Inorganic data from El’gygytgyn Lake sediments: stages 6–11

P. S. Minyuk¹, V. Ya. Borkhodoev¹, and V. Wennrich²

¹North-East Interdisciplinary Scientific Research Institute of Far East Branch of Russian Academy Science, Magadan, Russia
²University of Cologne, Institute for Geology and Mineralogy, Cologne, Germany

Received: 14 November 2012 – Accepted: 3 January 2013 – Published: 21 January 2013

Correspondence to: P. S. Minyuk (minyuk@neisri.ru)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Geochemical study was performed on sediment of deep drilling core from El’gygytgyn Lake, located in central Chukotka, northeastern Russia (67°30′ N; 172°05′ E). Major and rare elements were determined by X-ray fluorescence spectroscopy (XRF) on 600 samples covering the timeframe between ca. 450 and 125 ka corresponding to Marine Isotope Stages (MIS) 11 to 6. Inorganic geochemistry data indicates significant variations in the elemental compositions corresponding to the glacial and interglacials periods. Interglacial sediments are characterized by high contents of SiO$_2$, Na$_2$O, CaO, K$_2$O, Sr and are depleted in Al$_2$O$_3$, Fe$_2$O$_3$, TiO$_2$, MgO. Extreme enrichments in SiO$_2$ during MIS 11.3 and 9.3 are caused by an enhanced flux of biogenic silica (BSi). Geochemical structure of stage 11 shows very similar peculiarities to features of stage 11 from records of Lake Baikal/SE Siberia and Antarctic ice cores. High contents of TiO$_2$, Fe$_2$O$_3$, MgO, Al$_2$O$_3$, LOI, Ni, Cr and Zr are typical for sediments of glacial stages, among those MIS 7.4 and 6.6 are the most marked. Peaks in the Fe$_2$O$_3$ content and coinciding low Fe$_2$O$_3$/MnO ratios during glacials indicate reducing condition in the sediments. This is also supported by enrichments in P$_2$O$_5$ and MnO, indicating an increased abundance of authigenic fine grained vivianite. Some elemental ratios indicate an enhanced alteration of glacial sediments accompanied by a loss of mobile elements, like Na, Ca, K and Sr. The higher alteration of sediments can presumably be traced back to changes in the sedimentation regime and diagenetic processes, and thus, reflects environmental changes.

1 Introduction

1.1 Location and setting

Lake El’gygytgyn is located in central Chukotka, northeastern Russia (67°30′ N; 172°05′ E). The lake measures approximately 12 km across and 174 m depth and is...
placed in an 18-km wide meteorite crater (Fig. 1), which was created 3.58 ± 0.04 Ma in Upper Cretaceous volcanic rocks (Layer, 2000). Approximately 50 streams draining a catchments area of ca. 293 km2 into the lake are mostly less than 5 km long (Nolan and Brigham-Grette, 2007). The Enmyvaam River as only outlet exits the lake to the south. The lake water is characterized low ion concentrations. Minimum and maximum values measured in spring and summer 2003 along vertical profiles through the water column at site Lz1024 and Lz1079 are: $\text{Ca}^{2+} = 0.71–1.05$ (Lz1024), 0.69–0.72 (Lz1079); $\text{Mg}^{2+} = 0.11–0.19$ (Lz1024), 0.11–0.12; $\text{Na}^+ = 0.53–1.24$ (Lz1024), 0.49–0.57 (Lz1079); $\text{K}^+ = 0.14–0.19$ (Lz1024), 0.18–0.22 (Lz1079). The pH values of 6.2–6.5 (Lz1024) and 5.7–5.9 (Lz1079) indicate that Lake El’gygytgyn is circumneutral to weakly acidic (Cremer and van de Vijver, 2006).

The catchments surrounding lacustrine basin to the north, west, and east primarily consists of ignimbrites and tuffs of the Pykarvaam and Ergyvaam Formations (Bely and Raikevich, 1994; Fig. 1b). The Voronian (ignimbrites, tuffs) and Koekvun’ formations (andesite-basalts, tuffs, tuffaceous sands) are also present, but not as prevalent in the catchment area (Bely and Belaya, 1998; Bely and Raikevich, 1994). The crater rim is composed of hills reaching an altitude of 850–950 m.

According to geochemical data reported by Bely and Belaya (1998) the Pykarvaam and Ergyvaam formations are predominantly of acid composition and plot in the rhyolite field on total alkali-silica (TAS) diagram (Le Maitre et al., 2002; Fig. 2). Rocks of the Voronian formation are located in the andesite field, whereas Koekvun’ formation plots in the basaltic andesite area. Chemical and physical weathering products from these rocks make up the majority of clastic deposition into the lake.

1.2 Inorganic geochemistry background

The first geochemical data of sediments from Lake El’gygytgyn were obtained from cores PG1351 (ca. 13 m) and Lz1024 (ca. 16 m) with basal ages of ~250 and 350 kyrBP, respectively (Minyuk et al., 2007, 2011). According to the distribution of major and rare elements, the core sequences were divided in geochemical zones.
corresponding to MIS 1–10. It was shown that sediment from the warm climatic stages, which are represented by massive unstratified silts, are enriched in SiO$_2$, CaO, Na$_2$O, K$_2$O, and Sr, but are depleted and has low contents of TiO$_2$, Al$_2$O$_3$, MgO, Fe$_2$O$_3$, and LOI. Sediments from the cold stages are more chemically altered as visible in higher values of the chemical index of alteration (CIA), plagioclase index of alterations (PIA), and the Rb/Sr ratio (Minyuk et al., 2007, 2011).

2 Methods

For elemental analyses, altogether 600 samples from the uppermost ca. 20 m of the composite profile of cores 5011-1 (Melles et al., 2011, 2012) were taken at regular 2-cm intervals. After freeze-drying, the samples were sieved to remove particles > 0.25 mm mostly consisting of rocks fragments and vivianite nodules. The major elements in the sediments were analyzed using a multichannel WDXRF spectrometers SRM-25 (USSR) and S4 Pioneer X-ray fluorescence spectrometer (Bruker, Germany). For analyses by the SRM-25 spectrometer, dry sediment samples were fused with lithium tetraborate (Li$_2$B$_4$O$_7$) flux in a mass ratio of 1 : 1, and subsequently ground and layered with a boric acid base. X-ray fluorescence of K$_\alpha$-lines was determined over a measurement time of 100 s by exposing the alloy to X-radiation generated by a Rh-anode tube set to 50 kV and 40 mA. Elemental compositions were determined using the fundamental parameters method (Borkhodoev, 2002). Wave-length dispersive X-ray fluorescence analyses of elements were conducted by a Pioneer S4 spectrometer using a Rh-anode tube at voltage of 50 kV and a current 40 mA as primary radiation. The Pioneer S4 was equipped with a LiF200 analyzing crystal, a flow proportional detector, a collimator with angular aperture of 0.23° to register the analytical signal. The background near Ce L$_\beta_1$ line was measured on the short wavelength side, while the background near Ba L$_\beta_1$ line was measured on long wavelength side.

Rare elements were determined by a VRA-30 XRF spectrometer (Germany). Sediment powders were measured in a cup with a 25 µm thick mylar window. The
intensity of the Rb, Sr, Y, Zr and Nb Kα-lines were determined after radiation with an Rh-anode at 50 kV and 40 mA. The elemental composition was achieved using the standard-background method. The Compton scattered Kα-lines of the X-ray tube target were used to correct for matrix effects and to determine the background radiation (Borkhodoev, 1998). The lower detection limits of elemental determination by this method were 4 ppm for Rb, Y, Sr and Zr, and 3 ppm for Nb.

The loss on ignition (LOI) method was performed to estimate relative organic matter contents. Samples were heated to temperatures of 550 and 1000 °C over one hour, and the LOI was calculated from the weight loss was measured (Heiri et al., 2001).

Weight low-field AC magnetic susceptibility of discrete samples was measured on kappabridge MFK1-FA (AGICO Ltd., Brno, Czech Republic). Hysteresis parameters, including the saturation magnetization (\(J_s\)), induced magnetization (\(J_i\)), saturation remanence (\(J_{rs}\)), coercive force (\(B_c\)), and remanence coercivity (\(B_{cr}\)) were measured by an automatic coercive spectrometer (Burov et al., 1986). The relative content of the paramagnetic component of magnetization (\(J_p\)) was calculated by the formula \([J_i (\text{at 500 mT}) - J_s (\text{ferromagnetic component})]/J_i (\text{at 500 mT})\).

3 Results and discussion

The geochemical characteristics of lacustrine sediments depends on many factors including the chemical composition of provenance, physical and chemical weathering processes in catchment, tectonic activity, sorting during sediment transport and sedimentation as well as diagenetic changes (e.g. Fralick and Kronberg, 1997).

3.1 Elemental concentrations

The various element distributions along the studied depth interval of the Lake El’gygytgyn core display significant parallel or opposite variations (Fig. 3). There are strong negative correlation between SiO\(_2\) and Al\(_2\)O\(_3\) (\(r = -0.89\)), SiO\(_2\) and Fe\(_2\)O\(_3\)
(\(r = -0.82\)), \(\text{SiO}_2\) and \(\text{MgO}\) \((r = -0.81)\) and strong positive correlation between \(\text{Al}_2\text{O}_3\) and \(\text{Rb}\) \((r = 0.82)\), \(\text{TiO}_2\) and \(\text{MgO}\) \((r = 0.83)\), \(\text{TiO}_2\) and \(\text{Zr}\) \((r = 0.82)\), \(\text{CaO}\) and \(\text{Sr}\) \((r = 0.83)\), \(\text{K}_2\text{O}\) and \(\text{Rb}\) \((r = 0.89)\), \(\text{K}_2\text{O}\) and \(\text{Ba}\) \((r = 0.86)\), \(\text{Cr}\) and \(\text{Ni}\) \((r = 0.78)\) (Table 1). On the basis of the variability of the inorganic compounds, geochemical ratios, LOI, indices of chemical weathering and alterations the core sequence is divided into two groups of geochemical zones affected by different environmental conditions and climate occur during glacial/stadials and interglacials. Taking into consideration the age model based on magnetostratigraphy and tuning of proxy data to the regional insolation (Nowaczyk et al., 2007, 2013; Melles et al., 2012) the geochemical zones were correlated with marine isotope stages that are displayed on Fig. 3 as blue (cold stages) and yellow (warm stages) bars. Arabic numerals of the stages and substages on figures and in text are given in according to (Bassinot et al., 1994).

3.1.1 \(\text{SiO}_2\)

The \(\text{SiO}_2\) content in the sediments of cold stages varies between 56.98 and 70.81 % (average 67.12 %), which is remarkably lower then \(\text{SiO}_2\) content in the volcanic rocks of Pykarvaam and Ergyvaam formations (71.01 %). \(\text{SiO}_2\) contents during warm stages averages 70.60 %. In two horizons at depths of 18.41–18.77 and 15.77–16.11 m the \(\text{SiO}_2\) contents reach its maximum values in the entire sequence of 76.30 and 80.49 %, respectively. According to the age-depth model these horizons correlate to MIS 11.3 at 430–390 ka and MIS 9.3 at 340–320 ka. The \(\text{SiO}_2\) enrichment in these zones is caused by high BSi contents and represents levels of high primary production in lake.

The \(\text{Si}/\text{Ti}\) ratio is positive correlated with biogenic silica and have been previously used as relative indicator of biogenic component in sediments of Lake El’gygytgyn (Melles et al., 2012) and Lake Baikal (Tanaka et al., 2007).

Large scale variations of the \(\text{SiO}_2\) and \(\text{TiO}_2\) contents indicate a generally strong negative correlation \((r = -0.74)\) due to dilution of \(\text{TiO}_2\) by biogenic silica. This strong correlation is especially valid for 70 samples from stages 11.3, 9.3 and partly 7.1 and 5.5 where \(\text{SiO}_2\) exceed 71 %. The either very poor \((R^2 = 0.17, \text{interglacials})\) or lacking
linear correlation between SiO$_2$ and TiO$_2$ ($R^2 = 0.07$, glacials) for the remaining 530 samples from interglacials and glacial, respectively, suggest only a neglectable dilution by BSi (Fig. 4a). The strong positive correlation between SiO$_2$/TiO$_2$ and TiO$_2$/Al$_2$O$_3$ ($R^2 = 0.73–0.75$, Figs. 4b and 5) for these samples indicate that SiO$_2$/TiO$_2$ ratio related to degree alteration of sediment.

SiO$_2$/Al$_2$O$_3$ ratios of interglacial and glacial sediments average 4.45 and 3.72, respectively, with constant SiO$_2$/Al$_2$O$_3$ ratios and a high linear correlation for warm stages ($R^2 = 0.88$), whereas sediments from cold stages are depleted in Al$_2$O$_3$ ($R^2 = 0.26$; Fig. 4d). A decrease in the SiO$_2$/Al$_2$O$_3$ ratio is considered to be either related to a decreasing grain size or a lower textural maturity (e.g. Weltje and Eynatten, 2004). Thus, the SiO$_2$/Al$_2$O$_3$ data of Lake El’gygytgyn indicate sediments from cold stages to consist either of more fine-grained material or to be more matured. The first is supported by grain-size data showing higher clay to fine silt contents during glacial times (Francke et al., 2013). In contrast, higher mean SiO$_2$/Al$_2$O$_3$ ratio of bedrock samples from the Pykarvaam and Ergyvaam Formations of 4.70 indicate the lower maturity of the fresh rocks compare to the lake sediments.

3.1.2 TiO$_2$, Al$_2$O$_3$, Fe$_2$O$_3$

In lacustrine environments, the contents of Ti and Al have previously shown to be good measures of intensity of detrital input (Whitlock et al., 2008), rainfall intensity and runoff (Juyal et al., 2009), as well as the flooding season (Yi et al., 2006) and catchment erosion (Panizzo et al., 2008).

The concentrations of TiO$_2$ and Al$_2$O$_3$ are enriched in the glacial sediments, with mean Al$_2$O$_3$ contents of 16.36 and 18.08 % and mean TiO$_2$ contents of 0.61 and 0.82 % during interglacials and glacial, respectively. The mean TiO$_2$ and Al$_2$O$_3$ contents of rocks of the Pykarvaam + Ergyvaam formations are 0.36 and 15.15 %, respectively.

The good correlation of Al$_2$O$_3$ and SiO$_2$ (Fig. 4c) indicate the overall Al$_2$O$_3$ variations on a interglacial/glacial scale to be largely triggered by variations in the BSi flux. The
weak correlation of SiO$_2$ and TiO$_2$ imply a only minor dilution effect, which is restricted
to peak interglacials. In contrast, Ti seems to be more controlled by grain-size vari-
tions. Sediments of warm stages consist of massive silt, while the cold stage sediments
comprise of laminated silt and clay (Francke et al., 2012; Melles et al., 2011, 2012).
Thus, titanium is supposed to be mainly concentrated in the fine fraction. This is also
supported by the lower TiO$_2$ concentrations in the bedrock samples. A similar enrich-
ment of Ti in the silt and clay fraction is also documented for weathered granitic rocks
in Spain (Taboada et al., 2006) or Archaean rock in Canada (Fralick and Kronberg,
1993).

The TiO$_2$/Al$_2$O$_3$ ratio that has been often used as an indicator of the provenance
of sediments but also on the degree of sediment alteration (Migdisov, 1960; Young
and Nesbitt, 1998; Yudovich and Ketris, 2011) averages 0.037 and 0.045 in warm
stage sediments and cold stage sediments, respectively, and 0.032 in the unweath-
ered volcanic rocks. The Al$_2$O$_3$ vs. TiO$_2$ diagram show a rather straight, linear trend
for interglacial sediments ($R^2 = 0.55$), while cold sediments display scatter distribution
($R^2 = 0.024$) (Fig. 4e). Higher TiO$_2$/Al$_2$O$_3$ ratios during glacial periods in combination
with lower Al$_2$O$_3$ contents suggest a higher alteration intensity, likely due to the loss
of Al-rich phases under intense weathering (Young and Nesbitt, 1998). On the other
hand, higher titanium contents in finer-grained cold stage sediments also cause the
TiO$_2$/Al$_2$O$_3$ ratios to raise.

Mean Fe$_2$O$_3$/Al$_2$O$_3$ ratio averages 0.30 and 0.35 in interglacials and glacials, respec-
tively, but is diminished in the surrounding volcanic rocks (0.28). The Fe$_2$O$_3$–Al$_2$O$_3$
diagram exhibit a linear correlation during warm stages ($R^2 = 0.33$), whereas glacial
sediments display large scatter ($R^2 = 0.001$) (Fig. 4f). As visible in the parallel trend of
TiO$_2$ and Fe$_2$O$_3$, SiO$_2$/TiO$_2$ and SiO$_2$/Fe$_2$O$_3$ and the positive correlation in the TiO$_2$–
Fe$_2$O$_3$ diagram ($R^2 = 0.48$) (Figs. 3, 4d and 5), iron behaves very similar to titanium.

To investigate the Fe and Ti mineralogy in Lake El’gygytgyn sediment, we investi-
gated the correspondence of both elements to various magnetic parameters. During
glacial periods, sediments exhibit high Fe$_2$O$_3$ and TiO$_2$ contents but low a magnetic
susceptibility (MS), whereas interglacial sediments display the opposite. Consequently, data on Fe$_2$O$_3$–MS and TiO$_2$–MS diagrams show a scatter distribution (Fig. 6a and b) with low negative correlation coefficients (r) of −0.28 and −0.43 for Fe$_2$O$_3$ vs. MS, and TiO$_2$ vs. MS, respectively. This contradicts an enrichment of Ti and Fe in the detrital heavy mineral fraction, which has shown to be mirrored by a generally positive correlation of TiO$_2$ and Fe$_2$O$_3$ to the MS (e.g. Ortega et al., 2006; Parker et al., 2006; Reynolds et al., 2006; Vegas et al., 2010). MS includes both ferromagnetic and paramagnetic components that can be distinguished by determining the induced magnetization. TiO$_2$ and Fe$_2$O$_3$ yield only a very poor correlation to the ferromagnetic component (J_f) (Fig. 6c and d), but a strong correlation to the paramagnetic component (J_p) of induced magnetization (Fig. 6e and f). Hence, high TiO$_2$ contents in the glacial sediments don’t attribute to the typical ferromagnetic titaniferous minerals in sediments, like rutile, ilmenite or titanomagnetite, which would evoke a positive correlation of TiO$_2$ (Fe$_2$O$_3$) to MS and J_f. Thus, most Ti and Fe especially in the sediment of cold stages is supposed to be concentrated in paramagnetic Fe- or Ti-bearing minerals, like chlorite (Mg$_{3.5}$Fe$_{1.5}$Al$_2$Si$_3$O$_{14}$) with Fe and Mg acting as main elements (Boyle, 2002). The importance of chlorite as one main iron carrier in glacial sediments is indicated by a positive correlation of TiO$_2$ to MgO ($r = 0.83$) and Fe$_2$O$_3$ to MgO ($r = 0.65$). This is supported by clay mineral analyses of Lake El’gygytgyn sediments of the past 65 ka showing cold stages to be typically enriched in chlorite (Asikainen et al., 2007).

3.1.3 P$_2$O$_5$, MnO

P$_2$O$_5$ and MnO concentrations show a parallel with strong fluctuations throughout the core profile (Fig. 3) resulting in a correlation coefficient of 0.55. Both elements are strong positively correlated to Fe$_2$O$_3$ (Table 1). Peak contents of P$_2$O$_5$ and MnO were found at depth of 18.85–18.39, 13.51–13.19, 12.19–11.51, 9.21–8.71, 7.26–6.99, and 6.65–6.39 m. Most of these intervals are attributed to the early parts of cold stages, as MIS 8.4, 7.4, 6.6, 6.4, and 6.2 with exception of the lowest interval (18.85–18.39 m) that corresponds to super interglacial MIS 11.3. All of these intervals exhibit high LOI
values as a proxy for relative content of organic matter (Fig. 5). These parallel enrichments in MnO and P$_2$O$_5$ and Fe$_2$O$_3$ are linked to the occurrence of authigenic fine-grained vivianite, whose formation is primarily controlled by Fe and P supersaturated porewaters, anoxic condition as well as the appearance of organic matter (Sapota et al., 2006). Electron-microprobe analyses reveal the presence of Fe$_2$O$_3$, P$_2$O$_5$ and MnO in nodules of vivianite. The Fe$_2$O$_3$ content in these nodules varies from 30.18 to 39.4 % (35.18 % in average), while P$_2$O$_5$ and MnO concentrations varies from 21.23 to 29.28 % (25.02 % in average), and from 0.67 to 6.34 % (2.06 % in average), respectively (Minyuk et al., 2012). Mn is described as a typical impurity in Baikal Lake vivianite (Fagel et al., 2005). In few samples from MIS 6 Fe-Mn aggregates could be identified by energy dispersive spectroscopy. Fe and Mn reacts very sensitive but slightly different to changes in the oxic-anoxic conditions, and thus, the Mn/Fe (or Fe/Mn) ratio is commonly used as indicator for palaeo-redox environments (e.g. Davison, 1993; Loizeau et al., 2001; Melles et al., 2012). Low values of the MnO/Fe$_2$O$_3$ ratio dominate in glacial sediments suggesting anoxic conditions in the bottom water and surface sediment during sedimentation (Figs. 4g, 5). Plots of Fe$_2$O$_3$ and the MnO/Fe$_2$O$_3$ ratio show a parallel behavior for the early intervals of MIS 6.6 and 7.4 and some levels during MIS 11.3. These are characterized by maxima of the Fe$_2$O$_3$ content and maxima of the MnO/Fe$_2$O$_3$ ratio accompanied by the occurrence of fine-grained vivianite indicating reducing condition in the lake (Mackereth, 1966).

3.1.4 Cr, Ni

The concentrations of Cr and Ni in the sediments of Lake El’gygytgyn fluctuate between 8 and 333 ppm (65 in average), and 9 and 1032 ppm (49 in average), respectively. Both elements exhibit a very similar down-core distribution (Fig. 3) as also indicated by a strong positive correlation ($r = 0.78$) (Fig. 4h, Table 1). Chromium and nickel are generally enriched during cold stages and MIS 11.3 but are depleted in warm stages (Fig. 3). The first are characterized by high abundances of total organic carbon (Melles et al., 2007, 2012), LOI (Fig. 5), and higher clay contents suggesting that Cr and Ni
might be absorbed by organic matter (e.g. Sharma et al., 2004) or clay minerals (e.g. Das and Haake, 2004; Pistolato et al., 2006). Geochemistry of surface sediment of lake indicates that main source of Cr and Ni are basaltic weathering product of southern shore (Wennrich et al., 2012).

3.1.5 Zr, Rb, Sr, Ba

Zr, Rb and Sr contents vary in the investigated sediment sequence of Lake El’gygytgyn between 81 and 257 ppm (172 ppm in average), 52 and 154 ppm (105 ppm in average), 112 and 249 ppm (187 ppm in average), respectively. The Sr content in the dominating Pykarvaam and Ergyvaam Formations averages 285 ppm. Rubidium shows a high positive correlation to Al$_2$O$_3$ ($r = 0.82$) and to K$_2$O ($r = 0.89$). Rubidium is in general negatively correlated to zirconium ($r = -0.66$), except for sediments of super interglacial stages 9.3 and 11.3 when both elements exhibit a parallel distribution presumably due to dilution by highest BSi contents. Zr shows strong positive correlation with TiO$_2$ ($r = 0.82$) and Sr is positive correlated with CaO ($r = 0.83$) (Table 1).

The Rb/Sr ratios of interglacials and glacialis varies from 0.32 to 1.03 (mean 0.52, $n = 308$) and between 0.41 and 1.24 (mean 0.62, $n = 292$), respectively. This is significantly higher then the average Rb/Sr ratio of volcanic rock surrounding Lake El’gygytgyn of 0.32 ($n = 18$) being very close to those from Upper Continental Crust (0.32) (Taylor and McLennan, 1985). As strontium as a mobile element gets lost during chemical weathering the rocks, thus, the resulting Rb/Sr ratio in weathered rock increases relative to fresh (e.g. Dasch, 1969). Hence, the Rb/Sr ratio have been applied to define provenances and elucidate the weathering history of different type of deposits including deep-sea, alluvial, lacustrine sediments, loess and paleosoils (e.g. Gallet et al., 1998; Goldberg et al., 2000). The increased Rb/Sr ratios of glacial sediments of Lake El’gygytgyn with respect to warm stages and surrounding rocks indicates a systematic Sr depletion due to higher alteration and seams to be controlled by grain-size variations as was report for Teletskoe Lake (Kalugin et al., 2007).
The Rb/Sr ratio strong positively correlated with Ba/Sr ratio (Table 2) used as an indicator of weathering and leaching intensity of sediments (e.g. Goldberg et al., 2000; Yang et al., 2006; Bokhorst et al., 2009). The Ba/Sr ratios vary from 1.60 to 4.10 (2.41 in average, $n = 302$) in interglacial and between 2.15 and 4.49 (2.72 in average, $n = 292$) in glacial sediments. The Ba and Rb content are strong positive correlated with K_2O (Table 1) support a K-feldspar source for these elements.

3.2 Geochemical indices

Different geochemical indices are used for quantitative estimations of alteration and weathering of rocks (e.g. Duzgoren-Aydin et al., 2002; Maslov et al., 2003; Price and Velbel, 2003; Yudovich and Ketris, 2011). Most of the indices are expressed as molecular or weight percentages of various oxides or groups of oxides. During chemical weathering, more labile minerals, like feldspar, are depleted in Ca$^{2+}$, K$^+$ and Na$^+$ and transform to minerals that are more stable under surface conditions. As the intensity of weathering increases, Al, Ti, Fe, and Mn become enriched in weathered rocks and sediments.

The distribution of selected indices exhibits parallel or opposite variations along the investigated sediment sequence (Fig. 5), with several indices being evaluated in Lake El’gygytgyn sediments (Table 2).

3.2.1 Chemical index of alteration

Chemical index of alteration (CIA) was defined by Nesbitt and Young (1982) using molecular proportions:

$$\text{CIA} = \left[\frac{\text{Al}_2\text{O}_3}{(\text{Al}_2\text{O}_3 + \text{CaO} + \text{NaO} + \text{K}_2\text{O})} \right] \cdot 100,$$

with CaO being the amount of CaO incorporated in the silicate fraction of the rock. CIA measures the proportion of Al$_2$O$_3$ versus more labile oxides and reflects the proportion of feldspars and clay minerals. According to Nesbitt and Young (1982), CIA for
unaltered albite, anorthite and potassic feldspar averages 50, and measures 30–40 for basalt, 45–55 for granites and granodiorites, 75–85 for illite, 75 for muscovite, and close to 100 for kaolinite and chlorite.

The CIA index has been previously used for estimations of the climatic control on chemical changes in various environments of different ages, including lacustrine sediments (e.g. Roman-Ross et al., 2002; Das and Haake, 2003; Roy et al., 2010). However, the CIA not exclusively reflects climatic conditions during weathering in the catchment, but can be influenced by post-deposition modifications of clay minerals, such as diagenetic illitization of smectite, which complicates estimation of alteration (Xiao et al., 2010).

In the sediment sequence of Lake El’gygytgyn, the CIA varies between 59.91 and 76.16 (65.84 in average) during warm and between 62.69 and 75.15 (69.40 in average) during cold stages (Fig. 5). Volcanic rocks of the El’gygytgyn area, in contrast, exhibit a CIA of 43.70–56.32 (49.71 in average).

Silicate weathering trends can be inferred from the Al$_2$O$_3$–(CaO + Na$_2$O)–K$_2$O ternary diagram (Nesbitt and Yang, 1984). For the sediments of Lake El’gygytgyn an obvious trend line parallel to the Al$_2$O$_3$–(CaO + Na$_2$O) boundary indicates a progressive depletions of Ca and Na during weathering in preference to K. Volcanic rocks plots close to the plagioclase-K-feldspar join line (Fig. 7a) supposing that feldspars are the dominant Al-bearing minerals. Beach pebbles from the lake, in contrast, plot slightly above the plagioclase-K-feldspar join line indicating a rather low chemical weathering. Sediments from cold and warm stages show an intermediate intensity of alteration with higher value for cold sediment (Fig. 7a). In general, sediment data plots below the smectite-illite join line suggesting that sediments of warm stages contain more feldspar. Enhanced concentrations of feldspar of surface sediment of Lake El’gygytgyn are linked to the high content of sand (Wennrich et al., 2012).
3.2.2 Plagioclase index of alteration

The plagioclase index of alteration (PIA) enables to estimate the weathering intensity of plagioclase (Fedo et al., 1995) and is calculated according to the following equation:

\[
[(\text{Al}_2\text{O}_3-\text{K}_2\text{O})/(\text{Al}_2\text{O}_3+\text{CaO}+\text{Na}_2\text{O}-\text{K}_2\text{O})] \cdot 100. \tag{2}
\]

The PIA in the Lake El’gygytgyn record vary from 63.81 to 86.35 (mean 71.80) in interglacial and from 67.44 to 84.92 (mean 75.95) in glacial sediments. Volcanic rocks of the lake catchment exhibit much lower PIA values of 43.02–59.79 (mean 49.99). The PIA of the pelagic sediments shows a strong positive correlation to other weathering indices (Table 2).

As demonstrate in the ternary diagram CaO–(Al$_2$O$_3$-K$_2$O)–Na$_2$O (Fig. 7b), sediment data and values of the dominating Pykarvaam and Ergyvaam Formations are located in the central part of diagram with a slight shift to the albite composition. The position of the glacial sediments closer to the Al$_2$O$_3$-K$_2$O apex of the diagram suggests a higher alteration compared to interglacial deposits (Fig. 7b).

3.2.3 Chemical index of weathering

The chemical index of weathering (CIW) was proposed by Harnois (1988) and is calculated using the equation:

\[
\text{CIW} = [\text{Al}_2\text{O}_3/(\text{Al}_2\text{O}_3+\text{CaO}+\text{NaO})] \cdot 100, \tag{3}
\]

with Al$_2$O$_3$ treated as an immobile component, and CaO and Na$_2$O used as mobile elements. Potassium, in contrast, is not involved because it may be leached or accumulated in the residual weathering products. Fedo et al. (1995) point out that aluminum in this index is used without any correction for Al in K-feldspar, and therefore K-feldspar–rich rocks yield very high CIW values. Potassic granite, for example, has a CIW of 80 and fresh K-feldspar has a CIW of 100, which is similar to values for residual products.
of chemical weathering (smectite: 80; kaolinite, illite, and gibbsite: 100) (Fedo et al., 1995).

The CIW ranges from 69.03 to 88.58 (72.28 in average) during interglacials and increase to 72.39–87.43 (79.42 in average) during glacial periods due to the depletion of Na and Ca relative to Al. In unweathered volcanic rocks of El’gygytgyn area index vary from 45.94 to 68.47 (mean 56.17).

3.2.4 Chemical proxy of alteration

The chemical proxy of alteration (CPA) (Buggle et al., 2010) is defined as:

$$\frac{\text{Al}_2\text{O}_3}{(\text{Al}_2\text{O}_3 + \text{Na}_2\text{O}) \cdot 100}$$ (4)

The CPA does not involve silicate CaO that difficult estimate in calcareous sediments and potassium because of its inconsistent behavior during chemical weathering. Index was proposed as geochemical proxy of silicate weathering for loess and paleosoil.

The CPA index of volcanic rock of El’gygytgyn area varies from 62.16 to 79.80 (average 73.33). In the sediments of Lake El’gygytgyn, the CPA value in sediments of warm stages ranges from 77.13 to 93.27 (average 82.82), whereas glacial sediments show CPA value between 80.70 and 92.18 (average 85.17) indicating high intensity of alteration of glacial sediment. The index is strong positively correlated with CIA, CIW and PIA in spite of K$_2$O and CaO does not involve for calculation (Table 2).

3.2.5 (CaO + Na$_2$O + MgO)/TiO$_2$ index

The ratio was defined for decarbonated sediments and is used to estimate the weathering intensity of loess deposits (Yang et al., 2006). In contrast to the previous element ratios, titanium is used as immobile component in this ratio. Yang et al. (2006) point out that the (CaO + Na$_2$O + MgO)/TiO$_2$ ratio behaves independently of grain size effects, and thus, the influence of transport-driven mineral differentiation is eliminated to a large extent.
In Lake El’gygytgyn sediments the ratio varies from 6.45 to 13.58 with interglacials showing a ratio of 7.39 to 13.58 (mean 10.2, n = 308) and glacials exhibiting ratios between 6.45 and 11.26 (mean 8.13, n = 292). The values of this index show parallel but reverse fluctuations to other indices, except for MIS 6.6 and 7.4 where lowest values correspond to high TiO$_2$ contents (Fig. 5). Volcanic rocks indicates index value of 17.8–42.2 (average 26.9, n = 19).

3.2.6 Silica–Titania index

The Silica–Titania index (STI) (de Jayawardena and Izawa, 1994) is defined as:

\[
\left[\frac{\text{SiO}_2/\text{TiO}_2}{(\text{SiO}_2/\text{TiO}_2 + \text{SiO}_2/\text{Al}_2\text{O}_3 + \text{Al}_2\text{O}_3/\text{TiO}_2)} \right] \cdot 100,
\]

and was developed to estimate the degree of chemical weathering of metamorphic silicate rocks.

The STI averages 84.39 and 82.17 for interglacial and glacial sediments, respectively, and 84.35 for volcanic rocks of El’gygytgyn area. In El’gygytgyn SiO$_2$ can be both of detrital and biogenic origin, and thus, the index rather reflects the relative intensity of primary diatom production than a geochemical alteration of sediments.

3.3 Geochemical indices as proxy for environmental changes

The distribution of geochemical varies between glacial and interglacial sediments suggesting different environmental condition. Glacial intervals show high values of CIA, CIW, PIA, CPA, Rb/Sr, Ba/Sr, LOI and low values of STI and the \((\text{CaO} + \text{Na}_2\text{O} + \text{MgO})/\text{TiO}_2\) ratio. The glacial sediments are higher altered compared to interglacial and volcanic rocks and depleted by potassium, sodium, calcium and strontium. This feature can be used for discrimination of the glacial and interglacial sediments. One possible explanation for the marked difference is that glacial sediments were more chemically weathered than interglacial sediments. It is considered that chemical weathering increase in warm and wet climate, although chemical weathering
is also active under cold climatic conditions (e.g. Darmody et al., 2000; Hall et al., 2002). Nevertheless, temperature and precipitation have been shown to be the main drivers of chemical weathering rates in watersheds (e.g. White and Blum, 1995). Surprisingly sediments from the super interglacial MIS 11.3 exhibit rather low weathering indices compared to glacial sediments, although maximum summer temperature and annual precipitation values of ~4 to 5°C and ~300 mm, respectively, higher than those of Holocene were reconstructed (Melles et al., 2012). Hence, climate-driven changes of the chemical weathering regime in the lake catchment on a glacial and interglacial timescale as origin of the geochemical difference of sediments are rather unlikely.

Furthermore, glacial to interglacial variations in the sediment geochemistry could be caused by changes in the provenance. But this explanation can be excluded due to the nature of Lake El’gygytgyn as a closed basin with a very restricted watershed bordered by the crater rim. Alternatively, the highly weathered material could have been transported by eolian processes from remote regions. Comparison the geochemical similarity of dominating volcanic rocks, pebbles and lake sediments disprove this suggestion. On the ternary Al$_2$O$_3$–(CaO + Na$_2$O)–K$_2$O and CaO–(Al$_2$O$_3$–K$_2$O)–Na$_2$O diagrams the various El’gygytgyn data plot parallel to the (CaO + Na$_2$O)–Al$_2$O$_3$ and Na$_2$O–(Al$_2$O$_3$–K$_2$O) axes, respectively, clearly indicating local volcanic rocks to be the major source of clastic material at the lake floor. Thus, any eolian input into the lake during glacials must derive from local weathering products of these rocks.

It is considered that grain-size sorting and diagenetic processes are important factors influencing the dissimilarity of geochemical indices. In Lake El’gygytgyn sediments three main lithological facies were defined indicating different sedimentation and transport conditions during glacial and interglacials (Melles et al., 2012). Glacial sediments (Facies A) consist of dark gray to black laminated silt and clay, whereas interglacial deposits (Facies B) are composed of olive-gray to brownish massive to faintly banded silt. Sediments of super interglacials (Facies C), such as MIS 11.3, in contrast, consist of reddish-brown finely laminated silt (Melles et al., 2012). Asikainen et al. (2007) pointed out that chlorite is the typical clay mineral in glacial sediments, whereas smectite
and illite are more abundant during interglacials. This is consistent with the distribution of major elements in sediment. Grain-size data of the clastic fraction (without organics, biogenic silica and vivianite crystals) indicate that sediment of MIS 1 contains more silty than glacial sediments richer in clay (Asikainen et al., 2007). According to Francke et al. (2013) warm periods are characterized by coarser hemipelagic sediments whereas finer ones occur during cold periods. A perennial ice cover on lake during peak glacial intervals obviously restricted the transport of coarse-grained less weathered sediments but enabled finer particles to be transported to central part of lake basin through cracks or moats around the shore in during summer (Asikainen et al., 2007). On other hand, precipitation was increased during interglacials, which together with geomorphology of crater slopes tends to favor erosion and denudation of weathered material to the lake. Permafrost in the lake vicinity promoted cryogenic weathering and solifluction processed with higher rates on south-facing slopes (Schwamborn et al., 2008).

Furthermore, the geochemical data imply that the sediment composition is additionally modified by in-lake processes complicating the interpretation of geochemical indices.

Interglacial sediments of MIS 9.3 and 11.3 and partly of MIS 7.1 and 5.5 show significantly higher BSi contents (Melles et al., 2012; Fig. 3) leading to a dilution of terrigenous material.

On the other hand, diagenetic processes obscured the detrital geochemical signals. The glacial facies is supposed to be accumulated under anoxic bottom water conditions (Melles et al., 2007, 2012) resulting in a dissolution of magnetic minerals (Nowaczyk et al., 2007). The formation of authigenic vivianite, Fe-Mn aggregates, pyrite and greigite indicates a strong post-depositional alteration of sediments during anoxia, which can also lead to partial dissolution of silicates are also accompanied by a loss of cations (Wallmann et al., 2008). A similar cations depletion in anoxic glacial sediments might explain high CIA, CIW, PIA, CPA values.
Obtained data indicate that geochemical indices and selected elemental ratios mirror sedimentation conditions and diagenetic processes that are triggered by environmental and climate changes during glacials and interglacials.

4 Geochemical structure of MIS 11

Marine isotope stage 11 is known to be the warmest and longest interglacial interval of the past 500 ka (e.g. Howard, 1997), and can be subdivided in substages 11.1, 11.22, 11.23, 11.24 and 11.3 (Bassinot et al., 1994).

On the basis of geochemical data substage 11.3 is further divided into three zones (Fig. 8). The lower zone (a) is characterized by a gradual increase of SiO$_2$, Na$_2$O, K$_2$O, CaO, Sr, and STI, and a decrease of TiO$_2$, Al$_2$O$_3$, MgO, Fe$_2$O$_3$, LOI, CIA, CIW, PIA, CPA typical for all warm stages. At 5 levels visible vivianite nodules (>0.25 mm) were found, and at additional 10 levels sediment includes coarse grains of sand and gravel that are supposed to be formed by ice-rafting during the break-off of the lake ice cover. Zone a is characterized by a distinct peak of geochemical data that resembles the distribution of biogenic silica in Lake Baikal (Prokopenko et al., 2006, 2010) and temperature reconstructions derived from the Antarctic ice core records marked as event 11.33 (Spahni et al., 2005).

The middle zone (b) of substage 11.3 exhibits a sharp SiO$_2$ increase due to a pronounced BSi maximum (Melles et al., 2012). A simultaneous drop to minimum values of TiO$_2$, Al$_2$O$_3$, MgO, but also Na$_2$O, CaO, K$_2$O, Rb, Sr, Zr, and Ba can presumably be traced back to dilution by biogenic silica. On the other hand, values of LOI, Cr and Ni are remarkably increased during zone b as common for glacial intervals, but the Ni and Cr peaks do not coincide with those of other elements. Sharp parallel variations of the P$_2$O$_5$, MnO, Fe$_2$O$_3$ contents in this zone are displayed by P$_2$O$_5$/MnO, Fe$_2$O$_3$/MnO, and Fe$_2$O$_3$/P$_2$O$_5$ correlation coefficients of 0.93, 0.86 and 0.94, respectively. These elements are supposed to be contained in fine grained vivianite as proven smear-slides. In contrast to glacial sediments, vivianite nodules >0.25 mm don’t occur in this interval.
The very high SiO$_2$ contents exhibit a saw-toothed distribution and behave in antiphase to the P$_2$O$_5$, MnO and Fe$_2$O$_3$ contents (Fig. 8) as obvious in the high negative correlation coefficient between SiO$_2$ and Fe$_2$O$_3$ of -0.50. Furthermore, numerous peaks of Fe$_2$O$_3$ and corresponding maximum of MnO/Fe$_2$O$_3$ ratio indicating reducing conditions on these levels. This suggests that the apparent lamination of the MIS 11.3 sediments builds up of alternating layers of highly biogenic sediments enriched in SiO$_2$ deposited under oxic conditions at the bottom lake and sediments less enriched in SiO$_2$ but with abundant Fe, P and Mn that is supposed to be formed under anoxia. Even in the oxic horizons, MS exhibits only low values presumably due to the dilution of magnetic minerals by BSi. But in contrast to low MS minima in anoxic glacial sediments, the low paramagnetic component of magnetization suggests an only negligible dissolution of magnetic minerals. Absent coarse-grained components in zone b, like sand and gravel, imply only minor active ice-rafting. The alternation of oxic and anoxic horizons indicates that anoxic condition at the water-sediment interface caused by decomposition of organic matter on bottom lake were promoted by an enhanced bioproduction under favorable highly oxygenated conditions in middle and upper parts of water column.

Upper zone (c) of substage 11.3 is characterized by a gradual decrease of SiO$_2$, LOI, Ni, Cr and a simultaneous increase of TiO$_2$, MgO, Fe$_2$O$_3$, Al$_2$O$_3$ and other elements as well as the absence of P$_2$O$_5$ and MnO peaks, vivianite nodules and coarse sediments.

In substages MIS 11.2–11.1 (depth 18.07–17.11 m) the SiO$_2$ content ranges between 66.92–69.97% (68.65 in average) and exhibits only minor variations. The TiO$_2$ content displays four distinct minima at a depth of 17.87, 17.73, 17.61 and 17.29 m corresponding to peak values of CIA, STI, PIA, CIW, and CPA. There is very poor negative correlation between TiO$_2$ and Fe$_2$O$_3$ ($r = -0.15$). The common occurrence of coarse sand and gravel in the substage 11.2 might indicate enhanced ice rafting. The absences of vivianite nodules in substage 11.1 imply well oxygenated bottom water conditions.
Geochemical structure of MIS 6.6 and 7.4

Among the glacial substages, MIS 7.4 and 6.6 are most pronounced and show similar geochemical features. As visible in the element distribution of MIS 7.4 (Fig. 9), these full glacial sediments are characterized by lowest contents of SiO$_2$ suggesting a low or absent biogenic sedimentation. Synchronously, TiO$_2$, Fe$_2$O$_3$, MgO, Al$_2$O$_3$ and Zr are extremely enriched. There are few specific similarities in the geochemical behavior of stage 7.4, 6.6 and other glacialis. Almost all geochemical characteristics including elements, indices and ratios start to react to the climate change simultaneously. The contents of TiO$_2$ increase gradually to maximum.

The lower parts of these substages marked as zone a (Fig. 9) are characterized by a sharp decrease of the SiO$_2$ content suggesting a diminished biogenic accumulation. High peaks of Fe$_2$O$_3$, P$_2$O$_5$, MnO, Mn/Fe$_2$O$_3$, and LOI are indicating reducing condition in the bottom water and at the sediment/water interface accompanied by the precipitation of Fe-bearing minerals, like vivianite and/or Fe-Mn aggregates. The lack of large vivianite nodules in these intervals suggests a direct precipitation fine grained vivianite from the lake water presumably triggered by a climatic and/or environmental deterioration. Low magnetic susceptibility and high J_p values suggest the dissolution of magnetic minerals. In contrast, the absent correlation between J_p and the phosphorus and manganese contents suggests phyllosilicates as probable main paramagnetic minerals in sediments. Abundant coarse sand points to an intensified ice-rafting.

The middle part of substage 7.4 (zone b) and the lower part of substage 6.6 are enriched in Ni and Cr and show high value of LOI. Concentrations of K$_2$O, CaO, Na$_2$O, Sr, Rb, Ba are low but higher than during MIS 11. The sediment of zone b don’t contain any coarse material suggesting a permanent ice cover with only narrow moats in summer seasons that restricted ice moving, and thus, a transport of coarse-grained material into the lake center.

In zone (c) again abundant coarse material occur. Geochemically, the sediments of zone (c) take an intermediate state between those glacialis and interglacialis.
5 Conclusions

The inorganic geochemistry of Lake El’gygytgyn sediments indicates distinct downcore variations of the elemental compositions over the past ca. 500 ka corresponding to the glacial and interglacial periods. Interglacial sediments show high contents of SiO$_2$, Na$_2$O, CaO, K$_2$O, and Sr but the low contents of Al$_2$O$_3$, Fe$_2$O$_3$, TiO$_2$, and MgO. Glacial sediments, in contrast, exhibit opposite distribution. Peaks in P$_2$O$_5$ and MnO coincide with an increased abundance of fine grained vivianite indicating temporal reducing conditions in the sediment and/or bottom waters. Super interglacial stages 9.3 and 11.3 are enriched in SiO$_2$ due to the increased flux of biogenic silica tracing a maximum diatom production. The geochemical structure of MIS 11 shows very similar peculiarities to features of this isotope stage in records from Lake Baikal and Antarctica. Among the glacials substages, MIS 7.4 and 6.6 are the most marked and are characterized by lowest contents of SiO$_2$ suggesting low or absent of primary production by diatom and very high contents of TiO$_2$, Fe$_2$O$_3$, MgO, Al$_2$O$_3$ and Zr. Peaks of the Fe$_2$O$_3$ content coincide with high MnO/Fe$_2$O$_3$ ratios indicating reducing condition in the sediments and/or bottom water.

Geochemical indices and some elemental ratios indicate a higher alteration of glacial sediments accompanied by a depletion of mobile elements, such as Na, Ca, K and Sr. This alteration might be caused by the sedimentation regime and/or post-depositional diagenetic processes.

Acknowledgements. Drilling operations were funded by the ICDP, the NSF, the German Federal Ministry of Education and Research (BMBF), Alfred Wegener Institute and Helmholtz Centre Potsdam (GFZ), Far East Branch of the Russian Academy of Sciences (FEB RAS), the Russian Foundation for Basic Research (RFBR), and the Austrian Federal Ministry of Science and Research. The Russian Global Lake Drilling 800 drilling system was developed and operated by DOSECC. Funding of sample analyses was provided by the Civilian Research and Development Foundation (grant RUG1-2987-MA-10), RFBR (grant 12-05-00286), FEB RAS (12-II-SB-08-024; 12-III-A-08-191; 12-III-V-08-191).
References

Bely, V. F. and Belaya, B. V.: Late Stage of the OCVB Development (Upstream of the Enmyvaam River), NEISRI FEB RAS Press, Magadan, 1998.

Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Faloudr, S., Hoffmann, G., Minster, B., 10

Table 1. Correlation coefficients of Pearson (r) for major and trace elemental analyses from El’gygytgyn Lake sediments.

<table>
<thead>
<tr>
<th></th>
<th>SiO$_2$</th>
<th>Al$_2$O$_3$</th>
<th>TiO$_2$</th>
<th>Fe$_2$O$_3$</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na$_2$O</th>
<th>K$_2$O</th>
<th>P$_2$O$_5$</th>
<th>Rb</th>
<th>Zr</th>
<th>Sr</th>
<th>Ba</th>
<th>Ni</th>
<th>Cr</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>-0.89</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0.074</td>
<td>0.62</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>-0.82</td>
<td>0.49</td>
<td>0.69</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.26</td>
<td>0.01</td>
<td>0.22</td>
<td>0.51</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>-0.81</td>
<td>0.77</td>
<td>0.83</td>
<td>0.65</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>0.12</td>
<td>-0.04</td>
<td>-0.34</td>
<td>-0.38</td>
<td>-0.29</td>
<td>-0.29</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>-0.04</td>
<td>0.02</td>
<td>0.10</td>
<td>-0.17</td>
<td>-0.12</td>
<td>-0.14</td>
<td>0.55</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K$_2$O</td>
<td>-0.47</td>
<td>0.64</td>
<td>-0.06</td>
<td>0.01</td>
<td>-0.31</td>
<td>0.22</td>
<td>0.49</td>
<td>0.31</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>-0.21</td>
<td>-0.16</td>
<td>0.03</td>
<td>0.56</td>
<td>0.55</td>
<td>-0.01</td>
<td>-0.25</td>
<td>-0.22</td>
<td>-0.29</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td>-0.66</td>
<td>0.82</td>
<td>0.19</td>
<td>0.22</td>
<td>-0.19</td>
<td>0.47</td>
<td>0.18</td>
<td>0.02</td>
<td>0.89</td>
<td>-0.22</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zr</td>
<td>-0.63</td>
<td>0.55</td>
<td>0.82</td>
<td>0.48</td>
<td>0.13</td>
<td>0.55</td>
<td>0.01</td>
<td>0.53</td>
<td>0.22</td>
<td>-0.09</td>
<td>0.25</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td>0.19</td>
<td>-0.07</td>
<td>-0.38</td>
<td>-0.49</td>
<td>-0.34</td>
<td>-0.42</td>
<td>0.83</td>
<td>0.71</td>
<td>0.56</td>
<td>-0.31</td>
<td>0.23</td>
<td>0.08</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td>-0.47</td>
<td>0.55</td>
<td>0.13</td>
<td>0.07</td>
<td>-0.20</td>
<td>0.21</td>
<td>0.56</td>
<td>0.49</td>
<td>0.86</td>
<td>-0.22</td>
<td>0.69</td>
<td>0.38</td>
<td>0.62</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td>-0.12</td>
<td>0.07</td>
<td>0.21</td>
<td>0.14</td>
<td>0.09</td>
<td>0.12</td>
<td>-0.02</td>
<td>0.06</td>
<td>-0.04</td>
<td>0.01</td>
<td>-0.04</td>
<td>0.22</td>
<td>-0.05</td>
<td>0.01</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>-0.38</td>
<td>0.25</td>
<td>0.60</td>
<td>0.47</td>
<td>0.21</td>
<td>0.50</td>
<td>-0.32</td>
<td>-0.09</td>
<td>-0.20</td>
<td>0.12</td>
<td>-0.04</td>
<td>0.42</td>
<td>-0.41</td>
<td>-0.11</td>
<td>0.78</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Table 2. Correlation coefficients of Pearson (r) for selective elemental ratios and indices from El’gygytgyn Lake sediments.

<table>
<thead>
<tr>
<th></th>
<th>CIA</th>
<th>CIA$_{mol}$</th>
<th>CIW</th>
<th>PIA</th>
<th>CPA</th>
<th>1*</th>
<th>STI</th>
<th>Rb/Sr</th>
<th>Ba/Sr</th>
<th>LOI</th>
<th>MS</th>
<th>J_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIA</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>CIA$_{mol}$</td>
<td>0.99</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>CIW</td>
<td>0.97</td>
<td>0.97</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIA</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPA</td>
<td>0.92</td>
<td>0.92</td>
<td>0.97</td>
<td>0.96</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1*</td>
<td>-0.74</td>
<td>-0.72</td>
<td>-0.63</td>
<td>-0.68</td>
<td>-0.52</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STI</td>
<td>-0.73</td>
<td>-0.73</td>
<td>-0.69</td>
<td>-0.71</td>
<td>-0.56</td>
<td>0.78</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb/Sr</td>
<td>0.86</td>
<td>0.88</td>
<td>0.90</td>
<td>0.89</td>
<td>0.86</td>
<td>-0.54</td>
<td>-0.70</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba/Sr</td>
<td>0.73</td>
<td>0.76</td>
<td>0.75</td>
<td>0.74</td>
<td>0.67</td>
<td>-0.61</td>
<td>-0.76</td>
<td>0.85</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOI</td>
<td>0.35</td>
<td>0.37</td>
<td>0.38</td>
<td>0.37</td>
<td>0.50</td>
<td>0.16</td>
<td>0.22</td>
<td>0.31</td>
<td>0.12</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MS</td>
<td>-0.66</td>
<td>-0.64</td>
<td>-0.57</td>
<td>-0.61</td>
<td>-0.57</td>
<td>0.52</td>
<td>0.36</td>
<td>-0.44</td>
<td>-0.35</td>
<td>-0.43</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>J_p</td>
<td>0.73</td>
<td>0.73</td>
<td>0.67</td>
<td>0.70</td>
<td>0.65</td>
<td>-0.57</td>
<td>0.55</td>
<td>0.59</td>
<td>0.51</td>
<td>0.37</td>
<td>-0.88</td>
<td>1.00</td>
</tr>
</tbody>
</table>

1* – (CaO + Na$_2$O + MgO)/TiO$_2$
Fig. 1. Location (A) and geological map (B) of El’gygytgyn area adapted from Bely and Raikevich (1994); Bely and Belaya (1998). Formation: 1 – Pykarvaam (pk); 2 – Voronian (vr); 3 – Koekvun’ (k); 4 – Ergyvaam (er); 5 – deluvian; 6 – terrace deposits; 7 – flood plain deposits; 8 – geochemical sites; 9 – cores.
Fig. 2. Total alkali-silica diagram (Le Maitre et al., 2002) for volcanic rocks of El’gygytgyn area. Geochemical data from Bely and Belaya (1998).
Fig. 3. Distribution of selected elements along the depth profile. Yellow bars are interglacials, orange bars are warmest substages, and blue bars are glacials. Marine isotopic stages (MIS) are showed according Bassinot et al. (1994). Note that SiO$_2$ is plotted on reverse scale.
Fig. 4. Scatterplots showing the relationship between selected elements: (a) SiO$_2$ versus TiO$_2$, (b) SiO$_2$/TiO$_2$ versus TiO$_2$/Al$_2$O$_3$, (c) Al$_2$O$_3$ versus SiO$_2$, (d) Fe$_2$O$_3$ versus TiO$_2$, (e) TiO$_2$ versus Al$_2$O$_3$, (f) Fe$_2$O$_3$ versus Al$_2$O$_3$, (g) Fe$_2$O$_3$ versus MnO, (h) Ni versus Cr. Red (blue) symbols are interglacials (glacials), violet symbols are sediment with content of SiO$_2$ more than 71 %, orange symbols are stage 11, green symbols are stage 6.6 and 7.4.
Fig. 5. Distribution of selected geochemical indices and ratios along the depth profile. Yellow bars are interglacials, orange bars are warmest substages, and blue bars are glacialis. Marine isotopic stages (MIS) are showed according Bassinot et al. (1994). Note that LOI and $(\text{CaO} + \text{Na}_2\text{O} + \text{K}_2\text{O})/\text{TiO}_2$ and $\text{TiO}_2/\text{Al}_2\text{O}_3$ are plotted on reverse scale.
Fig. 6. Diagrams showing variations in TiO₂ and Fe₂O₃ vs. magnetic susceptibility, ferromagnetic and paramagnetic components of induced magnetization. Red (blue) symbols are interglacials (glacials).
Fig. 7. Ternary diagrams showing of weathering trends of volcanic rocks and sediments: (a) (CaO + Na₂O)–Al₂O₃–K₂O diagram (Nesbitt and Young, 1984); (b) CaO–(Al₂O₃–K₂O)–Na₂O diagram (Fedo et al., 1995). Arrow indicates weathering trends.
Fig. 8. Geochemical structure of MIS 11. Note that TiO$_2$ is plotted on reverse scale.
Fig. 9. Geochemical structure of MIS 7.4. Note that SiO$_2$ is plotted on reverse scale.