optimum of 6.5°C. The Bayesian reconstruction for this sample of 17.8 ±2.8°C, is in line with more modest temperature shifts that would be expected in the late-Holocene (Wanner et al., 2008). One advantage of the Bayesian methodology is the transparency of the reconstruction through consideration of individual likelihood functions for this assemblage (Fig 11). Although Tanytarsus type II is abundant in the sample its influence in the reconstruction is moderated by several other taxa with higher temperature optima that are present at low abundances. This temperature estimate demonstrates the Bayesian reconstruction can be sensitive to a few counts of a species that have a negligible effect in a WA approach. The likelihood function for Chironomini type II, which has an abundance of only 2.3% in the sample, constrains the reconstruction more than Tanytarsus type II, which has an abundance of 74%. This is because Chironomini type II is only found in the warmest lakes in the calibration set, each time with a low abundance. We note that because it is found in only three training set sites, Chironomini type II is associated with many (671) high-probability SRCs, defined as having a probability great that 10% of the most likely SRC. For this reason, its likelihood function is relatively broad and extends to temperatures far lower than the temperature of the sites in which the taxon is found in the training set.

5.4 Laguna Pindo temperature reconstruction

It is important that the study site is appropriate for the calibration data set. The variable of interest must be the most important in driving biotic change (Velle et al., 2005) especially considering the influence of important secondary variables. It would be difficult to generate statistically significant reconstructions from fossil assemblages that are influenced by several variables acting together (Telford and Birks, 2011a). Laguna Pindo is
located at 1248 m a.s.l on the eastern Andean flank at the transition between the cold environments of the high Andes and warmer lowlands of the Amazon basin. Therefore, cold climatic periods during the lake’s history would promote the migration of cold stenothermal taxa from higher elevations down the Andean flank to occupy the lake (Čiamporová-Zaťovičová et al., 2010). Conversely, during warm periods, taxa inhabiting lowland lakes would move up the Andean flank. Despite the influence of precipitation the location of Laguna Pindo makes it a good palaeoecological setting to record the response of temperature-sensitive proxies.

5.5 Temperature and secondary environmental variables

Whilst the λ1/λ2 of 1.431 indicates that MAT is appropriate for reconstruction using this calibration dataset (Juggins, 2013), it does not necessarily mean that reliable temperature reconstructions can be obtained from a fossil record (Telford and Birks, 2011a). Before attempting to interpret any reconstruction several metrics can be used to assess the validity of a reconstruction (Juggins and Telford, 2012).

The modern analogue technique compares the similarity of the fossil samples to the modern samples in the calibration data set. All fossil samples are greater than the 5th percentile of the square chord distance (Fig 9), which suggests there is no close modern analogue in the calibration set to any fossil sample (Birks, 1998; Juggins and Birks, 2001). The lack of modern analogues in the Laguna Pindo fossil sequence is due to the many taxa present in the fossil samples that are not present in the calibration data set. This may reflect the lack of lakes in the calibration dataset with MAT values close to those of Laguna Pindo. Nevertheless, WA and WAPLS models have been shown to perform well in non-analogue situations (Birks et al., 2010). The Bayesian method generates temperature reconstructions from likelihood functions of species in the calibration data set. Although analogous assemblages are not required for the Bayesian reconstruction (each taxon is treated equally and individually), species that are absent from the training set cannot contribute information to the posterior, thereby increasing the uncertainty associated with the reconstruction. One advantage of the Bayesian methodology is that this uncertainty is explicitly incorporated into the Bayesian reconstruction (Holden et al., 2008).

During periods of poor fit-to-temperature, variables other than temperature may have been affecting the composition of the chironomid assemblage. As noted previously, the CCA biplot of fossil samples included
passively with the significant explanatory variables (Fig 8) shows that MAP was also important in driving the
assemblage variance. During times of poor fit to temperature the influence of precipitation as a secondary
variable may be more important than temperature in influencing the chironomid assemblage composition.
Indeed, precipitation has been shown to be an important variable in controlling the modern distribution of
chironomid taxa in the tropical Andes (Matthews-Bird et al., 2015).

Samples with poor fit-to-temperature also corresponded with samples having low numbers of head
capsules. The number of head capsules retrieved will directly affect how representative a sample is to the
chironomid fauna (Heiri, 2004; Quinlan and Smol, 2001). The cold oscillations inferred from the Bayesian
reconstruction are more in line with what is expected during the late-Holocene (1-3°C); the likelihood functions
of rare species which favour warm conditions combine to rule out the anomalously cold temperatures
suggested by some of the WA reconstructions. As discussed above, the over-representation of cold lakes in the
calibration dataset will likely bias species optima to colder values in a weighted average approach so there may
be a tendency for the model to underestimate temperature, especially during cold periods. This problem is
likely exaggerated when head capsule concentration is low, cold indicator taxa may have higher abundances
than would be the case if all taxa were accurately represented.

The DCCA results indicate that there was a distinct change in the composition of the chironomid
assemblage after 1600 cal yr BP (210 cm). This largely coincides with an increase in head capsule concentration,
possibly indicating an increase in lake productivity, and the shift in chironomid-inferred temperatures from low
to high. Indeed post 1600 cal yr BP, (210 cm) samples are inferred as being on average 2-3°C warmer than early
sections using Bayesian and WA models respectively.

Although the temperature reconstruction has a good ecological basis, because chironomids globally are
highly sensitive to temperature and Laguna Pindo is on an ecotonal boundary that is sensitive to temperature
changes, precipitation is influential as a secondary variable. The WA inverse MAT reconstruction, however, is
statistically significant based on the criteria described by Telford and Birks (2011a) (Fig 10) suggesting that
despite conflicting variables a temperature signal can be obtained from Neotropical chironomids.
5.6 Cooling climate 3800-2800 cal yrs BP

Changes in insolation are often inferred as the dominant driver of Holocene climate changes (Mayewski et al., 2004). The period between 3500-2500 cal yr BP is recognised globally as a period of rapid climate change, with changes in precipitation and temperature recorded globally from a range of different proxies (Mayewski et al., 2004; van Geel et al., 1999). The most notable feature of South American Holocene climate is the migration of the ITCZ, which affects rainfall patterns and is caused by changes in insolation affecting tropical Pacific sea surface temperatures (Bird et al., 2011; Haug et al., 2001). The period between 3800-2800 cal yrs BP is a time of erratic rainfall in the Caricao Basin of Venezuela, which resulted in pronounced aridity (Haug et al., 2001) and coincides with a maximum in Δ14C and 10Be, indicating a decline in solar output (Mayewski et al., 2004). The low chironomid-inferred temperatures between 3000-2500 cal yr BP probably reflect this decline in solar output allowing high Andean taxa to migrate down slope. Our data suggests reduced insolation, as well as changing precipitation patterns, could have the effect of cooling tropical climate.

5.7 Recent cooling

Prominent among climate fluctuations of the last millennium is the Little Ice Age (LIA), an event recognised globally from historical and proxy climate records (Jones and Mann, 2004; Mayewski et al., 2004). The peak and duration of the LIA varies around the globe. In the tropical Andes a cold period, identified as the LIA, has been recorded as early as 1180 AD (770 cal yr BP) and lasting as late as 1820 AD (130 cal yr BP) based on evidence of glacial advance in mountain glaciers (Polissar et al., 2006). The extent of LIA fluctuations remain unclear in the tropics due to the paucity of quantitative palaeoclimate data (Crowley, 2000). Variation in the sun’s energy output is regarded as the main driver of LIA cooling. Although the tropics receive 47% of planetary insolation, the climate response in the tropics to solar variability is poorly understood (Crowley, 2000; Polissar et al., 2006).

The chironomid-inferred temperatures from Laguna Pindo suggest cooler temperatures from 400 cal yrs BP (50 cm) (1550 AD), reaching a minimum c. 100 cal yrs BP (20cm)(1850 AD), before rising again to the present day. The inferred temperature minimum for this period is 17.7 ± 3.8°C which suggests a cooling of 2.2°C relative to the modern temperature. We caution this estimate is within the RMSEP of the inference model and only recorded in a single sample making any interpretations tentative. Multiple lines of evidence, however, do
support a cooling in the tropical Andes similar in magnitude to that inferred here. Glacier fluctuations indicate a cooler and wetter climate than today for the outer and inner tropics of South America between the 17th and 19th century (Jomelli et al., 2009). The Huascarán and Quelccaya ice core records (Thompson et al., 1986; Thompson et al., 1995) from Peru suggest the latter half of the Holocene was a period of long-term cooling, reaching a minimum during the LIA, synchronous with Northern Hemisphere cooling. Temperature estimates from stable isotope data are difficult to generate, however, as the proxy is affected by changes in snow surface histories (Thompson et al., 1986; Thompson et al., 1995). Polissar et al (2006), using pollen and evidence of glacial retreat from the Venezuelan Andes, estimated a mean annual temperature reduction of 3.2±1.4°C relative to modern averages during the LIA. The chironomid-inferred temperatures at Laguna Pindo do not show the late-Holocene cooling trend culminating in the LIA, as recorded in the Andean ice core records. Instead temperatures remain relatively stable from 1500 cal yrs BP (195 cm), with a peak for the entire 3000 year record c. 400 cal yrs BP (50 cm) (21.8°C), followed by a drop in temperatures of 3-4°C beginning around 200 cal yrs BP (30 cm). This fluctuation is similar in magnitude to other records from the tropical Andes (Polissar et al., 2006) however a higher resolution dataset is needed to investigate this trend further.

6. Conclusions

The chironomid fauna of the tropical Andes have been shown to be sensitive to climate variables, particularly temperature and precipitation. Both variables (MAT and MAP) meet the basic criteria for being used in an environmental reconstruction using the Andean calibration dataset. MAT, however, is an important determinant of chironomid species distribution and abundance and was therefore more appropriate to be reconstructed. The influence of precipitation should be explored further and must be considered as an important secondary variable especially when reconstructing past conditions in the region. It is very likely that the influence of precipitation noted here relates to the annual variability in rainfall across the Andes as opposed to overall amount making any quantitative interpretations even more difficult.

The two techniques used to develop inference models (WA and Bayesian) show comparable performance statistics (WA inverse model $R^2_{\text{jack}} = 0.890$, RMSEP$_{\text{jack}} = 2.404$, Mean bias$_{\text{jack}} = -0.017$, Max bias$_{\text{jack}} = 4.665$; Bayesian model $R^2_{\text{jack}} = 0.909$, RMSEP$_{\text{jack}} = 2.373$, Mean bias$_{\text{jack}} = 0.598$, Max bias$_{\text{jack}} = 3.158$). This work demonstrates a
proof of method, however, a larger calibration dataset with a more even coverage of calibration sites is needed in order to improve model performance. The Bayesian approach provided a transparent reconstruction less susceptible to the effect of an uneven distribution of calibration sites and performed particularly well during periods of low count size and when inferring cold intervals. The chironomid-based MAT reconstruction from the Laguna Pindo fossil record suggests that periods of low solar output not only affect the tropics through changes in precipitation, but also directly affect tropical temperatures. Inferred temperatures were 2-3°C cooler relative to the modern during the widely recognised 3500-2500 cal yr BP cooling event. Long-term cooling during the late Holocene is not apparent in the Laguna Pindo record. However, temperatures do cool by 1-2.2°C relative to the modern during the LIA period, although this is only noted in a single fossil sample.

Knowledge of past tropical climate dynamics is fundamental not only to understanding regional climate but also global climate patterns and hemispherical teleconnections. Quantitative temperature proxies, such as chironomids, will provide valuable data on past climate variability in the region. The reconstructions presented here demonstrate the potential of the proxy and also highlights the complexity of late-Holocene climate change in tropical South America.

Acknowledgements

Funding was provided by the Natural Environment Research Council (NERC), UK. NERC grant (ref: NE/J018562/1) was awarded to E. Montoya and (ref: NE/J500288/1) awarded to F. Matthews-Bird. This work was supported by the NERC Radiocarbon Facility NRCP010001 (allocation number 1682.1112) Special thanks to Dr Pauline Gulliver for her continuous involvement and support during radiocarbon dating. The authors also wish to thank Mark Bush, Francis Mayle, Yarrow Axford, Alex Chepstow-Lusty and Mick Frogley for their kind donation of samples.
References

25

722 M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H., (Eds.), Cambridge University Press,
723 United Kingdom and New York, NY, USA.
724
725 Johnsen, S.J., Dahl-Jensen, D., Gundestrup, N., Steffensen, J.P., Clausen, H.B., Miller, H., Masson-Delmotte, V.,
727 Greenland ice-core stations: Camp Century, Dye-3, GRIP, GISP2, Renland and NorthGRIP. J. Quat. Sci. 16,
729
731 tropical Andes over the last millennium and palaeoclimatic implications: A review. Palaeogeogr.
733
735 doi:10.1029/2003RG000143 CONTENTS
736
738 64, 20–32. doi:10.1016/j.quascirev.2012.12.014
739
741 Lotter, A.F., Juggins, S., Smol, J.P. (Eds.), Tracking Environmental Change Using Lake Sediments,
743
745 S., Smol, J.P. (Eds.), Tracking Environmental Change Using Lake Sediments, Developments in
746 Paleoenvironmental Research 5, Developments in Paleoenvironmental Research. Springer Netherlands,
748
750 American summer monsoon over the last seven millennia: insights from a speleothem record from the
752
755
756 Markgraf, V., 1989. Palaeoclimates in Central and South America since 18,000 BP based on Pollen and lake-level
758
759 Massaferro, J., Larocque, I.T., 2013. Using a newly developed chironomid transfer function for reconstructing
761 doi:10.1016/j.ecolind.2012.06.017
762
764 Quantifying climate change in Huelmo mire (Chile, Northwestern Patagonia) during the Last Glacial
765 Termination using a newly developed chironomid-based temperature model. Palaeogeogr. Palaeoclimatol.
766 Palaeoecol. 399, 214–224. doi:10.1016/j.palaeo.2014.01.013
767
769 controls on the distribution and diversity of lentic Chironomidae (Insecta : Diptera) across an altitudinal
771
772 Mayewski, P.A., Rohling, E.E., Curt Stager, J., Karlén, W., Maasch, K.A., David Meeker, L., Meyerson, E. a., Gasse,
773 F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R.,
775
776 Smol, J.P. (Eds.), Tracking Environmental Change Using Lake Sediments, Developments in
777 Palaeolimnology: new paradigm or sick science? Quat. Sci. Rev. 94
778 doi:10.1016/j.quascirev.2013.05.008
779 authors will also be given on the journal website.

Thompson, L., Mosley-Thompson, E., Dansgaard, W., Grootes, P., 1986. The Little Ice Age as Recorded in the Stratigraphy of the Tropical Quelccaya Ice Cap. Science (80-) 234, 361–364.

Table captions

Table 1
Summary of the physical and chemical properties of the 59 calibration data set lakes including the total number of head capsules retrieved from each lake and the concentration of head capsules per gram of sediment. MAT = mean annual temperature, MAP = mean annual precipitation, LOI = loss-on-ignition.

Table 2
Results of detrended canonical correspondence analysis (DCCA) using single constraining variables. MAT = mean annual temperature, WT = water temperature, MAP = mean annual precipitation, LOI = Loss-on-ignition.

Table 3
Summary of the performance statistics of chironomid-based MAT inference models developed using classical and Bayesian methods based on leave one out cross validation. Weighted averaging inverse and classical (WAinv, WAcla), Weighted averaging partial least squares (WA-PLS), coefficient of determinant between predicted and observed (r^2_{jack}), root mean squared error of prediction (RMSEP$_{jack}$) as % of the gradient.
Tables

Table 1

<table>
<thead>
<tr>
<th>Calibration data set</th>
<th>Minimum</th>
<th>Mean</th>
<th>Median</th>
<th>Maximum</th>
<th>Std dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductivity (µs)</td>
<td>5.9</td>
<td>363</td>
<td>185</td>
<td>3205</td>
<td>579</td>
</tr>
<tr>
<td>Depth (m)</td>
<td>0.1</td>
<td>5</td>
<td>2.2</td>
<td>25</td>
<td>5.4</td>
</tr>
<tr>
<td>Elevation (m a.s.l)</td>
<td>150</td>
<td>3142</td>
<td>3845</td>
<td>4655</td>
<td>1459</td>
</tr>
<tr>
<td>Latitude (S)</td>
<td>0.1</td>
<td>11.2</td>
<td>14.2</td>
<td>17.3</td>
<td>6.2</td>
</tr>
<tr>
<td>Longitude (W)</td>
<td>64.4</td>
<td>71.6</td>
<td>70.3</td>
<td>74.8</td>
<td>4.5</td>
</tr>
<tr>
<td>LOI (%)</td>
<td>0</td>
<td>19</td>
<td>13</td>
<td>80</td>
<td>16</td>
</tr>
<tr>
<td>MAT (°C)</td>
<td>0.8</td>
<td>12</td>
<td>10</td>
<td>25</td>
<td>7</td>
</tr>
<tr>
<td>MAP (mm/year)</td>
<td>468</td>
<td>1222</td>
<td>769</td>
<td>4421</td>
<td>952</td>
</tr>
<tr>
<td>pH</td>
<td>5.7</td>
<td>8</td>
<td>7.9</td>
<td>10.2</td>
<td>1.1</td>
</tr>
<tr>
<td>Total Head Capsules</td>
<td>23</td>
<td>77</td>
<td>76</td>
<td>164</td>
<td>35</td>
</tr>
<tr>
<td>Water Temperature (°C)</td>
<td>5</td>
<td>15</td>
<td>13</td>
<td>33</td>
<td>6</td>
</tr>
<tr>
<td>Head capsule/gram</td>
<td>2</td>
<td>27</td>
<td>22</td>
<td>105</td>
<td>22</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>Variance Explained (%)</th>
<th>λ_1/λ_2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT</td>
<td>12.93</td>
<td>1.431</td>
<td>0.001</td>
</tr>
<tr>
<td>MAP</td>
<td>10.3</td>
<td>0.900</td>
<td>0.001</td>
</tr>
<tr>
<td>WT</td>
<td>11.21</td>
<td>1.230</td>
<td>0.001</td>
</tr>
<tr>
<td>pH</td>
<td>6.23</td>
<td>0.500</td>
<td>0.001</td>
</tr>
<tr>
<td>LOI</td>
<td>3.23</td>
<td>0.239</td>
<td>0.062</td>
</tr>
<tr>
<td>Depth</td>
<td>2.44</td>
<td>0.190</td>
<td>0.240</td>
</tr>
<tr>
<td>Conductivity</td>
<td>2.34</td>
<td>0.179</td>
<td>0.296</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Model</th>
<th>R^2_{jack}</th>
<th>RMSEP$_{jack}$</th>
<th>Mean bias$_{jack}$</th>
<th>Max bias$_{jack}$</th>
<th>% change</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA (inv)</td>
<td>0.890</td>
<td>2.404</td>
<td>-0.017</td>
<td>4.665</td>
<td>-</td>
</tr>
<tr>
<td>WA (cla)</td>
<td>0.890</td>
<td>2.475</td>
<td>-0.035</td>
<td>4.279</td>
<td>-2.936</td>
</tr>
<tr>
<td>WA-TOL (inv)</td>
<td>0.851</td>
<td>2.831</td>
<td>-0.182</td>
<td>6.498</td>
<td>-</td>
</tr>
<tr>
<td>WA-TOL (cla)</td>
<td>0.852</td>
<td>2.951</td>
<td>-0.211</td>
<td>7.350</td>
<td>-4.263</td>
</tr>
<tr>
<td>WA-PLS (1)</td>
<td>0.889</td>
<td>2.431</td>
<td>0.094</td>
<td>4.891</td>
<td>-</td>
</tr>
<tr>
<td>WA-PLS (2)</td>
<td>0.890</td>
<td>2.412</td>
<td>0.109</td>
<td>3.982</td>
<td>0.766</td>
</tr>
<tr>
<td>WA-PLS (3)</td>
<td>0.869</td>
<td>2.617</td>
<td>0.096</td>
<td>5.558</td>
<td>-8.483</td>
</tr>
<tr>
<td>WA-PLS (4)</td>
<td>0.866</td>
<td>2.659</td>
<td>0.199</td>
<td>5.922</td>
<td>-1.592</td>
</tr>
<tr>
<td>WA-PLS (5)</td>
<td>0.875</td>
<td>2.568</td>
<td>0.213</td>
<td>6.201</td>
<td>3.409</td>
</tr>
<tr>
<td>Bayesian</td>
<td>0.909</td>
<td>2.373</td>
<td>0.598</td>
<td>3.158</td>
<td></td>
</tr>
</tbody>
</table>
Figure captions

Figure 1
Location of the calibration data set lakes (black circles) and Laguna Pindo (white triangle).

Figure 2
Figure 2: Canonical correspondence analysis (CCA) of the calibration data set lakes and environmental variables with elevation and longitude removed after variance inflation analysis. MAP=mean annual precipitation, MAT=mean annual temperature, WT= water temperature, LOI=loss-on-ignition. Grey circles denote calibration lakes, dark grey triangles mark species. All species could not be labelled due to crowding; instead nine important taxa have been marked as examples.

Figure 3
Chironomid taxa in the modern calibration dataset lakes. Lakes are ordered (top to bottom) from cold to warm and chironomids are ordered by occurrence from cold to warm lakes. Only taxa present in three or more lakes are included. Dashed line shows a gap in calibration data set lakes between 16-20 °C of the MAT gradient. Detrended canonical correspondence analysis (DCCA) constrained by MAT shows the taxon turnover across the gradient. Head capsule concentration (hc/gram) is also included.

Figure 4
Weighted-average and Bayesian optima (solid grey circles) and tolerances (thick lines) of the 55-chironomid taxa included in the calibration dataset, MAT Range (dashed lines). Taxa are organised by WA temperature optima from cold to warm.

Figure 5
Model performance of the best performing classical method (WA) and Bayesian approach. A=weighted averaging method; B=Bayesian method. WA: $R^2_{jack}=0.890$, RMSEP$_{jack}=2.404$, Mean bias$_{jack}=-0.017$, Max bias$_{jack}=4.665$. Bayesian: $R^2_{jack}=0.909$, RMSEP$_{jack}=2.373$, Mean bias$_{jack}=0.598$, Max bias$_{jack}=3.158$.
Figure 6

Diagram of fossil chironomid assemblage of Laguna Pindo. Five significant zones were identified using optimal partitioning with a broken stick model. Detrended canonical correspondence analysis (DCCA) constrained by calibrated radiocarbon age shows taxon turnover through time. Only taxa with relative abundances greater than 5% are shown. SD=standard deviation, hc/gram= head capsules per gram of wet sediment.

Figure 7

Chironomid-inferred mean annual temperatures (MAT) at Laguna Pindo using the WA inverse (grey) and Bayesian (black) models. Sample specific errors for the WA model are obtained through bootstrapping 999 cycles. Errors of the Bayesian reconstruction are site-specific uncertainties. Key late-Holocene climate events are shaded in grey. LIA=the range of the earliest and latest date for the Little Ice Age in South America (Polissar et al., 2006). 3500-2500 global cooling event (Mayewski et al., 2004), note, however, the Laguna Pindo record only extends to 3000 cal yrs BP.

Figure 8

Distribution of Laguna Pindo fossil samples (black circles) included passively within a CCA of the calibration data set lakes (grey circles) constrained using the significant environmental variables. MAP= mean annual precipitation, MAT= mean annual temperature, WT= water temperature. The first and last fossil sample in the sedimentary sequence has been labelled (total sediment depth); there are no directional trends through time. Calibration lakes that lie at similar elevations as Laguna Pindo have been labelled.

Figure 9

(left to right): Chironomid-inferred WA classical MAT with sample specific errors generated using bootstrapping. Bayesian reconstruction with sample specific errors. Goodness-of-fit of the fossil assemblages to temperature, vertical dotted line indicates the 90th percentile of squared residual distances of modern samples to first axis in a CCA; samples to the right of the line have a poor fit-to-temperature. Nearest modern analogue analysis,
vertical dotted line indicates the 5th percentile of squared chord distances of the fossil samples in the modern calibration data set; samples to the right of the line have no good modern analogues. Detrended canonical correspondence analysis (DCCA) sample scores with radiocarbon age used as the sole constraining variable. Head capsule concentration per gram of sediment. Zones are derived from optimal partitioning of fossil assemblages using a broken stick model to define significant zones. Sq res dis= square residual distance; Sq chrd dis= square chord distance; SD units= standard deviation units; hc/gram=head capsule per gram of sediment.

Figure 10

Histogram of the proportion of variance in the chironomid MAT transfer function explained by 999 transfer functions trained on random environmental variables. Solid black line denotes the proportion of variance explained by the chironomid WA inverse MAT transfer function. Black dashed line marks the proportion of variance explained by the first axis of PCA of the fossil data. Grey dashed line marks the 95% variance of the random reconstructions.

Figure 11

Individual likelihood functions for the fossil taxa in the coldest sample of the Laguna Pindo sequence (396 cm total depth, c. 2700 cal yr BP). The posterior probability distribution for temperature for the fossil sample is plotted in red, note this is plotted on an independent axis.
Figures

Figure 1

![Figure 1](image-url)
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

![Graph showing chronological inferred MAT (°C) versus age (cal yr BP) with confidence intervals. The graph highlights the Little Ice Age (LIA) and a 3500-2500 cal yr BP event.]

- **Axes:**
 - Y-axis: Chronological inferred MAT (°C)
 - X-axis: Age (cal yr BP) and Total depth (cm)

- **Legend:**
 - Black line: Bayesian
 - Gray line: 500 yr

- **Event Markers:**
 - LIA
 - 3500-2500 cal yr BP event

- **Time Periods:**
 - Present
 - 200
 - 600
 - 800
 - 1200
 - 1600
 - 1800
 - 2000
 - 2200
 - 2400
 - 2600
 - 2800
 - 3000
Figure 8
Figure 9

[Graph showing various data layers and zones labeled 1 to 5]
Figure 10
Figure 11