Climate, people, fire and vegetation: new insights into vegetation dynamics in the Eastern Mediterranean since the 1st century AD

J. Bakker¹, E. Paulissen¹, D. Kaniewski²,³, J. Poblome⁴, V. De Laet¹,², G. Verstraeten¹,², and M. Waelkens⁴

¹Department of Earth and Environmental Sciences, University of Leuven, Celestijnenlaan 200E, P.O. Box 2409, 3001 Heverlee, Belgium
²Center for Archaeological Sciences, University of Leuven, Celestijnenlaan 200E, P.O. Box 2408, 3001 Heverlee, Belgium
³Université de Toulouse, UPS, INPT, EcoLab (Laboratoire d’Ecologie Fonctionnelle), 29 rue Jeanne Marvig, 31055 Toulouse, France
⁴Sagalassos Archaeological Research Project, University of Leuven, Blijde Inkomststraat 21, P.O. Box 3314, 3000 Leuven, Belgium

Received: 10 July 2012 – Accepted: 23 July 2012 – Published: 13 August 2012
Correspondence to: J. Bakker (johan.bakker@ees.kuleuven.be)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Anatolia forms a bridge between Europe, Africa and Asia and is influenced by all three continents in terms of climate, vegetation and human civilisation. Unfortunately, well dated palynological records focussing on the period from the end of the classical Roman period until subrecent times are rare for Anatolia and completely absent for southwest Turkey, resulting in a lacuna in knowledge concerning the interactions of climatic change, human impact, and environmental change in this important region. Two well dated palaeoecological records from the Western Taurus Mountains, Turkey, provide a first relatively detailed record of vegetation dynamics from late Roman times until the present in SW Turkey. Combining pollen, non-pollen palynomorphs, charcoal, sedimentological, archaeological data, and newly developed multivariate numerical analyses, allows for the disentangling of climatic and anthropogenic influences on vegetation change. Results show both the regional pollen signal as well as local soil sediment characteristics respond accurately to shifts in regional climatic conditions. Both climatic as well as anthropogenic change had a strong influence on vegetation dynamics and land use. A moist environmental trend during the late 3rd century caused an increase in marshes and wetlands in the moister valley floors, limiting possibilities for intensive crop cultivation at such locations. A mid 7th century shift to pastoralism coincided with a climatic deterioration as well as the start of Arab incursions into the region, the former driving the way in which the vegetation developed afterwards. Resurgence in agriculture was observed in the study during the mid 10th century AD, coinciding with the Medieval Climate Anomaly. An abrupt mid 12th century decrease in agriculture is linked to socio-political change, rather than the onset of the Little Ice Age. Similarly, gradual deforestation occurring from the 16th century onwards has been linked to changes in land use during Ottoman times. The pollen data reveals that the old model of a fast rise in Pinus pollen after the end of the Beyşehir Occupation Phase is not necessarily accurate. The notion of high Pinus pollen percentages indicating an open landscape incapable of countering the influx of pine pollen is also deemed unrealistic. While multiple
fires occurred in the region through time, they were never a major influence on vegetation dynamics and were mostly linked to increased abundance of pine forests, rather than the presence of human impact or of specifically wet or dry environmental conditions. While this study reveals much new information concerning the impact of climate change and human occupation on the environment, more studies from SW turkey are required in order to properly quantify the range of the observed phenomena and the magnitude of their impacts.

1 Introduction

An important focus of palaeoecological research in the Eastern Mediterranean is the Beyşehir Occupation Phase (BO Phase), a characteristic period of increased anthropogenic activities. The BO Phase lasted from approximately 3500 to 1550 yr cal BP, although the exact start and end dates show a regional variation (van Zeist et al., 1975; Bottema et al., 1986; Bottema and Woldring, 1990; Eastwood et al., 1998, 1999; Vermoere et al., 2000, 2002a,b; Kaniewski et al., 2007a,b, 2008).

High resolution, well dated palynological records that include a detailed overview of post BO Phase period vegetation dynamics and environmental change are still very rare for the Eastern Mediterranean (Schwab et al., 2004; England et al., 2008; Neumann et al., 2007; Kaniewski et al., 2011a,b). For the region of southwest Turkey, such records are completely absent. The complex cultural history and high ecological diversity in the mountains of the Eastern Mediterranean present a challenge to palaeoecological researchers who work in this region (Bottema and Woldring, 1990; Kaniewski, 2007a; Riehl and Marinova, 2008). Knowledge on the impact of fires and the response of the vegetation to fire damage is equally scarce. Fire activity is seen as a major ecological factor, shaping the Mediterranean landscape with its mosaic-like pattern of regeneration and degradation stages (Walter, 1968; Naveh, 1975; Spanos et al., 2000; Gracia et al., 2002; Buhk et al., 2006). Fires can be seen as a natural part of the
ecosystem in the Mediterranean basin and have occurred for millennia (Pausas et al., 2008).

New palaeoecological records from the understudied regions of Anatolia, which has formed a bridge between Europe, Africa and Asia for both humans, as well as plants (McNiel, 1992; Eastwood et al., 1998; Öğuz, 2004), would provide valuable insights into historical patterns of vegetation change and will contribute to the understanding of the interconnections between climate change, vegetation dynamics, and human impact through time.

Bakker et al. (2012) revealed the presence and timing of several late Holocene wet and dry bioclimatic periods in southwest Turkey, coinciding with well known climatic periods such as the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). Although some attention was given to the driving processes behind vegetation change, Bakker et al. (2012) was primarily a technical paper demonstrating the methods by which climatic periods were distinguished in pollen data. The present paper presents an in-depth study of vegetation dynamics and the response of the local and regional environment and vegetation to fire, changes in anthropogenic pressure and the climatic shifts revealed in Bakker et al. (2012) from the 3th century AD until the present for southwest Turkey.

The present study considers pollen, non-pollen palynomorph, charcoal, and sedimentological data obtained from two locations in the SW Taurus Mountains, Turkey. The data is supported by a detailed chronological framework based on 27 AMS 14C ages. The well dated and, for the study region, relatively detailed pollen records provide the first in-depth analysis of vegetation and sediment dynamics, climatic change, and human impact from the Late Roman period until subrecent times in SW Turkey. The use of multiple locations within the territory of Sagalassos, each at a different altitude and with a different history of human occupation (Vanhaverbeke and Waelkens, 2003), enables a more proper distinction between local and regional trends in environmental change.
2 Study sites

The study area is located within what was once the territory governed by the city of Sagalassos, an important archaeological site in the Southwest of Turkey that saw its heydays during Hellenistic and Roman times, but which remained permanently inhabited until the 13th century (Waelkens, 1993; Waelkens et al., 2000; Poblome and Talloen, 2005; Vionis et al., 2009a,b). The territory ranges in altitude between 800 and 2300 m a.s.l. and is part of the Western Taurus Mountains. The geology of the territory of Sagalassos and the requirements for pollen preservation limit the amount of suitable sites for palynological research. Most basins within the historical territory of Sagalassos have been filled in with several meters of colluvial and alluvial deposits, eventually also during the last three millennia (Six, 2004; Dusar et al., 2011). Furthermore, some basins where marshes, lakes or wetlands persisted were drained over the course of the 20th century. Despite the recent drainage activity, two notable locations remain where usable, late Holocene deposits have been found (Fig. 1). Both sites are located within the upper unit of the Oromediterranean vegetation zone according to van Zeist et al. (1975) and at the highest vegetation zone according to Fontaine et al. (2007), although very little remains of the natural vegetation due to overgrazing and the intensification of agriculture since the 20th century.

2.1 Gravgaz

Gravgaz Marsh is located in the bottom of an intramontane basin at an altitude of 1215 m a.s.l. (above sea level), c. 25 km SW of Sagalassos, and measures approximately 800 by 350 m. It is fed by water sources to the west of the marsh. Water flows through the marsh via two streamlets, disappearing in a karstic outflow east of the marsh. Observations since 1996 show that water levels fluctuate interannually and/or seasonally. From 1999 onwards, the marsh dries up during the summer season. The modern physical and biological setting, the late Holocene sediments and pollen sequences of the marsh have been intensively studied during previous years (Six, 2004; Six, 2004; Vionis et al., 2009a,b).
Six et al., 2008; Vermoere et al., 2000, 2002a,b) but no detailed study of vegetation dynamics during the post BO Phase period had been attempted. The substrate in the basin is composed of limestone and the very clayey ophiolitic mélange of the Lycian Nappe, conglomerates and colluvial deposits.

The vegetation on the hills surrounding the marsh is dominated by shrubs of *Quercus coccifera* and to a lesser degree by *Juniperus excelsa* and *J. oxycedrus*. A pine forest is located on the hillsides south-east of the marsh. The land around the marsh is used for the cultivation of cereals and chick peas. Land not used for crop cultivation is grazed by cattle (mainly goats).

The marsh itself is well vegetated and features a patchy vegetation pattern, dominated by *Scirpus lacustris*, in both wetter and dryer parts. The streamlets feature *Carex riparia*, *Typha latifolia* and *Sparganium erectum*. The transitional zone between the fields and the marshlands is characterized by *Alisma plantago/aquatica*, *A. Lanceolata*, *Butomus Umbellatus*, *Lythrum salicaria*, *Plantago major*, *Cirsium arvense* and *Agrostis gigantea*. The other edges are characterized by grasses such as *Lolium perenne* and *Hordeum murinum*.

2.2 Bereket

The intramontane Bereket Basin is located at 1410–1430 m a.s.l., about 200 m higher and at a distance of c. 11 km SW from Gravgaz. The site is located 300 m downstream of the source of the Aykirdak Deresi, nowadays a canalized river at the southern limit of a former 35 ha marsh. This marsh, situated in the lowest parts of a flat valley bottom, was drained in the 1960's. Apart from the Pliocene marls exposed on the western slopes, the substrate types are identical with that at Gravgaz: limestone and the clayey ophiolitic mélange of the Lycian Nappe dominate, with gravel fans and colluvial deposits at the footslopes. For details about the modern physical setting the authors refer to Kaniewski et al. (2007). Nowadays the valley bottom and adjacent lower slopes are used for the cultivation of cereals and chick peas, and occasionally sugar beets in the former marsh area. Other cultivars include *Castanea sativa*, *Prunus persica*, *Prunus
avium and Juglans regia. Vitis vinifera occurs sporadically. The overgrazed hillsides are covered by degraded Juniperus excelsa woodland in the south-east area, or partially degraded J. excelsa-Cedrus libani woodland in the northwest area. Other constituents of these degraded or partially degraded woodlands are Quercus coccifera shrubs and Juniperus oxycedrus. The last remaining marshes are covered in Carex riparia, Scirpus lacustris, Typha angustifolia, Sparganium spp. and Butomus umbellatus with limited Populus nigra cultivation. A low amount of Salix spp. and Fraxinus angustifolia occurs along the borders of the remaining marshlands. Late Holocene deposits have been previously studied by Kaniewski et al. (2007a,b, 2008). Unfortunately, the limitations of the chronology in the upper part of their core BKT1/2 made it impossible to study the vegetation and sediment history from the 7th century onwards in any detail.

2.3 Climate

Anatolia is located between humid regions in the north and arid regions in the south. The principal weather systems in the region originate from the Atlantic Ocean, passing over Europe or the Mediterranean Sea. Relatively cold air leaving Turkey moves in a southern direction, colliding with warmer Saharan air over Cyprus, forming a front along which winter storms may travel eastward, bringing rain and snow into the Middle East (LaFontaine and Bryson, 1990). Being a climatic transition zone, the Eastern Mediterranean is sensitive to fluctuations in natural environmental parameters, such as rainfall, temperature, vegetation types, the origin and pattern of storm tracks, and the location of the desert boundary (Bar-Matthews et al., 1999). The most dominant source of climate variability in the wider region is the North Atlantic Oscillation (NAO). The NAO accounts for one-third of the total variance in sea-level pressure and 20 to 60 % of the December through March temperature and rainfall variability from Greenland and Europe to the Eastern Mediterranean (Luterbacher et al., 2009). Fluctuations in the NAO may result in surface winds and wintertime storms, moving across the north Atlantic from west to east, being stronger or weaker than usual. As a result, winters in the Eastern Mediterranean will be cooler and drier or warmer and wetter respectively.
Past changes in climatic conditions over the North Atlantic, such as described by Bond et al. (1997, 2001), may have influenced the NAO and thus the Middle Eastern winter climate (Cullen et al., 2002). Unal et al. (2003) classified the climate of the region, in which the study area is located, as having a Central Anatolian climate. In reality, the high altitude and location in respect to the main mountain ridges causes the study area to have an OroMediterranean climate, characterized by cold, wet winters and dry, hot summers. The climate can be described as subhumid and cold to very cold, with four cold months and one very cold month. Recent climatic data from the town of Ağlasun is displayed in Table 1.

3 Materials and methods

3.1 Coring and chronology

The data from Gravgaz originates from the top 3.5 m of an 8 m sediment core (SA06EP1) drilled in the middle of the marsh, where erosion is expected to be minimal. This core, located at 30.403578° E, 37.584248° N, is drilled with a ± 0.5 m long Dachnowsky sampler. The data from Bereket originates from a 6.3 m long sediment core (SA09JBDrlill02) drilled near the south bank of the Aykirdak Deresi, using an Eijkelkamp percussion drill, containing a 1 m long core sampler with a one meter long PVC sample tube. This core is located at 30.293076° E, 37.541241° N. The age-depth model for the Gravgaz core is based on ten AMS 14C ages. Seven radiocarbon ages were attained by radiocarbon dating material from the pollencore SA06EP1. Three additional dates were attained by re-calibrating additional radiocarbon dates of core SA00EP03, drilled several decimetres from core SA06EP1, and studied by Six (2004) and Six et al. (2008). The age-depth model for the Bereket core is based on 17 AMS 14C ages.

The ages were calibrated with the IntCal09 calibration curve (Reimer et al., 2009), using the BCal calibration program (Buck et al., 1999; http://bcal.sheffield.ac.uk). BCal
uses Bayesian statistics allowing for the implementation of a priori knowledge into the age-depth model, e.g. that ages higher in the core are younger than ages lower in the core. When ages with overlapping calibrated probability distributions occur, BCal produces posterior probability distributions with non-overlapping modes, essentially wiggle-matching the ages to the calibration curve. The Bcal software also provides the option to perform an analysis of possible outliers.

The material used for radiocarbon datings consisted of macroscopic charcoal fragments and terrestrial plant seeds, collected using a 200 µm sieve. The material used for the radiocarbon datings on core SA00EP3 consisted of soil organics. Details of the radiocarbon dates collected for the two cores are displayed in Table 2.

The sedimentological parameters discussed in the present study are: (OM) content, calcium carbonate (CC) content, and other detritic matter content. All parameters are expressed as weight percentages (wt %). OM content is calculated using the weight loss after oxidation with H$_2$O$_2$. CC content was calculated using the weight loss after treating the samples with HCl 10%. The remaining matter is deemed “other detritic matter”. The sedimentological data for Gravgaz originates from core SA00EP3 and was previously published in Six (2004).

3.2 Charcoal

Use of high-resolution charcoal records, using peaks in charcoal accumulation and concentration to estimate the timing of fires and fire episodes is complicated by the fact that such records are complex and non-stationary, their mean and variance changing over time (Clark et al., 1996; Clark and Patterson, 1997; Higuera et al., 2010). Higuera et al. (2007, 2010) suggest that the two most important processes that cause non-stationarity in charcoal records are changes in the fire regime and changes in the efficiency of charcoal delivery. The former process may be caused changes in the rate of burning, the intensity of fires and the type of vegetation that is burned. The latter is described in Higuera et al. (2010) as “changes in the efficiency of charcoal delivery to the lake centre due to changing rates of slope wash and/or within-lake redeposition”.
The pollen records studied in this paper originate from marshes and colluvial deposits, rather than a lake. However, the processes described by Higuera et al. (2010) lead to changes in sediment accumulation rates, which may cause long term trends in charcoal records unrelated to changes in the fire regime.

A statistical approach is used in order to isolate signals related to local and regional fire activity, aiming to distinguish between truly anomalous charcoal concentrations in the sediment, indicating fire events, and peaks in charcoal concentration that may be the result of increased sedimentation rates. Pollen slide charcoal particles (50–200 µm) and larger charcoal remains (200–2000 µm) were counted and summed. Very few charcoal particles bigger than 2000 µm were encountered in the samples, which leads to the assumption that fires did not occur on the sample site itself. Charcoal accumulation rates (CHAR) were computed using the CharAnalysis software, a program for analyzing sediment-charcoal records with the goal of peak-detection to reconstruct fire histories. (For more info on CharAnalysis see http://sites.google.com/site/charanalysis/; Higuera et al., 2007, 2010.) Charcoal data were decomposed into a low frequency background component (Cbackground), and a peak component (Cpeak). A locally defined threshold was used to identify fire events. Cbackground was estimated using a moving median, using a 150 yr window width. Peak components were obtained by subtracting Cbackground from the interpolated CHAR (Cinterpolated), which corresponded to a re-sampling record of the char series using the median accumulation rate (38 yr for Gravgaz, 26 yr for Bereket). A threshold value was calculated using the Zero-Mean Gaussian and Gaussian Mixture Model. Fire events, indicating fires occurring in the landscape around the sample site, were identified when the CHAR of a single sample exceeded the background CHAR by the threshold ratio (Power et al., 2006). When multiple fire events occur in a short time-span, they are referred to as a fire period. Fire frequencies were calculated by summing the total number of fires within a 1000-yr period, and then smoothing this series with a Lowess smoother.

Such analyses may have difficulty recognizing fire events when these are immediately followed by a sedimentation event. Such processes have been described and
discussed around the Adriatic Sea, Romania, Ukraine, and in Bereket itself (Bodnariuc et al., 2002; Oldfield et al., 2003; Huhmann et al., 2004; Kaniewski et al., 2008). In order to check for fire episodes that the numerical analyses might have missed, the untransformed charcoal concentration data are compared with the core chronology and the sedimentological record, in order to check for anomalously high charcoal percentages immediately preceding episodes of rapid sedimentation.

To investigate short and long-term effect of fires on vegetation, all pollen, and micro and macro charcoal counts were recalculated to concentrations. These were divided by the total regional particle (non-local pollen and charcoal particle) concentration in order to counter the obscuring influence of changes in sedimentation rates. Charcoal and pollen types were grouped using Neighbour Joining (NJ) analysis. NJ analysis was initially designed as a bottom-up clustering method for reconstructing phylogenetic trees (Saitou and Nei, 1987). In this case the NJ technique was adjusted and used to measure ecological distances between plant taxa (Baxter, 1994; Kaniewski et al., 2011b). The length of the branches on the resulting tree can be interpreted as the ecological distances between groups of taxa.

The similarity measure was “correlation” and the root was “final branch”. Due to the nature of the analysis, the resulting tree diagrams can be used to investigate which group of plant taxa is most affected by fire as well as the way the vegetation develops through time. In contrast to cluster analysis neighbour-joining keeps track of nodes on a tree rather than taxa or clusters of taxa. As a consequence, the NJ is less useful for revealing the general relationship between plant taxa and environmental conditions, but gives a better representation of the succession in the vegetation through time. The groupings in the resulting tree diagram should not be interpreted to resemble separate vegetation types, but rather plants from different vegetation types at different locations around the sample sites, which thrive or decrease at the same time. The resulting clusters are termed Pollen Derived Vegetation Patterns (PDVP’s). The ecological significance of each PDVP can be assessed by studying the most important taxa in each PDVP and the vegetation types they are associated with. The top four samples from
the Bereket core were omitted due to the fact that this part of the sediment has been located above the present water table since the draining of the marsh in the 1960's, and is therefore unusable for palaeoecological research.

Linear detrended cross correlations ($\rho = 0.05$) were computed to study the ecological relationship between each PDVP and charcoal concentration. Linear detrended cross-correlation concerns the time alignment of two time series by means of the correlation coefficient (CC). Positive and negative correlations (with $+0.5$ and -0.5 as significant threshold) are considered when the Lag is 0 or realistically small. A significant positive or negative correlation between charcoal and PDVP concentrations may indicate that the increased importance of this PDVP may be related to an increased fire activity near the sample site or in the wider vicinity. Null values indicate a complete lack of correlation.

3.3 Pollen and non-pollen palynomorphs

Pollen samples were isolated from the core using the standard technique of Faegri and Iversen (1989). The samples were studied under a 400X and 1250X magnification (using oil immersion) under a Leitz microscope. 50 samples were taken from the Gravgaz sediment core, resulting in a mean sample interval of 6.7 cm or 46.6 yr per cm. 44 samples were taken from the Bereket sediment core, resulting in a mean sample interval of 13.5 cm or 56.9 yr per cm.

Identifications of pollen types were performed using Beug (2004), Moore et al. (1991) and Reille (1992). Identifications of non-pollen palynomorphs were performed using Kuhry (1997), Pals et al. (1980), van Geel et al. (1981, 1983, 1989) and van der Wiel (1983). Pollen conservation was assessed by summing the corroded, degraded, broken and crumpled pollen in a “deterioration assemblage” (Cushing, 1967).

Percentage diagrams were constructed using TILIA and TGVIEW software (Grimm, 1991). Pollen data were grouped according to the NJ-derived PDVP’s with the cultivated species displayed separately, and expressed as relative frequencies (%) of the pollen sum, which includes herbaceous land plants, trees and shrubs.
Anthropogenic activity is assessed by studying the primary anthropogenic indicator species as determined for the region by Bottema and Woldring (1990). Establishment of meadow steppe on land previously occupied by forest or agriculture is seen as an indication of pastoralism. Furthermore, remains of coprophilous fungi may indicate grazing by herbivores on the sample site itself (van Geel et al., 2003; van Geel and Aptroot, 2006). All numerical analyses were performed using the computer program PAST (http://folk.uio.no/ohammer/past/).

4 Results

4.1 Core chronology and sediments

Age-depth curves, lithological information, and curves displaying the OM content and CC content are displayed in Fig. 2. Ages of individual pollen samples were estimated using an interpolation/extrapolation assuming constant sedimentation rates between two individual calibrated radiocarbon dates. All dates in the text are given as cal. BC/AD and rounded to the decadal level.

4.1.1 Gravgaz marsh

For Gravgaz, nine out of ten ages from core SA06EP1 and SA00EP03, ranging between 20 cal BC at 386 cm and 1800 cal AD at 39 cm, are in chronological order. One age was determined to be an outlier using the Outlier Analysis of BCcal and is subsequently not used in the age-depth model (Table 2). The lithological sequence is composed of seven units: two units of CC rich clays, two units dominated by non-carbonate detritics, and two units characterized by organic clays. The age of the base of the core at 339 cm is calculated at 90 cal AD.

The chronology implies the following not density-corrected accumulation rates: 4.0 mm yr\(^{-1}\) for the 339–282 cm interval, c. 1 mm yr\(^{-1}\) for the 282–222 cm interval, c. 25 mm yr\(^{-1}\) for the 222–147 cm interval, c. 1 mm yr\(^{-1}\) for the 147–88 cm interval, and...
1.9 mm yr\(^{-1}\) for the 88–39 cm interval. The global lithological column, mainly clays and fine silts, is composed of 74 wt % non-carbonate detritics, followed by 16 wt % CC and 10 wt % OM. There is a statistically insignificant positive cross correlation (CC: 0.31) between OM and CC content, and a strong negative cross correlation (CC: \(-0.81\)) between OM and non-carbonate detritics (Fig. 2). The core can be subdivided into six lithological units, which are described in Table 3.

4.1.2 Bereket basin

The seventeen AMS ages for core SA09JBDrill02 range between 610 cal BC at 582 cm, and 1580 cal AD at 43 cm (Fig. 2, Table 2). The oldest age at depth 582 cm is in chronological order, but its validity is questionable when taking into account the age-depth curve of the well dated cores BKT2 and BKT1 (Kaniewski et al., 2007a), situated in the fan deposits forming the valley bottom at respectively 440 m and 420 m upstream from core SA09JBDrill01 (see Table 4). Three other ages were determined to be outliers using the Outlier Analysis of BCal and are not used in the age-depth model (Table 2). The extrapolated age of the core bottom at 622 cm is 420 cal BC.

Core SA09JBDrill02 is situated in a depression which acted as a swale, enabling peat growth and peat conservation. Additional cores have showed that the area of peat growth is elongated in an east-west direction and is closely connected to the very upper valley of the Aykirdak Deresi River which flows parallel to the toe of a large fan dipping to the south. It is likely that the valley is caused by the incision of this river. The lithological sequence shows a clear contrast between a brownish black compact clay (7.5 YR 3/1) at 639–629 cm, and a light gray softer clay (10YR7/1) from 622 till 500 cm, so that the maximum incision may be situated at a core depth of c. 6.3 m. The age of the incision can be safely situated in the age range c. 330 cal AD (1740 ± 30 BP – Beta-295436; depth 525 cm in this core), and c. 320 cal BC (2230 ± 40 BP – Beta-213851; depth 783 cm in core BKT2 situated in the older fan deposits).
The lithological sequence till 630 cm is composed of seven lithological units described in Table 3. The texture of all detritic units are clays and fine silts. The chronology implies the following not density-corrected accumulation rates: 1.4 mm yr\(^{-1}\) for the 622–463 cm interval, > 100 mm yr\(^{-1}\) for the 463–361 cm interval, 7 mm yr\(^{-1}\) for the 283–238 cm interval, and 4.2 mm yr\(^{-1}\) for the 170–43 cm interval. The top 150 cm of the sediment core, characterized by a dark brown colour, is currently located above the present water table as water levels dropped after the marsh was drained in the 1960's. The global lithological column is composed of 47 wt % CC, 30 wt % OM, and 23 wt % non-carbonate detritics. Sediments with high OM content are concentrated in the peat deposits between c. 500 and 170 cm. There is a strong negative correlation between OM and CC content. No significant correlation exists between OM and other detritic matter content (Fig. 2).

4.2 Taphonomy

Pollen concentration and preservation for both cores are displayed in Fig. 3. Pollen preservation is high in both cores, with an average of 70 % of the pollen undamaged. There is no relation between the percentages of corroded/damaged pollen on the one hand and the sediment types and sedimentation rate on the other hand.

The average pollen concentration for both cores is high: 17 010 pollen/gram in the Gravgaz core, and 18 400 pollen/gram in the Bereket core. Pollen concentrations are generally stable although each record shows a single peak value. These peaks do not coincide, indicating they result from a local short-term disturbance in the sedimentation of unknown origin. As the focus of the present study lies with long-term vegetation trends, such individual peak values are of no relevance. For Gravgaz, no further distinct deviations in indeterminable, damaged, or corroded pollen occur. The pollen concentration in Bereket fluctuates, higher pollen concentrations corresponding to increased OM content in the sediment.
4.3 Charcoal analysis

4.3.1 Neighbour joining

Results of the NJ analyses and cross-correlograms are displayed in Fig. 4. Differences in the distribution of taxa between both cores are likely due to differing local environmental conditions. For Gravgaz marsh, six PDVP’s were defined by the NJ analysis performed on the pollen and charcoal data. Charcoal concentration is included in GVZ2. This PDVP is associated with taxa indicative of mixed deciduous woodlands and includes several cultivated trees. This PDVP is bracketed by others indicative of cereal cultivation and arboriculture, and the occurrence of secondary anthropogenic indicators. For Bereket, seven PDVP’s were defined by the NJ analysis. Charcoal concentration is included in BKT7, associated with taxa indicative of fires (Ulex) and open vegetation (Asteraceae). The PDVP at the smallest ecological distance contains taxa indicative of pine forests (Pinus). PDVP’s associated with human occupation (BKT1) are located at a larger ecological distance.

The results of the CC analyses show that for both Gravgaz and Bereket, no significant correlation (larger than 0.5) existed between the relative charcoal concentration and any of the PDVP’s. For the Bereket basin, there is a near-significant positive correlation at Lag = 0 of 0.41 for BKT7, while there is a non-significant positive correlation of 0.37 at a lag of −1 for BKT6. These results mirror the results of the NJ analysis. There is a further non-significant positive correlation of 0.44 at a lag of 1 for BKT4. Any other correlations nearing the significance threshold of 0.5 in both Gravgaz and Bereket occurred at a lag that was too large to be ecologically informative.

4.3.2 CharAnalysis

Fire episodes determined by the CharAnalysis software are displayed in Table 5, and Figs. 5, 6 and A1. In the Gravgaz marsh record, fire events have been identified to occur at c. 1100, 1170, 1330, 1590 cal AD, and a single event in recent times, at
c. 1930 cal AD. For Bereket, fire activity is much more limited. Fire events have been identified to occur at c. 320, 610, 660, 740, and 790 cal AD. No signs of local fire damage in the form of burned leaves or seeds have been found.

When comparing the Gravgaz and Bereket charcoal records with the sediment records, it becomes clear that the two most recent fire events recorded for the Bereket basin, immediately precede an important influx of CC rich detritic sediments (unit Br-e), dated 760–820 cal AD. The pollen spectrum within this CC layer was comparable to that after and immediately prior to the sedimentation event. In the Gravgaz record, the nearly instant deposition of a 75 cm thick layer of sediment during the time period 910–940 cal AD is immediately preceded by a peak in charcoal particles. This peak was not recognized as being significantly larger than the background charcoal signal by CharAnalysis. However, this may be a result of the resampling performed by the CharAnalysis software, which causes the software to interpret the charcoal peak as a result of a change in the sedimentation rates.

4.4 Vegetation dynamics

Pollen percentages for the taxa used in the NJ analysis are grouped according to PDVP and drawn according to a depth scale in Fig. 6. Individual pollen percentage data for all pollen and non-pollen palynomorph taxa are displayed in Appendix A. The discussion of vegetation changes will focus on general trends in the pollen data. Sediment data will be included if major changes in the local sediment data co-occur with changes in the regional pollen data. In order to facilitate presentation and discussion of the results, all sediment and pollen graphs are subdivided according to the climatic periods revealed by Bakker et al. (2012). The pollen-derived Climatic proxy of Bakker et al. (2012) is included in Fig. 7.
4.4.1 Mid 3rd century–mid 7th century AD wet period

In Gravgaz, cereal cultivation and arboriculture (Castanea, Juglans, Olea) remain present throughout this period, but a notable switch occurs during the second half of the 3rd century AD, when cereal and olive cultivation disappear for a short period (2 samples, coinciding with a period of several decades) and then return, but at a lower abundance. During the late 3rd to the mid 7th century period, cultivated species in Gravgaz show a continuing, gradual decline in favour of moist deciduous woodland, (e.g. Populus, Platanus, Alnus) meadows (e.g. Sanguisorba, Plantago, Artemisia), and pine forest. Locally, the late 3rd century decline in agriculture co-occurs with relatively high values for Typha and Cyperaceae.

In Bereket, olive cultivation ends during the second half of the 3rd century AD, while arboriculture on the whole (Fraxinus, Castanea) diminishes, first giving way to open, herbaceous steppe vegetation (Artemisia, Chenopodiaceae, Ericaceae), followed by grass-dominated steppe vegetation. Locally, the switch from agriculture to an open grassy steppe coincides with a distinct drop in Sporormiella, indicating dung, and increased presence of T200, a fungus growing on helophytes. The very high percentage values for Poaceae may partially be caused by the occurrence of reeds (e.g. Phragmites) on and around the sample site. The local environmental change may be related to the (re-)activation of a nearby spring.

4.4.2 Mid 7th century–mid 10th century AD dry period

In Gravgaz, olive and cereal cultivation end at c. 640 cal AD, indicating the local end of the BO Phase. Subsequently, an open, dry shrub-steppe and maquis landscape appears, containing e.g. Caryophyllaceae, Cistus and increased values of Asteraceae. The latter occasionally shows values of over 40%. Pine pollen percentages fluctuate as a result of the occasional high percentage values for Asteraceae and fluctuating pollen production of deciduous trees, but remain important until the beginning of the 10th century AD.
The pollen signal within the rapidly deposited 7th century sediment unit Br-c found in the Bereket core indicates the prevalence of open and dry vegetation (Apiaceae, Brassicaceae, Ericaceae, Asteraceae). Above this layer, several species which may indicate early stages of secondary afforestation of the valley floor (Quercus cerris, Salix) start to increase. The preliminary study of macro remains from this layer revealed the presence of leaves and buds from Salix as well as other leaf and wood material from deciduous trees and above ground remains of grasses (B. van Geel, personal communication, 2011), indicating the marsh was increasingly overgrown by grasses and riparian woodland developed on the sample site. The disappearance of aquatic plant species such as Lemna minor and Butomus umbellatus, and the appearance of clasterosporium, a fungus on sedges, further indicate continuing desiccation of the swamp. Pine forest increases in importance near the top of this zone, and eventually reaches pollen percentages of 80% within the second layer of CC dominated sediments (unit Br-e).

4.4.3 Mid 10th century–mid 13th century AD wet period

In Gravgaz, this zone is initially characterized by a resurgence in both secondary anthropogenic indicators (Plantago lanceolata, Sanguisorba minor, Castanea sativa, Fraxinus ornus), a decrease of dry steppe species (Apiaceae, Caryophyllaceae, Ericaceae), and indicators of grazing (Quercus coccifera). Limited cereal cultivation is present within this zone. Interestingly enough, the increase in moisture availability observed in the regional pollen data is not reflected in the local pollen and NPP record. A similar mid 10th century AD increase in anthropogenic indicators (o.a. Plantago lanceolata, Polygonum, Rumex), and riparian woodland taxa (Salix, deciduous oak, Populus) is visible in the Bereket pollen record. Signs of crop cultivation are less pronounced in Bereket than in Gravgaz. While Cereals and Fraxinus ornus are present, they are not plentiful. Other cultivars are absent or near absent. Increased percentage values for aquatic plant taxa (Myriophyllum, Alismataceae, Butomus) and Rivularia (an algae living on water plants) indicates increasingly wet local conditions.
In both records, the pollen spectrum quickly becomes dominated by pine forests from the mid 12th century onward.

4.4.4 Mid 13th century dry period until subrecent times

In Gravgaz, continues to be absent and only returns in the topmost pollen samples. The pollen spectrum is dominated by Pine, while percentages for open, dry maquis vegetation increase from the late 17th century onwards. During the 18th century taxa indicating dry and open vegetation (e.g. Apiaceae, Lamiaceae, *Ulex*) decrease in favour of indicators of increased moisture availability (*Q. cerris* type, Urticaceae and *Abies*). A possible continued presence of pastoralism is indicated by the presence of coprophilous fungi.

For Bereket, only the part 143–169 cm, dated 1260–1330 cal AD, remains usable. It seems to indicate a continued dominance of pine forests while signs of crop cultivation diminish. The post 1330 cal AD sediment is characterized by low pollen concentration, a high percentage of corroded pollen and a very poor diversity of pollen in the pollen spectrum. The combination of all these factors indicates that these deposits in the Bereket core were located above the present water table, which had been lowered after the draining of the marsh, and are therefore not useful for pollen analyses. The usable part of the Bereket record mirrors the Gravgaz record, indicating high pine pollen percentages.

5 Discussion

5.1 Sediment dynamics

The OM values as well as the composition of the detritics are very different on both sites (Table 3), illustrative of the differing local environments at both sites. The differences in composition are mainly caused by differences in sediment provenance. For
both sites ophiolithic mélange, limestones and older colluvial deposits, all with different surface areas (Fig. 1), deliver mainly non carbonates, but also calcium carbonates. These detritic CC are estimated below 10% for Gravgaz and below 20% for Bereket. The latter figure is based on data by Kaniewski et al. (2007) for the northern valley which drains these substrates nearly exclusively.

Six (2004) revealed that the CC present in the sediments of the central part of the Gravgaz marsh may partially originate from the precipitation from source waters fed by an aquifer situated in the limestone substrate. The combination of above-the-mean values for both organics and CC in some lithological units at Gravgaz (Fig. 2 and Table 3) may be interpreted as the signature of evaporation processes in a local wetter environment where conservation of organics was possible. At Bereket, the strongly negative correlation between OM and CC content, very obvious in units Br-a and Br-c, is caused by the presence of a long period characterized by the deposition of organic-rich material, interspersed by several short-term periods characterized by the deposition of CC dominated detritics. These short-term events are likely due to the influx of the eroded marl substrate from the western slopes and indicative of an open or absent vegetation on those locations. The possible role of autigenic CC at Bereket is unknown.

Local sediment dynamics more likely reflect changes in the local environment and need not be indicative of regional environmental changes. However, in Bereket and Gravgaz, two apparently synchronous shifts of a similar nature occur, suggesting that these reflect changes in the regional, rather than in the local environment. The first simultaneous shift in the local environments occurs during the second half of the mid 3rd century AD as a notable shift towards moister environmental conditions at both sites. At Gravgaz, this increase in moisture availability is indicated by the deposition of an organic clay Unit (Gr-b) characterized by simultaneous increases for both OM and CC (Fig. 2). At Bereket, the organic content starts to increase from the 3rd century onward (Unit Br-a), and eventually grades into a clayey peat deposit during the 6th century. The second simultaneous change is a shift towards a dryer environment, occurring during the 13th century AD. At Gravgaz, the start of Unit Gr-d reflects a local
drying trend and is dated 1190–1250 cal AD. At Bereket, the abrupt end of the accumu-
lation of clayey peat at the close of unit Br-f, dated 1200–1280 cal A, indicates a drastic
decrease in local humidity as well.

This interpretation is supported by tree ring based May–June precipitation recon-
structions for the altitudinal range 1700–2020 m a.s.l. in SW Anatolia. They provide for
the period 1097–2000 AD a record of the May-June precipitation for which the three
most dry and the three most wet 70-yr periods are defined (Touchan et al., 2007). The
driest 70-yr period, dendrochronologically dated 1195-1264, matches the shift towards
a dryer local environment both at Gravgaz and Bereket.

During the intermediate millennium, both records show marked differences. At
Bereket, the accumulation of a clayey peat continues from the 6th until the 13th century
AD, interrupted only by two short-term accumulation periods, dated at 640–660 cal AD
(unit Br-c), and at 760–820 cal AD (unit Br-e). At Gravgaz, local humidity, as expressed
by the OM content, fluctuates. It steadily increases from the early 3rd century till
700 cal AD. During the 8th century AD, the trend is reversed and OM steadily decreases
till c. 900 cal AD. The onset of the drying trend at Gravgaz succeeds the regional on-
set of dry environmental conditions indicative of the Dark Ages Cold Period (DACP)
indicated by Bakker et al. (2012) by c. 50 yr according to the available chronological
data. This time lag may indicate that the marsh remained wet for a longer time. The
very fast accumulation rate of 25 mm yr\(^{-1}\) causing a 75 cm thick deposit (subunit Gr-
ca) during the time period 910–940 cal AD is the greatest disturbance in the Gravgaz
basin since the 2nd century AD. It is likely that most of this 75 cm layer was deposited
semi-instantly after a fire event. Although no fire event is identified by CharAnalysis, a
non-significant charcoal peak does occur during the mid 10th century AD. This peak,
and the reasons for considering it an indicator of fire, is discussed in more detail be-
low. Following this depositional event, the deposition rate is reduced towards its normal
level of c. 1 mm yr\(^{-1}\). OM and CC content remain low till c. 1090 cal AD (Unit Gr-c), sug-
gestng dryer conditions around the coring site. From c. 1090–1200 cal AD, OM content
reaches its normal level, suggesting that the local area becomes wetter again. This
period covers the first wet 70-yr period 1098–1167 reconstructed from tree rings by Touchan et al. (2007).

The sediment deposited during the 1250–1440 cal AD period (Unit Gr-d) is characterized by very low OM and very high CC content. These characteristics are considered firm indications of a dominantly dry environment, with depletion of OM by oxidation and enrichment of CC by evaporation. The start of this period more or less coincides with a massive drop in OM content at Bereket, indicating a change in the bioclimate must have occurred in the wider area, rather than just a local phenomenon. This dry period is bordered by two of the three driest 70-yr periods detected by Touchan et al. (2007), and dated 1195–1264 (the driest) and 1434–1503.

The start of Unit Gr-e, dated c. 1490–1540 cal AD, is characterized by a pronounced increase in local humidity relative to the preceding unit. The timing of this period closely matches the occurrence of the most humid 70 yr interval recognized by Touchan et al. (2007), which is dated 1518–1587 AD. From the 17th century onward OM and CC content for Gravgaz mostly fluctuate around their mean value, suggesting a dominantly humid local environment. The 1591–1660 dry period of Touchan et al. (2007) is not observed in the sediment record. However, the sample with a higher-than average OM content dated 1780 cal AD corresponds with their 1743–1812 wet period. OM as well as CC values of the sediments dated to the 20th century (Unit Gr-f) are both very high and eventually comparable with the peak samples dated 700 cal AD.

In General, the Gravgaz record appears to have been more sensitive to environmental changes than the Bereket record. Changes in OM and CC content show indeed a remarkable correspondence with a tree-ring based reconstructed record of May–June precipitation in SW Anatolia (Touchan et al., 2007). The data from the Gravgaz record may therefore be indicative of multi-decennial environmental changes in the wider area whereas the data from the Bereket basin may support or disprove notions concerning more local environmental change based on pollen or charcoal data.
Vegetation dynamics

The following section provides an interpretation of the changing interrelationships between climate, vegetation and human impact. Sediment data will be included if major changes in the local sediment data co-occur with changes in the regional pollen data. Individual fluctuations are ignored as they may be the result of local or other short term variations in pollen production.

5.2 Mid 3rd century–mid 7th century AD wet period

The sedimentological and regional pollen data from both locations imply that the 3rd–7th century AD period, corresponding with the last part of the Roman Warm Period, is characterized by relatively moist conditions, theoretically beneficial to intensive agriculture in this summer-dry region. A similar change towards a more humid climate is observed throughout the Eastern Mediterranean (von Rad et al., 1999; Hirschfeld, 2004; England et al., 2008; Jones et al., 2006; Sorell et al., 2007; Neumann et al., 2007a).

The decrease in arboriculture and cereal cultivation in both sites, and shift towards herding/pastoralism, is unusual as it is in contradiction with other Late Roman/Early Byzantine historical and palaeoecological records throughout the Eastern Mediterranean, which show BO Phase agriculture persisting into at least the 7th century AD (Bottema et al., 1986; Eastwood et al., 1998, 1999; England et al., 2008), or even an expansion of agriculture (Harrison et al., 2001; Baird, 2003; Leroy et al., 2010; Izdebski, 2012).

During the 3rd and 4th centuries AD the Roman Empire suffered from an ongoing financial malaise, caused by the lack of a powerful government and the constant threat of invasion, and which led to a strong inflation and devaluation (Mitchell, 2007). Furthermore, changes in the manner in which cities in the empire were governed resulted in a high financial burden on the local governing class. Financial troubles, within Asia Minor, as well as in the Roman Empire as a whole, may have led to a decrease in
the demand and a decrease in the value of (agricultural) goods produced within the
territory, prompting a change in agricultural practices, or perhaps a partial breakdown
of the agricultural system as land owners could no longer afford their activities. This
too may have caused a decrease in agricultural activities within the study area. How-
ever, while the troubles of the Empire during the 3rd and 4th century AD resulted in a
decrease in building activities in the city of Sagalassos (Vanhaverbeke and Waelkens,
2003; Waelkens and Poblome, 2011), the city and its territory remained relatively pros-
perous during the remainder of the Late Roman Imperial period (Poblome, 2006; Van-
ha verbeke et al., 2007). At Bereket, the results of an intensive archaeological survey
revealed that that the population of the habitational sites in the basin did not decrease
during the late RWP (Kaptijn et al., 2012). Nevertheless, agriculture in Bereket and
Gravgaz never recovered. This supports the notion that the decline in anthropogenic
activity is likely not a result of the temporary decline of the Roman Empire as a whole,
but rather a result of the local effects of a shift in the regional bioclimate, itself an ex-
pression of a larger scale climatic trend.

It may be that, as moisture availability increased from the mid 3rd century AD on-
wards, marshes and wetlands encroached upon arable land on the valley floors at
Gravgaz and Bereket, limiting the possibilities for crop cultivation in the direct vicinity
of the sample sites. At other, drier, valley floors within the study area, such a process
need not have taken place. Even when wetlands do increase, this increase need not
have been severe enough to drive away agricultural practices from a certain location.
This is illustrated by the evidence for an increase in wetlands at the Ağlasun Çay valley
presented in Fuller et al. (2012), while the pollen records of Vermoere (2004) indicate
that human impact continued uninterrupted in that valley. The drop in anthropogenic
activity recorded for Bereket and Gravgaz may be a localized response to a regional
environmental change, rather than an indication of a large-scale change in agricultural
practices.

The ongoing decline of the city of Sagalassos and its territory from the early
Byzantine period, starting c. 450/75 AD, onwards (Vanhaverbeke and Waelkens, 2003;
Waelkens et al., 2006; Vanhaverbeke et al., 2004, 2007, 2011a) is indicated in the pollen record as a continuing decline in primary and secondary anthropogenic activity. However, the section of the pollen record corresponding with this period (450–650 AD) is lacking in detail.

5.2.1 Mid 7th century–mid 10th century AD dry period

Bakker et al. (2012) indicate that the mid 7th century AD was characterized by an abrupt aridification of the environment, and suggested this dry period corresponded with the occurrence of the Dark Ages Cold Period in the region.

Vanhaverbeke et al. (2009) indicate that the number of settlements dropped drastically during this period. However, recent research results indicate that sites may have been more numerous than previously assumed. Although further research is needed, the recently discovered sites dating from this period are mostly small agricultural settlements, as opposed to the large nucleated settlements of the preceding period (Vanhaverbeke et al., 2011b). It is therefore clear that there was a drastic change in habitation practices within the territory at this time. The present study shows how the dry trend indicated by the pollen signal is supported by steadily decreasing OM content from the 8th century AD till c. 900 cal AD at Gravgaz, and reflected by the influx of CC-rich sediments in the Bereket basin c. 650 cal (Unit Br-c). It may be assumed that the pollen signal obtained from this CC layer, and indicating dry, open steppe vegetation, partially originates from the vegetation on the marl substrate of the slopes west of the sample site. Although such a sedimentation event may result in the deposition of reworked older pollen, it is most likely that the pollen originating from the marls reflect the vegetation present at the moment of the erosion-deposition event as pollen is not likely to preserve for prolonged periods in the drier sediments outside the wetland.

A similar shift from crop cultivation to pastoralism during the 7th century AD is observed throughout the Eastern Mediterranean (England et al., 2008; Leroy et al., 2010; Bakker et al., 2011, 2012). The question whether these shifts in land use were driven by climate or a result of the incursions of Arab forces during the mid 7th century AD, has
long been the subject of ongoing debate (Vanhaverbeke and Waelkens, 2003; Haldon, 2007; Neuman et al., 2007b; England et al., 2008; Leroy, 2010). A climatic deterioration, occurring during the mid 7th century, has been recorded throughout the Middle East (Heim et al., 1997; von Rad et al., 1999; Lückge et al., 2001; Jiang et al., 2002; Lamy et al., 2006; Migowski et al., 2006). However, the role of Arab invaders may not be overlooked. After the Arab victory over the Byzantine fleet at Finike, near Antalya, known as “the Battle of the Masts” at 655 AD, Arab incursions into Pisidia became commonplace (Threadgold, 1997). Both the threat of Arab incursions, as well as a strong aridification of the climate would have resulted in a change in lifestyle of smaller farmers, from sedentary agriculture, to (semi)pastoralism. It is considered most likely that a combination of climatic deterioration and political instability has caused the abandonment of farmland and settlements observed in Gravgaz and Bereket. Regardless of the exact origin of the observed changes in land use, the aridification of the climate would have driven the way the landscape responded to this shift and how it developed over time afterwards.

In many records from the Eastern Mediterranean, the ending of the BO Phase is immediately followed by a sharp increase in Pinus pollen (Van Zeist et al., 1975; Bottema and Woldring, 1984; Roberts, 1990; Eastwood et al., 1998; Heim et al., 1997; England et al., 2008). Several high resolution pollen diagrams indicate that such an increase had indeed taken place at some locations (Neumann et al., 2007a, 2010), but the present study reveals that this process of very fast reforestation is not necessarily the rule. The rise of pine forests at Gravgaz was initially subdued by the establishment of open, dry steppe vegetation. At Bereket, pine forest increased after the disappearance of crop cultivation, but percentages remained below the present-day background pine pollen signal (Bakker, unpublished data). The pollen signal within the layer rapidly deposited during the mid 7th century (Br-c), indicates the presence of open steppe vegetation near the sample site. Secondary succession, resulting in the establishment of pine forest, only takes place from the 8th century onward.
What caused the high pine percentages observed in some post BO Phase pollen records is subject to ongoing debate. Some attribute it to fast reforestation by pine forests following a population decrease (Neumann et al., 2007b; Kaniewski et al., 2007b; England et al., 2008). Pines are early pioneers of abandoned farmland and can cope with dry environments (Zohary, 1995; Ne’eman et al., 2004; Neumann et al., 2007a). Others propose that high pine pollen percentages originated in open, overgrazed landscape where the local pollen signal was incapable of overpowering the pine pollen signal (Bottema and Woldring, 1995; Vermoere et al., 2000a; Knipping et al., 2008). The pollen and sediment data of present study supports the theory that a rise in pine pollen signals an increase in pine forest, rather than the presence of an open vegetation type as that type of vegetation appears separately in the pollen diagrams of Bereket and Gravgaz. Modern pollen samples collected by Vermoere (2004) and Bakker (unpublished results) indicate that in the current landscape, pine pollen percentages of 70–90% will only be reached within a pine forest, on very high, exposed locations, locations largely devoid of plant cover, or locations where there is a large risk of bad pollen preservation. At other locations, pine pollen percentages will not be higher than c. 40–60%. Occasional peak values of Asteraceae pollen recorded in Gravgaz (Figs. 6 GVZ6, and A1) are likely the result of selective transportation and deposition caused by strong upward airflows in a warm, dry environment (Bottema and Woldring, 1984; Vermoere, 2004). The hypothesis that it is a sign of poor pollen preservation is rejected as signs of bad pollen preservation and disturbance of the soil are absent.

Deciduous oak remained of relatively little importance after the end of the BO Phase, even though it was an important constituent of the primary climax vegetation prevalent before the onset of human impact in the study site. The overall dominance of pine, rather than (deciduous) oak, may have been a result of colluviation caused by (over)grazing, which may have further decreased the amount of fertile soils covering the hillsides and slopes. Deciduous oak, which is intolerant of calcareous soils, would be restricted to the fertile deposits on the basin floors, while Pine forests, which are
more resistant to calcium rich soils, are able to extend their range (Roberts, 1990). However, many of the mountainsides in the study area have always been calcerous and it is impossible to determine how much more of the calcareous substrate in the study area had been exposed since the onset of human impact on the environment in the territory and how much the potential range of deciduous oak had decreased (if at all).

5.2.2 Mid 10th century–mid 13th century AD wet period

The period from the mid 10th to the late 13th century AD is palynologically generally characterized by relatively moist environmental conditions, assumed to be a regional expression of the Medieval Climate Anomaly (Bakker et al., 2012).

The limited resurgence in anthropogenic activity from the mid 10th to the mid 12th century AD; Figs. 6, 7, A1), the onset of which coincides with the start of the MCA in the region, is not noted in earlier records from southwest Turkey (van Zeist, 1975; Bottema and Woldring, 1884), possibly due to their limited chronological framework. Primary and secondary anthropogenic indicators show a minimal increase compared to the preceding period, indicating that human activities remained focussed on livestock herding with limited cereal cultivation recorded for Gravgaz. It is notable that Ollea cultivation remains absent during this period.

A similar resurgence in anthropogenic activity, with a notable absence of arboriculture, has been recorded in Nar Lake, Central Turkey at c. 950 AD (Eastwood et al., 2009). The lack of olive cultivation is attributed to the notion that during such unstable times as the Mid-Byzantine, it was not worth the effort to invest in such potentially vulnerable, time-intensive crops (England et al., 2008; Eastwood et al., 2009). By the 11th century AD, measures aimed at protecting the rights of poor, small-scale farmers and prevent the acquisition of their lands by wealthy land owners were no longer upheld and more and more land was absorbed into large estates, resulting in a change in land use and inhabitation of these lands (Gregory, 2010). Such a process may also
have resulted in the relative absence of crop cultivation in Gravgaz and Bereket during this period.

The resurgence of agriculture from the 10th century onwards coincides with a social and economical revival throughout the Byzantine Empire (Bintliff, 2000; Haldon, 2007; Knipping et al., 2008; Vionis et al., 2009a). This phenomenon is considered to be a result of 8th and 9th century AD administrative reforms (Gregory, 2010) and military victories rendering previously insecure territory to a more stable footing (Eastwood et al., 2007; Vionis et al., 2009b). However, as the first hints of recovery in the Byzantine countryside occurred no sooner than the 10th century (Vionis et al., 2009a; Eastwood et al., 2009; the present paper), coinciding exactly with the onset of the MCA in Europe and the Middle East (Bar-Matthews et al., 1999; Bond et al., 2001; Schilman et al., 2001, 2002; Gupta et al., 2003; Lamy et al., 2006; Kaniewski et al., 2010; Bakker et al., 2012), it is tempting to consider that the amelioration of the climate may have been a catalyst, further enabling the expansion of agriculture into areas previously less attractive for agricultural practices, e.g. due to their remote location or less attractive (bio)climatic conditions.

The renewed anthropogenic impact in Gravgaz and Bereket ended mid 12th century AD and the region apparently becomes dominated by pine forest until the mid 16th century AD.

A similar decline of agricultural practices, observed in the Nar lake pollen record, is linked to the arrival of the Selçuks in Cappadocia in c. 1074 cal AD (Eastwood et al., 2009). The Selçuks started to dominate SW turkey following the Battle of Malazgirt in 1071 AD and were in control of the territory of Sagalassos since 1204 AD, by the latest. This date is not unrealistically different from the mid 12th century estimation for the disappearance of agriculture in Bereket and Gravgaz. Furthermore, the destruction of a fortified settlement on Alexander’s Hill, near the site of the former city of Sagalassos can be considered contemporary (Poblome and Taloen, 2005; Vionis et al., 2010). There is no direct evidence supporting a link between the destruction of the site and the advent of the Selçuks in the region. The construction of the hamam and keravansaray in
the village of Ağlasun, located in the valley below Sagalassos, during the 13th century AD indicates a continuity of life during this period (Vanhaverbeke et al., 2009). This is also supported by the continuation of cereal cultivation near Ağlasun (Vermoere, 2004).

Rather than a result of the Selçuk conquest, the disappearance of any sign of agriculture in the palynological records of Bereket and Gravgaz may be the result of the political and economical deterioration of the Byzantine Empire during the Komnenoi (1082–1185 AD) and Angeloi (1185–1204 AD) dynasties in the years prior to the Selçuk conquest of the region. However, resurgence in the occupation of the fortified hamlets on the site of Sagalassos, and the construction of an additional fortification on the nearby Alexander’s Hill, seems to be at odds with an apparent decline in agriculture. It may be that settlements in the territory shifted their agricultural practices towards more limited activities in the direct vicinity of the settlement in the face of external military threats, similar to the process which occurred during the 5th century. It may also be that shifts in land use were driven by further changes in the nature of land ownership.

The mid 11th century AD, saw the rise of the Pronoia system, with which land-owning nobility was granted full control over their territory in return for specific services to the crown, essentially creating semi-independent fiefdoms.

The palynological end of the agricultural period (or period of human impact) is dated c. 1150 cal AD, and corresponds with the end of one of the wettest 70-yr intervals recorded by Touchan et al. (2007), occurring c. 1098–1167 AD. However, the raw tree ring data of Touchan et al. (2007) indicate that the subsequent period remained relatively moist as well. Additionally, the pollen derived bioclimatic proxy of Bakker et al. (2012) also indicates continued relatively moist environmental conditions. A link between the disappearance of human impact and a shift to drier conditions seems less likely.

5.2.3 Mid 13th century dry period until subrecent times

Bakker et al. (2012) indicate that southwest Turkey underwent a climatic deterioration as reflected in the pollen data during the close of the 13th century, linking the start of...
this dry period to the start of the LIA. However, the sediment data from the Gravgaz core indicates local dry conditions only occurred earlier, from the early 13th century AD, while in Bereket, they occur from the mid 13th century onward. These dates are in agreement with the precipitation data of Touchan et al. (2007), which indicates that one of the driest 70 yr periods recorded in his tree ring data occurred at 1195–1264 AD. While the start of this 70 yr period was still relatively wet, it was characterized by extremely dry conditions from the early to mid 13th century AD onwards.

The delay in the pollen-derived bioclimatic record of Bakker et al. (2012) may be a result of the type of vegetation change upon which the observation was based. The shift in vegetation recorded for the early 14th century, and indicating a shift towards a drier bioclimate, is actually a change in the composition of tree species, rather than changes in the composition of herbaceous species (as with the 640 dry shift). Tree species take a longer time to grow and produce enough pollen producing offspring to be detected in the pollen data and it is only to be expected that in this case the pollen data falls behind the sediment data.

The pollen data show that the regional environment remained relatively dry compared to the MCA, throughout the subsequent centuries, until c. the 18th century AD, implying that the cold LIA was also characterized by relatively dry conditions in general, despite the occurrence of slightly wetter intervals within the LIA (such as indicated in Touchan et al., 2007).

If the proposed explanation for the delay in the pollen signal is true, it would mean that the LIA started in SW turkey with a period of extremely dry environmental conditions in the early to mid 13th century AD. This aridification event would have first been expressed in a change in the water availability at the marshes on the sample sites, resulting in the observed changes in the sediment records.

Pollen data from Gravgaz marsh indicate that the landscape, which at this time remained dominated by pine forest, becomes more open again from the mid 16th century AD onward. Historical data indicates that the period from the late 13th century onward, after the Selçuks, and later the Ottomans, established their realm, was characterized
by increasingly peaceful conditions in Anatolia (Eastwood, 2009; Vanhaverbeke and Waelkens, 2003; Vryonis, 1971). Vanhaverbeke and Waelkens (2003) indicate how the Ottoman period saw a population increase in region during the 15th and 16th centuries. Increased pressure on the land and resulting reduced living standards eventually led to the Celali rebellions of the late 16th and early 17th century. The resulting insecure situation may have led to a reduction of the population, a decline in agriculture and a corresponding increase in pastoralism (Vanhaverbeke and Waelkens, 2003). However, the 17th century also saw a major tax reform, which caused a shift in land ownership from Timars (a land granted by the Ottoman sultans as compensation for military service) to Ciftliks (a system of land management where powerful military officers started to claim land from the Sultan’s holding allowing them to pass the land onto their sons, creating large privately owned estates, the inhabitants of which were essentially used as serfs). The establishment of these may have impinged upon the hamlets and villages populated by independent farmers, forcing a shift from sedentary farming towards pastoralism (Jackson and Lampe, 1982; Keyder and Tabak, 1991).

Climatic change seems not to have played a role in the increase of pastoralism in the region. Before the 16th century AD, sedimentological data does indicate severe local drought coinciding with regional dry conditions (Touchan et al., 2007). However, both the vegetation- as well as sediment data imply that, while local and regional environmental conditions did improve during the 16th century, they were until the early 18th century AD roughly comparable to those of the early DACP. This is also reflected in the pollen data, which, apart from an increase in shrublands, indicates an increase in dry steppe, similar to that which developed after the mid 7th century AD. It is unknown whether the short term peak in precipitation around 1518–1587 AD, recorded by Touchan et al. (2007), had an influence on land use in the study region. Evidence for its occurrence does not exist in the pollen data. Only one sample in the sediment data of Gragaz apparently coincides with this precipitation peak. While it does record an elevated OM value, this is not sufficient to prove it is the local manifestation of this precipitation peak.
The abundance of *Pinus* indicates that landscape openness was comparable to that observed for the 7th–10th centuries. The lack of an increase in coprophilous NPP's indicates that grazing did not take place near the sample site in Gravgaz. The pollen data indicate that the current landscape has a very recent origin. It is impossible to estimate how recent the very last samples of the pollen cores are, but historical evidence indicates that the present landscape is no older than c. 100 yr. Vermoere (2004) indicates that it was the adaptation of agricultural machines and the establishment of a dense road network after the First World War, boosted the expansion of agriculture, and resulted in the settlement of the (semi)nomadic populace of the region.

Unfortunately the most recent 500 yr are only covered by the Gravgaz marsh pollen record. Preliminary studies into the relevant source area of pollen in the SW Taurus Mountains (Bakker, 2012) revealed that even for *Pinus*, changes in pollen percentages most likely only reflected changes in the vegetation within the basin in which a pollen core is located. Although the present paper indicates that the sediment and pollen record from the Gravgaz core is indicative of environmental changes in the wider region, the record only indicates how the landscape changed as a result of these environmental changes over a relatively limited area around the sample site. If there is indeed a link between the aforementioned shifts in human impact and the deforestation observed in the Gravgaz marsh, then this gradual deforestation may also have occurred elsewhere in the study area.

5.3 Fire impact

The amount of fire events is low, five in each basin (Table 5). None of the fire events are recorded simultaneously at both basins, despite the short distance between them being no more than c. 11 km, indicating their limited size and impact. The NJ ordination shows an overview of general vegetation change through time, from the crop cultivation that marked the BO Phase, to periods characterized by a relatively open landscape with an increasing cover of woody maquis species, to a pine forest. This pattern resembles the Clementsian models of post-disturbance succession (Tomascelli, 1977).
human impact decreases or stops, the first stage of secondary succession of the vegetation is characterised by the dominance of herbaceous vegetation in the landscape, which is then replaced by woody shrub vegetation, eventually leading to a dominance of maquis or forest (Tomascelli, 1977). The final PDVP in both NJ tree diagrams represents the vegetation that becomes dominant in the pollen spectrum immediately after the clearing of pine forests.

Fire events, as detected by the CharAnalysis software, seem to occur primarily at times when human impact is absent. However, in the NJ ordination of Gravgaz marsh, charcoal concentration is placed with human impact indicators. This may be a result of the low amount/impact of fire events in each basin. The placement of charcoal in the NJ ordination for Gravgaz is more likely to be driven by variations in the background charcoal influx. In this case it may be that the placement of charcoal concentration in the NJ diagram is driven by changes in the background charcoal signal, rather than by the occurrence of fire events, essentially recording generally increased fire activity in the wider region while local fire activity remains limited or absent.

The PDVP’s associated with charcoal concentrations (and which contain a number of cultivated species) may be indicative of vegetation within a relatively small area around the sample site, but considering the simultaneous increases in human impact at both Gravgaz and Bereket, the association of charcoal concentration with these PDVP’s may indicate an increase of fires in the general region around, but not in or near, Gravgaz marsh at times when human impact was present. Fires occurring close enough to the sample site in order to be detected by CharAnalysis occur, as in Bereket, mostly when human impact is absent.

The connection between charcoal concentration and open steppe vegetation (Asteraceae, Centaurea), post-fire disturbance indicators (Ulex), and pine forest, is in accordance with the link between the occurrence of fire events and increased pine pollen percentages observed in the pollen records.

Vannière et al. (2008) suggest that climatic conditions were important for fire occurrence even under strongly humanised ecosystem conditions. Turner et al. (2008)
concluded that Eastern Mediterranean regional fire activity was controlled by climatically-induced variations in biomass. The timing of the main fire episodes in Gravgaz marsh and the Bereket basin are centred on periods characterized by a decreased presence, or even an absence of crop cultivation. Fire episodes occur in periods characterized by relatively warm and wet (the RWP for Bereket, and the MCA for Gravgaz), as well as cold and dry environmental conditions (the DACP for Bereket, and the LIA for Gravgaz). Nearly all fire events are related to an elevated abundance of pine forest equal to, or higher than in the present landscape. Pine forests form the secondary climax vegetation in the region when human impact is absent and are able to thrive during periods characterized by high, as well as low moisture availability (Fontaine et al., 2007), providing biomass which serves as fuel for (wild)fires, regardless of the climatic regime.

Pinus nigra is well adapted to cope with fire damage. It is a long lived tree with a thick bark while it can grow tall with only a few branches on the lower part of the trunk. This makes it very resistant to surface fires (Fulé et al., 2008; Pausas et al., 2008). *Pinus Brutia* is a species characterized by a high post-fire resilience (Pausas et al., 2008), its serotinous cones able to protect seeds from fire damage. Thus *Pinus brutia* forests are able to quickly regenerate after fires. *Pinus Brutia* is nowadays restricted to the lower parts of the mountains, occurring below 1400 m a.s.l. However, its range may have extended higher than today during warm climatic phases such as the MCA and RWP. During short periods directly following a fire event, the landscape may be characterized by open herbaceous vegetation before the fire-damaged pine forest is able to resprout or regenerate. However, in parts of the pollen record where the temporal resolution is relatively small, such short periods may not be recorded. Recent models predict the establishment of a pine forest between 15 and 40 yr after a fire occurs (Millington et al., 2009). The median sample resolution for Gravgaz marsh and the Bereket basin is 38 and 26 yr respectively, the individual stages of post-disturbance succession may therefore be invisible in certain parts of the pollen records.
The lack of local and/or anthropogenic fire activity in Gravgaz and Bereket is in contrast with the situation during the BO Phase, for which Kaniewski et al. (2008) recorded a series of high intensity fire episodes that occurred between the 4th century BC and the 2nd century AD. These fires were linked to a simplification of the vegetation structure, favouring soil erosion, pastures and intensive cultivation in the Bereket basin. No similar research covering this period has been performed on sediments from Gravgaz marsh. For the post BO Phase period, one fire recorded in the Gravgaz marsh core (c. 1590 AD), and one fire recorded in the Bereket basin core (c. 320 AD), are possibly associated with human impact, in both cases in the form of shift in agriculture, from crop cultivation towards animal grazing. A limited human presence in the region can be assumed to occur throughout the post-BO Phase period, despite the pollen data recording next to no anthropomorphic indicators. This human presence can be assumed to have been more focussed on livestock grazing, perhaps partially in the form of pastoralism (Vanhaverbeke and Waelkens, 2003; Vanhaverbeke et al., 2011a; Fuller et al., 2012). While fires could have been started by herdsmen, looking to enlarge their grazing grounds, one would expect a decrease in pine woodlands over a larger time period. Continuous grazing of the deforested landscape would lead to the encroachment of the opened landscape by shrub species (Asouti and Hather, 2001), while the further development of the landscape, towards a secondary pine forest, would be suspended. This phenomenon is only observed for the 1590 AD fire event in Gravgaz and suspected to occur during the 320 AD fire event in Bereket.

A peak in charcoal concentrations, occurring during the mid 10th century AD, is not recognized as a fire event by CharAnalysis. However, it does coincide with a peak in sedimentation rates. As explained in Sect. 3.2, it is not uncommon for rapid sedimentation to occur following a fire. It is well possible that this charcoal peak is actually indicative of a fire event, but that it is not picked up by CharAnalysis due to the resampling of the charcoal record performed by the software, and the shift in sedimentation rates. If it is indeed a fire, then it may be the true start of the resurgence in anthropogenic activity during the MCA.
6 Conclusions

The sediment record of Gravgaz marsh provided a proxy of local moisture availability on a multi-centennial and for some periods on a multi-decennial scale. The integration with the pollen and sediment data of Gravgaz and Bereket, as well as the pollen-derived bioclimatic proxy of Bakker et al. (2012) and the tree ring data of Touchan et al. (2007) since 1097 AD revealed that the Gravgaz sediments recorded also important climatic changes, rather than a local environmental signal. The sediment data managed to corroborate or improve the timing of the various bioclimatic periods observed by Bakker et al. (2012), while the synchronisms between the AMS-based time scales at Gravgaz and Bereket and the tree ring chronology of Touchan et al. (2007) strengthened the reliability of the chronological framework presented in the present study, at least for the last millennium. At the same time, the similarities between the data presented in this study and the tree ring data of Touchan et al. (2007) imply that the latter study of springtime precipitation may actually be interpreted as an indication of year-round humidity.

The new data from the western Taurus Mountains, SW Turkey, shows how a climatic shift towards moister conditions in the 3rd century coincided with a shift in agricultural practices, away from intensive crop cultivation and towards pastoralism. The palaeoenvironmental data implies that an increase in moisture availability led to the extension of wetlands on the studied valley floors becoming too wet to use as arable land. This may have been a local phenomenon while agricultural practices in drier valleys need not have encountered problems, and may have even benefited from increased moisture availability.

A further, more severe shift towards pastoralism and population decrease during the mid 7th century could have been caused by the climatic deterioration which led to relatively dry environmental conditions, although the role of Arab incursions into the region during the same period may also have played a role in driving the observed shift in land use.
The first indications of resurgence in agriculture in southwest Turkey occur during the mid 10th century. A similar phenomenon has been observed throughout Anatolia and it is suggested that increased moisture availability may have worked as a catalyst for the spread of human activity. Crop cultivation did not return to the levels of intensity witnessed during the BO Phase, while intensive arboriculture remained almost completely absent in the present record from southwest Turkey.

The abrupt drop in anthropogenic activity during the mid 12th century is not related to a climatic deterioration. The climate remains wet until the mid 13th century. A link with Selçuk incursions is also not likely as archaeological records reveal no conclusive indications for Selçuk violence in the study area. It is more likely that the changes in vegetation are a localized response to changes in land use during the Mid Byzantine period.

Increased landscape openness from the 16th century onwards may be linked to political unrest and changing landscape management during the Ottoman era.

The detailed study of the role of fire history in two basins located within the SW Taurus Mountains revealed that the occurrence of fire events was not connected to specific climatic (relatively dry or wet) conditions, or to an increased human presence in the region, but rather to fuel availability in the form of pine forests. The general background charcoal concentration was related to anthropogenic activity in the Gravgaz marsh record, while in Bereket, background charcoal concentrations were linked to open vegetation following fires/disturbances.

The pollen data reveals that the pattern revealed in older, lower resolution records, indicating a fast rise in *Pinus* pollen after the end of the Beyşehir Occupation Phase, is not necessarily accurate. The historical pollen data presented in this paper, in combination with modern pollen data, also imply that the notion of high *Pinus* pollen percentages indicating an open landscape incapable of countering the influx of pine pollen, is likely unrealistic.

As this is the first more detailed overview of vegetation change during the post BO Phase period in SW Turkey, it is as of yet unclear how widespread the observed
vegetation dynamics have been throughout the region. While climate change may be assumed to have had a regional impact, patterns of political, economical and social change may have differed between the various political entities in the region. Furthermore, the bioclimatic changes resulting from climatic change may be different at lower altitudes. It is vital that more palaeoecological records from southwest Turkey are studied in order to provide a detailed view of vegetation dynamics during this important but understudied period.

Appendix A

The multivariate analyses and consequent grouping of plant taxa and interpretation of the pollen data is based upon the pollen data displayed in Figs. A1 and A2.

Acknowledgements. This research was supported by the Belgian Programme on Interuniversity Poles of Attraction (IAP 6/22 and IAP 7/17) and the Research Fund of the K. U. Leuven (BOF-GOA 07/02 and GOA 13/04), next to project G.0421.06 of the Fund for Scientific Research, Flanders (FWO). The research of J. Bakker is financed by the Centre for Archaeological Sciences (Programme Financing, Special Research Fund of the K. U. Leuven). M. Waelkens is a beneficiary of a “Methusalem grant” from the Flemish Ministry for Science Policy. J. Poblome is a Francqui Research Professor. The Sagalassos Archaeological Research Project is thanked for providing administrative and logistical support. Philippe Muchez is thanked for his assistance in determining the lithology of core SA09JBDroll01. Bas van Geel is thanked for offering his expertise for the preliminary study of the macrobotanical remains. Eva Kaptijn, Rinse Willet, Adam Izdebski, and John Haldon are thanked for sharing their thoughts on the subject.
References

Bakker, J.: Late Holocene Vegetation Dynamics in a Mountainous Environment in the territory of Sagalassos, Southwest Turkey (Late Roman till presens), Dissertation, Katholieke Universiteit Leuven, Belgium, 239 pp., 2012.

New insights into vegetation dynamics in the Eastern Mediterranean

J. Bakker et al.

Izdebski, A.: Why did agriculture flourish in the late antique east? The role of climate fluctuations in the development and contraction of agriculture in Asia Minor and the Middle East from the 4th till the 7th c. AD, Millenium, Jahrbuch zu Kultur und Geschichte des ersten Jahrtausends n. Chr., 8, 291–312, 2012.

Table 1. A summary of modern-day climatic conditions in the study area as collected by the weather station in Ağlasun (37°39′ N 30°32′ E). The data presents average values of data collected between 1972 and 1992 (Ağlasun Meteorology Station, Turkish State Meteorological Service, Ankara).

<table>
<thead>
<tr>
<th></th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>Jun</th>
<th>Jul</th>
<th>Aug</th>
<th>Sep</th>
<th>Okt</th>
<th>Nov</th>
<th>Dec</th>
<th>Annual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean maximum</td>
<td>11.79</td>
<td>13.69</td>
<td>19.10</td>
<td>22.61</td>
<td>27.20</td>
<td>30.57</td>
<td>33.09</td>
<td>32.96</td>
<td>30.51</td>
<td>27.08</td>
<td>20.12</td>
<td>14.11</td>
<td>23.57</td>
</tr>
<tr>
<td>temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>Mean minimum</td>
<td>−9.15</td>
<td>−9.14</td>
<td>−6.44</td>
<td>−0.60</td>
<td>1.98</td>
<td>6.18</td>
<td>9.24</td>
<td>9.23</td>
<td>4.72</td>
<td>−0.11</td>
<td>−4.70</td>
<td>−7.30</td>
<td>−0.51</td>
</tr>
<tr>
<td>temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>Mean average</td>
<td>1.15</td>
<td>1.83</td>
<td>5.17</td>
<td>9.26</td>
<td>13.80</td>
<td>18.26</td>
<td>21.45</td>
<td>20.83</td>
<td>16.98</td>
<td>11.66</td>
<td>6.18</td>
<td>2.91</td>
<td>10.79</td>
</tr>
<tr>
<td>temperature (°C)</td>
<td></td>
</tr>
<tr>
<td>Total precipitation (mm)</td>
<td>109.82</td>
<td>97.97</td>
<td>70.77</td>
<td>87.47</td>
<td>69.77</td>
<td>41.05</td>
<td>17.82</td>
<td>20.32</td>
<td>18.68</td>
<td>63.81</td>
<td>67.03</td>
<td>99.76</td>
<td>764.25</td>
</tr>
</tbody>
</table>

New insights into vegetation dynamics in the Eastern Mediterranean

J. Bakker et al.
Table 2. List of AMS 14C ages from charcoal samples from core SA06EP1 (Gravgaz Marsh), and core SA09JBDriil01 (Bereket Basin). Ages are calibrated using the IntCal09 calibration curve. Calibrated ages are given as 1σ and 2σ probabilities, using the BCal online software package (Buck et al., 1999). The age-depth relationship of the Gravgaz marsh core is augmented by the four topmost radiocarbon ages from core SA00EP03, collected on the same location.

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Sample type</th>
<th>Lab codes</th>
<th>δ^{13}C (‰ PDB)</th>
<th>Measured age (BP)</th>
<th>Conventional age</th>
<th>95 % lower</th>
<th>95 % upper</th>
<th>69 % lower</th>
<th>69 % upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>Charred material</td>
<td>Beta-257413</td>
<td>n/a</td>
<td>n/a</td>
<td>100 ± 40 BP</td>
<td>1680</td>
<td>1940</td>
<td>1690</td>
<td>1920</td>
</tr>
<tr>
<td>88</td>
<td>Seeds</td>
<td>Beta-257414</td>
<td>−24.9</td>
<td>370 ± 40 BP</td>
<td>370 ± 40 BP</td>
<td>1450</td>
<td>1640</td>
<td>1460</td>
<td>1630</td>
</tr>
<tr>
<td>133</td>
<td>Charred material</td>
<td>Beta-263584</td>
<td>−23.2</td>
<td>860 ± 40 BP</td>
<td>890 ± 40 BP</td>
<td>1030</td>
<td>1210</td>
<td>1040</td>
<td>1190</td>
</tr>
<tr>
<td>140</td>
<td>Charred material</td>
<td>Beta-257420</td>
<td>−24.3</td>
<td>1010 ± 40 BP</td>
<td>1020 ± 40 BP</td>
<td>970</td>
<td>1150</td>
<td>990</td>
<td>1040</td>
</tr>
<tr>
<td>147</td>
<td>Charred material</td>
<td>Beta-263585</td>
<td>−24.7</td>
<td>1160 ± 40 BP</td>
<td>1160 ± 40 BP</td>
<td>860</td>
<td>1010</td>
<td>920</td>
<td>980</td>
</tr>
<tr>
<td>222</td>
<td>Charred material</td>
<td>Beta-257421</td>
<td>−21</td>
<td>1030 ± 40 BP</td>
<td>1100 ± 40 BP</td>
<td>800</td>
<td>990</td>
<td>890</td>
<td>960</td>
</tr>
<tr>
<td>277</td>
<td>Charred material</td>
<td>Beta-257422</td>
<td>−22.5</td>
<td>1700 ± 40 BP</td>
<td>1740 ± 40 BP</td>
<td>210</td>
<td>410</td>
<td>240</td>
<td>340</td>
</tr>
</tbody>
</table>

Core SA00EP03

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Sample type</th>
<th>Lab codes</th>
<th>δ^{13}C (‰ PDB)</th>
<th>Measured age (BP)</th>
<th>Conventional age</th>
<th>95 % lower</th>
<th>95 % upper</th>
<th>69 % lower</th>
<th>69 % upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>233</td>
<td>Bulk soil sample</td>
<td>GrN-26339</td>
<td>n/a</td>
<td>n/a</td>
<td>1760 ± 60 BP</td>
<td>80</td>
<td>60</td>
<td>180</td>
<td>300</td>
</tr>
<tr>
<td>282</td>
<td>Bulk soil sample</td>
<td>GrA-19896</td>
<td>n/a</td>
<td>n/a</td>
<td>2020 ± 50 BP</td>
<td>130</td>
<td>180</td>
<td>130</td>
<td>180</td>
</tr>
<tr>
<td>386</td>
<td>Bulk soil sample</td>
<td>GrA-19898</td>
<td>n/a</td>
<td>n/a</td>
<td>1420 ± 40 BP</td>
<td>80</td>
<td>60</td>
<td>180</td>
<td>300</td>
</tr>
</tbody>
</table>

Bereket

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Sample type</th>
<th>Lab codes</th>
<th>δ^{13}C (‰ PDB)</th>
<th>Measured age (BP)</th>
<th>Conventional age</th>
<th>95 % lower</th>
<th>95 % upper</th>
<th>69 % lower</th>
<th>69 % upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>Plant remains</td>
<td>Beta-287853</td>
<td>−27.8</td>
<td>360 ± 40 BP</td>
<td>310 ± 40 BP</td>
<td>1480</td>
<td>1660</td>
<td>1520</td>
<td>1650</td>
</tr>
<tr>
<td>170</td>
<td>Plant remains</td>
<td>Beta-287855</td>
<td>−25.9</td>
<td>770 ± 40 BP</td>
<td>760 ± 40 BP</td>
<td>1210</td>
<td>1230</td>
<td>1230</td>
<td>1280</td>
</tr>
<tr>
<td>207</td>
<td>Charred material</td>
<td>Beta-287854</td>
<td>−29</td>
<td>1020 ± 40 BP</td>
<td>950 ± 40 BP</td>
<td>1020</td>
<td>1170</td>
<td>1030</td>
<td>1160</td>
</tr>
<tr>
<td>234</td>
<td>Charred material</td>
<td>Beta-295432</td>
<td>n/a</td>
<td>n/a</td>
<td>1190 ± 30 BP</td>
<td>780</td>
<td>820</td>
<td>900</td>
<td>890</td>
</tr>
<tr>
<td>238</td>
<td>Charred material</td>
<td>Beta-280822</td>
<td>−27.4</td>
<td>1230 ± 40 BP</td>
<td>1190 ± 40 BP</td>
<td>770</td>
<td>890</td>
<td>800</td>
<td>860</td>
</tr>
<tr>
<td>270</td>
<td>Plant remains</td>
<td>Beta-295434</td>
<td>n/a</td>
<td>n/a</td>
<td>1220 ± 30 BP</td>
<td>720</td>
<td>770</td>
<td>800</td>
<td>830</td>
</tr>
<tr>
<td>283</td>
<td>Charred material</td>
<td>Beta-295433</td>
<td>−23</td>
<td>1180 ± 30 BP</td>
<td>1210 ± 30 BP</td>
<td>690</td>
<td>720</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>305</td>
<td>Charred material</td>
<td>Beta-287856</td>
<td>−25.1</td>
<td>1420 ± 40 BP</td>
<td>1420 ± 40 BP</td>
<td>80</td>
<td>60</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td>319</td>
<td>Charred material</td>
<td>Beta-280821</td>
<td>−27.2</td>
<td>1460 ± 40 BP</td>
<td>1420 ± 40 BP</td>
<td>1420</td>
<td>1420</td>
<td>Posterior probability of sample being an outlier: 85 %</td>
<td></td>
</tr>
<tr>
<td>331</td>
<td>Charred material</td>
<td>Beta-274769</td>
<td>n/a</td>
<td>n/a</td>
<td>1350 ± 40 BP</td>
<td>650</td>
<td>600</td>
<td>700</td>
<td>700</td>
</tr>
<tr>
<td>361</td>
<td>Charred material</td>
<td>Beta-274770</td>
<td>−24.7</td>
<td>1380 ± 40 BP</td>
<td>1380 ± 40 BP</td>
<td>620</td>
<td>640</td>
<td>600</td>
<td>670</td>
</tr>
<tr>
<td>391</td>
<td>Charred material</td>
<td>Beta-285435</td>
<td>−25</td>
<td>1740 ± 30 BP</td>
<td>1740 ± 30 BP</td>
<td>Posterior probability of sample being an outlier: 67 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>463</td>
<td>Uncharred wood</td>
<td>Beta-280824</td>
<td>−24</td>
<td>1390 ± 40 BP</td>
<td>1410 ± 40 BP</td>
<td>600</td>
<td>620</td>
<td>670</td>
<td>660</td>
</tr>
<tr>
<td>493</td>
<td>Charred material</td>
<td>Beta-295437</td>
<td>n/a</td>
<td>n/a</td>
<td>1500 ± 30 BP</td>
<td>440</td>
<td>500</td>
<td>440</td>
<td>500</td>
</tr>
<tr>
<td>507</td>
<td>Plant remains</td>
<td>Beta-280823</td>
<td>−25.9</td>
<td>1620 ± 40 BP</td>
<td>1610 ± 40 BP</td>
<td>380</td>
<td>410</td>
<td>350</td>
<td>450</td>
</tr>
<tr>
<td>525</td>
<td>Plant remains</td>
<td>Beta-295436</td>
<td>−25</td>
<td>1740 ± 30 BP</td>
<td>1740 ± 30 BP</td>
<td>250</td>
<td>290</td>
<td>250</td>
<td>290</td>
</tr>
<tr>
<td>582</td>
<td>Charred material</td>
<td>Beta-287857</td>
<td>−25.8</td>
<td>2450 ± 40 BP</td>
<td>2440 ± 40 BP</td>
<td>−780</td>
<td>−410</td>
<td>−760</td>
<td>−490</td>
</tr>
</tbody>
</table>

* Sample was too small for a separate 13C/12C ratio and AMS analysis.
Table 3. Sedimentological units distinguished for core SA06EP1 and core SA09JBDriIl02.

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Unit</th>
<th>Age (cal AD)</th>
<th>Organic Matter (OM in %)</th>
<th>Calcium carbonates (CC in %)</th>
<th>Other Detritic Matter (ODM in %)</th>
<th>CC (%)</th>
<th>ODM (%)</th>
<th>Detritics (CC + ODM) = 100 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–19</td>
<td>Gr-f</td>
<td>modern</td>
<td>27.5</td>
<td>28.2</td>
<td>44.3</td>
<td>39</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>These recent deposits are characterized by the highest OM and CC values for the entire core. They confirm the open water marsh environment that has been observed during the 1990's.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19–99</td>
<td>Gr-e</td>
<td>1900–1480</td>
<td>9.2</td>
<td>19.1</td>
<td>71.7</td>
<td>21</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OM and CC contents fluctuate respectively around and above the overall mean. A OM peak value is recorded at 1520 cal AD, and a low OM content centers 1820 cal AD. CC peak values are dated 1700–1730 cal AD, immediately followed by a low CC content at 1780 cal AD.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99–123</td>
<td>Gr-d</td>
<td>1480–1200</td>
<td>0.4</td>
<td>21</td>
<td>78.6</td>
<td>21</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unit characterized by extremely low OM and above average CC contents. More than 50 % of the grain size belongs to the sand fraction. Microscopic analyses show that an important part of the coarser fraction is composed of finer particles bonded by calcium carbonates (Six, 2004).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123–222</td>
<td>Gr-c</td>
<td>1200–910</td>
<td>7.3</td>
<td>13.3</td>
<td>79.4</td>
<td>16</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unit of clays and silts with important sand fraction, similar to Gr-d, diminishing at 10 cm below top. OM and CC content below average, but variable OM content allows a subdivision into 3 subunits. First subunit is characterized by a very fast deposition rate of is 25 mm yr(^{-1}), and dates from 910 cal AD till 940 (depth range 222–147 cm). At 940 cal AD the deposition rate changes dramatically from 25 mm yr(^{-1}) towards 0.6 mm yr(^{-1}). Subunit Gr-cb dates from 940 cal AD till c. 1090, and is characterized by a low OM and CC content. Subunit Gr-c is characterized by around average OM and decreasing CC contents.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>222–289</td>
<td>Gr-b</td>
<td>910–200</td>
<td>17.7</td>
<td>19.6</td>
<td>62.7</td>
<td>24</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>During c. 7 centuries an organic silty clay accumulated, with a rate of 0.9 mm yr(^{-1}). OM and CC contents are above the average. OM shows three distinct peaks at 210, 400, and 700 cal AD. This unit is characterized by the highest mean OM contents of the core. The max. OM content (29 %) is dated 700 cal AD. Its waxing phase dates to the entire 7th century, while its waning phase encompasses the 8th and 9th centuries till 910 cal AD.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>289–339</td>
<td>Gr-a</td>
<td>200–90</td>
<td>5.9</td>
<td>10.6</td>
<td>83.5</td>
<td>11</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unit characterized by detritic silty clays with a low OM and CC content. Organics start to increase from 170 cal yr AD onwards.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Sedimentological units distinguished for core SA06EP1 and core SA09JBDriIl02.

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Unit</th>
<th>Age (cal AD/BC)</th>
<th>Organic Matter (OM in %)</th>
<th>Calcium Carbonates (mean CC in %)</th>
<th>Other Detritic Matter (mean ODM in %)</th>
<th>Mean CC (%)</th>
<th>Mean ODM (%)</th>
<th>Detritics (CC + ODM) = 100 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>43–169</td>
<td>Br-g</td>
<td>1580–1260</td>
<td>17</td>
<td>48</td>
<td>35</td>
<td>57</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3 m thick upper clay unit, deposited during three centuries, with a mean sedimentation rate of circa 4 mm yr(^{-1}). The lowest part of this unit (143–169 cm; 1330 cal AD till 1260) contains a very high percentage of non-carbonate detritics. The rest of this unit, distinguished by a dark brown colour, is situated above the water table. The organic content shows little variation with a mean of 17 %. Due to the incision of the river Aykirkik Deresi after 1580 cal AD, deposits from the last four centuries are not represented in this core, except eventually the upper 43 cm.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>169–235</td>
<td>Br-f</td>
<td>1260–820</td>
<td>59</td>
<td>22</td>
<td>19</td>
<td>53</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unit Br-f corresponds with the upper clayey peat, which accumulation covers a time period of more than four centuries. The composition is identical to that of unit Br-d.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>253–285</td>
<td>Br-e</td>
<td>820–760</td>
<td>15</td>
<td>54</td>
<td>31</td>
<td>64</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>As unit Ber-c this 0.8 m thick detritic deposit has been accumulated during a short time period. The organic content is identical to that of unit Br-c, but the non carbonate detritics are more important than within unit Br-c.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285–356</td>
<td>Br-d</td>
<td>760–660</td>
<td>58</td>
<td>24</td>
<td>18</td>
<td>57</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Clayey peat unit built up during less than a century. Compared with the lower clayey peat unit, it is richer in organics while the composition of the detritics remains identical. Unit Br-d contains the purest peat of the core (OM content: 85 %), which is dated c. 715 cal AD.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>356–430</td>
<td>Br-c</td>
<td>660–640</td>
<td>14</td>
<td>71</td>
<td>15</td>
<td>84</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3 m thick unit of detritic sediments, deposited during a very short period. Calcium carbonates largely dominate the detritics, which are devoid of organic matter, but contain numerous well-preserved rhizomes of Posseea (van Geel, personal communication, 2011).</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>430–501</td>
<td>Br-b</td>
<td>640–500</td>
<td>46</td>
<td>31</td>
<td>23</td>
<td>57</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lower clayey peat unit, built up during circa one century. Due to an important increase of the non carbonates, the composition of the detritics is significantly different from that of Unit Br-a.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>501–622</td>
<td>Br-a</td>
<td>500 AD–420 BC</td>
<td>10</td>
<td>65</td>
<td>24</td>
<td>73</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OM content is low before 250 cal AD, is above 10% between 200 cal BC and 50 cal BC with a pronounced peak (OM: 22–25 %) during the first half of the second century BC. After 50 cal BC, OM remains low till cal AD 250 and increases continuously afterwards). The detritics are dominated by calcium carbonates, which start to decrease dramatically from the 5th century onward in function. Rejected AMS-sample Beta-287857 was sampled in this unit.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Comparison of the well dated age-depth curves of this core SA09JBD01 (Fig. 2) with core BKT1/2 (Fig. 2 of Kaniewski et al., 2007) evidences that deposits of an identical age are situated at greater depths in core SA09JBD01 compared to core BKT1/2.

<table>
<thead>
<tr>
<th>Core SA09JBD01</th>
<th>Core BKT1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>Age (cal yr BP)</td>
</tr>
<tr>
<td>Beta-287853</td>
<td>310 ± 40 BP</td>
</tr>
<tr>
<td>Beta-287855</td>
<td>760 ± 40 BP</td>
</tr>
<tr>
<td>Beta-287854</td>
<td>950 ± 40 BP</td>
</tr>
<tr>
<td>Beta-295432</td>
<td>1190 ± 30 BP</td>
</tr>
<tr>
<td>Beta-280822</td>
<td>1190 ± 40 BP</td>
</tr>
<tr>
<td>Beta-295434</td>
<td>1220 ± 30 BP</td>
</tr>
<tr>
<td>Beta-295433</td>
<td>1210 ± 30 BP</td>
</tr>
<tr>
<td>Beta-274769</td>
<td>1350 ± 40 BP</td>
</tr>
<tr>
<td>Beta-274770</td>
<td>1380 ± 40 BP</td>
</tr>
<tr>
<td>Beta-280824</td>
<td>1410 ± 40 BP</td>
</tr>
<tr>
<td>Beta-295437</td>
<td>1500 ± 30 BP</td>
</tr>
<tr>
<td>Beta-280823</td>
<td>1610 ± 40 BP</td>
</tr>
<tr>
<td>Beta-295436</td>
<td>1740 ± 30 BP</td>
</tr>
<tr>
<td>Beta-287857</td>
<td>2440 ± 40 BP</td>
</tr>
<tr>
<td>Beta-210927</td>
<td>1870 ± 40</td>
</tr>
<tr>
<td>Beta-193788</td>
<td>1970 ± 40 BP</td>
</tr>
<tr>
<td>Beta-193789</td>
<td>2140 ± 40 BP</td>
</tr>
<tr>
<td>Beta-210931</td>
<td>2370 ± 40 BP</td>
</tr>
<tr>
<td>Beta-213851</td>
<td>2230 ± 40 BP</td>
</tr>
<tr>
<td>Beta-210930</td>
<td>3260 ± 190 BP</td>
</tr>
</tbody>
</table>

Depth incision at 1380 ± 40 BP: 204 cm

Depth incision at 1600 ± 40 BP: 309.5 cm

Depth incision at 1730 ± 30 BP: 321.5 cm
Table 5. List of dates (cal BC/AD) per sediment core of fire events as determined by the Char-Analysis software.

<table>
<thead>
<tr>
<th></th>
<th>Date (cal BC/AD)</th>
<th>Depth (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravgaz Marsh</td>
<td>1934</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>1592</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>1326</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>1174</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>1098</td>
<td>135</td>
</tr>
<tr>
<td>Bereket Basin</td>
<td>788</td>
<td>270</td>
</tr>
<tr>
<td></td>
<td>736</td>
<td>302</td>
</tr>
<tr>
<td></td>
<td>658</td>
<td>356</td>
</tr>
<tr>
<td></td>
<td>606</td>
<td>474</td>
</tr>
<tr>
<td></td>
<td>320</td>
<td>526</td>
</tr>
</tbody>
</table>
Fig. 1. A DEM and geological map of the main part of the territory of Sagalassos with the position of the coring sites.
Fig. 2. Top panel: age-depth curves for Gravgaz core SA06EP1 (left panel) and Bereket SA09JD01 (right panel). Middle panel: an overview of OM content, CC content, and pollen concentration and preservation. Bottom panel: correlograms displaying the correlation between OM content of the sediments versus CC content, and non-carbonate detritic matter content. Grey bars indicate a subdivision into bioclimatic periods (Bakker et al., 2012). I = Mid 3rd century–mid 7th century AD Wet Period and earlier. II = Mid 7th century–mid 10th century AD dry period. III = Mid 10th century–mid 13th century AD Wet Period. IV and V = Mid 13th century dry period until recent. The vertical lines in the middle graphs indicate the division of the sediment records into different sedimentological units (see Table 3).
Fig. 3. Pollen concentration in pollen/gram, and pollen preservation expressed as the total percentage of the corroded, degraded, broken and crumpled pollen, for Gravgaz marsh (top panel) and Bereket basin (bottom panel). Vertical grey bars indicate a subdivision into bioclimatic periods (Bakker et al., 2012). I = Mid 3rd century–mid 7th century AD Wet Period and earlier. II = Mid 7th century–mid 10th century AD dry period. III = Mid 10th century–mid 13th century AD Wet Period. IV and V = Mid 13th century dry period until recent.
Fig. 4. Neighbour Joining tree diagrams for charcoal and pollen concentration data in the Bereket basin (top panel) and Gravgaz Marsh (bottom panel). Vegetation types associated with the most important pollen taxa in each PDVP are based on van Zeist et al. (1975), Bottema and Woldring (1990) Fontaine et al. (2007) and Kaniewski (2007a). Arrows indicate the order in which each PDVP reaches its maximum dominance in the pollen spectrum. On the far ends of the figure are Cross Correlograms displaying the correlation between each PDVP and relative charcoal concentration.
Fig. 5. Top panel: peak magnitude and fire frequency as determined by CharAnalysis. Bottom panel: micro and macroconcentrations and lithology.
Fig. 6. Summary pollen diagrams displaying the total pollen percentage for each PDVP, and the fire events as detected by CharAnalysis, displayed along a depth axis.
Fig. 7. An overview of the main changes in the vegetation and environmental conditions in the territory of Sagalassos, the main archaeological periods, the main climatic periods and and the bioclimatic proxy for the territory of Sagalassos (Bakker et al., 2012) with the most extreme dry and wet periods detected by Touchan et al. (2007) superimposed. The subdivision into historical periods is based on Vanhaverbeke and Waelkens (2003).
Fig. 8. Pollen percentage diagram of core SA06EP01, showing the most important local and regional pollen taxa and non-pollen palynomorphs. All curves show a 4X exaggeration. The figure also indicates fire events recognized by CharAnalysis. The subdivision in climatic periods is based on Bakker et al. (2012). The subdivision into historical periods is based on Vanhaverbeke and Waelkens (2003).
Fig. 9. Pollen percentage diagram of core SA09JBDrrill01, showing the most important local and regional pollen taxa and non-pollen palynomorphs. All curves show a 4X exaggeration. The figure also indicates fire events recognized by CharAnalysis. The subdivision in climatic periods is based on Bakker et al. (2012). The subdivision into historical periods is based on Vanhaverbeke and Waelkens (2003).