What could have caused pre-industrial biomass burning emissions to exceed current rates?

G. R. van der Werf¹, W. Peters², T. T. van Leeuwen¹, and L. Giglio³

¹Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, The Netherlands
²Department of Meteorology and Air Quality, Wageningen University, Wageningen, The Netherlands
³Department of Geographical Sciences, University of Maryland, College Park, Maryland, USA

Received: 11 July 2012 – Accepted: 30 July 2012 – Published: 3 August 2012

Correspondence to: G. R. van der Werf (guido.vander.werf@vu.nl)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. Here we have analyzed how emissions from several biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO) and its isotopic signature measured at South Pole station (SPO). Based on estimates of contemporary fire emissions and the TM5 chemical transport model, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g. fuelwood burning) and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture matching current levels despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation; we show that the majority of savannas have not burned in the past 10 yr, even in Africa which is considered “the burning continent”. Our new modelling results, together with existing literature, indicate that no definitive conclusions can be drawn about unprecedentedly high or low biomass burning rates from current data analyses.
1 Introduction

Fires are a major source of trace gases and aerosols to the atmosphere (Andreae and Merlet, 2001; Monks et al., 2009). They impact the majority of identified radiative forcing components (Bowman et al., 2009), thereby regulating climate. Nowadays, fires are routinely monitored from satellites (Arino et al., 2011; Giglio et al., 2003; Roy et al., 2005). Historical reconstructions have been made based on tree ring assessments (Falk et al., 2011; Swetnam and Anderson, 2008), charcoal records (Marlon et al., 2008; Scott and Glasspool, 2006), and using measured concentrations of fire-emitted species in ice cores or snow including black carbon and levoglucosan (Kehrwald et al., 2012; McConnell et al., 2007). Another source of information is stand age structure when considering the most recent decades (Kurz and Apps, 1999). The footprint of these studies is usually regional and often focusing on temperate regions, but large-scale fire emissions assessments are needed for continental and global scale climate reconstructions and to validate fire modules in vegetation models focusing on longer time frames (Kloster et al., 2010; Pechony and Shindell, 2010; Thonicke et al., 2005).

Until about a decade ago, most atmospheric and climate modelling studies relied on simple assumptions where current biomass burning rates were scaled with proxies such as population density to go back in time. This yielded pre-industrial biomass burning rates that were only a fraction of contemporary rates (Houweling et al., 2008; Lamarque et al., 2010), and slowly increasing emissions over the last century when combined with ancillary data on fire activity (Mieville et al., 2010; Mouillot and Field, 2005). A scaling approach using population density makes intuitive sense because, especially in the tropics, humans start most fires. However, it fails to recognize that the link between humans and fire activity is complex, and that increased population density does not necessarily translate into more fire activity.

There are several ways by which humans modify the fire landscape (Archibald et al., 2009; Bowman et al., 2011). First, they introduce fires to landscapes that in a natural state rarely burn due to unfavorable climate conditions, such as in tropical forests where...
fires are now used in the deforestation process (Aragao and Shimabukuro, 2010). Second, humans often increase the number of ignitions compared to those that occur naturally through lightning strikes, both in temperate and tropical regions (Mollicone et al., 2006; Nepstad et al., 1999). Third, humans change fuel composition and density by introducing grazing or prescribed burning (Fernandes and Botelho, 2003; Savadogo et al., 2007). Finally, they fragment the landscape through land management and road building, often stopping fires that would otherwise (if the fuel bed was continuous) burn larger areas. It is important to realize that the number of ignitions becomes less relevant to total area burned when the fuel bed is continuous.

Needless to say, the link between humans and fire activity is complex (Bowman et al., 2011). Still, it came somewhat as a surprise when new studies on ice core measurements of methane (CH$_4$) and carbon monoxide (CO) and their isotopic signature implied that pre-industrial biomass burning rates were similar to or even higher than contemporary levels (Ferretti et al., 2005; Wang et al., 2010), something that was also suggested from the compilation of charcoal measurements (Marlon et al., 2008; Power et al., 2008). The results from these three studies (charcoal, CO, and CH$_4$) are shown in Fig. 1 and can be somewhat generalized for the past two millennia (Prentice, 2010): emissions have been relatively high until about the 14th century, at which point a downturn occurs in all three datasets. In the 17th century fire activity increased again and either peaked in the late 19th century (charcoal, CO) or at present (CH$_4$).

Several hypotheses have been put forward to explain the observed variability, focusing on climate and humans. The charcoal record shows a decreasing trend over the first millennium, possibly as a result of global cooling (Marlon et al., 2008). In addition, the low values during the 16th and 17th century coincide with the little ice age, also hinting at the importance of climate in driving global fire rates. The downturn in the 15th century has also been linked to the arrival of Europeans in the tropics, especially in South America (Ferretti et al., 2005). They introduced diseases and decimated the local population that was probably accustomed to using fire, thus decreasing fire activity. The increase in the 19th century is most often linked to land clearance from European
settlement in temperate regions, while the downturn in the 20th century may be linked to increasing portions of the landscape occupied by intensive land management with reduced fuel loads and fragmented fuel beds (Prentice, 2010).

While the general patterns agree, there are substantial differences between the CH$_4$, CO, and charcoal datasets. This is not surprising because the footprint is rather different due to varying lifetimes of CH$_4$ (about a decade, the ice core measurements are thus impacted by all biomass burning regions worldwide) and CO (about two months, thus more impacted by the Southern than the Northern Hemisphere). In addition, the charcoal database has much better coverage in temperate regions than in the tropics, where the vast majority of fire emissions take place. A key discrepancy is that the CH$_4$ data (Ferretti et al., 2005), which has been confirmed by Mischler et al. (2009), supports the relatively high values in the first millennium, but does not support the second peak around 1900 AD. Instead, it peaks in current times with higher rates than in the previous 2000 yr. Firn air samples focusing on the recent decades also find an increasing trend, both in the Northern (Wang et al., 2012) and Southern (Assonov et al., 2007) Hemisphere. These findings are contradictory to the results of Marlon et al. (2008) and Wang et al. (2010). Even though discrepancies in the latter part of the record exist, there are strong indications of substantial variations and higher-than-expected emissions in the pre-industrial era.

In this paper we aimed to understand what these ice core measurements actually mean for the fire landscape. We focused on the most recent results from Wang et al. (2010) and performed several steps to understand what mixing ratio measurements in a remote location can say about fire activity in all of the Southern Hemisphere, or even globally. We specifically investigated which scenario of fire return times and carbon emissions was needed in the Southern Hemisphere to support a quadrupling of CO mixing ratios from fires at South Pole station (SPO), as reported by Wang et al. (2010).

Our approach used remote sensing data from fires in combination with biogeochemical and chemical transport modelling to better understand how contemporary fires
contribute to CO mixing ratios at SPO. In addition, we tested how sensitive savanna fire emissions are to changes in fire return time, and used scenarios for human-induced fires (such as fuelwood burning) to estimate emissions from these fires back in time. We focused on the 1400 AD–present time period which overlaps with the CO record from Wang et al. (2010) but our results are applicable to earlier time periods as well.

2 Methods

2.1 Introduction

Our analysis consisted of three parts. First, we built a fire emissions climatology based on 14 years of recent fire activity from the Global Fire Emissions Database (GFED3; Giglio et al., 2010; van der Werf et al., 2010). These emissions were partitioned into five fire sources: deforestation, forest, non-forest, tropical peat, and fuelwood burning. We then input the emissions climatology into the TM5 chemical transport model (Krol et al., 2005) to estimate the contribution of these five fire emission sources to CO mixing ratios at SPO. In the second part of our analysis, we estimated historical fire emissions since 1400 AD assuming that the human-driven fire sources (deforestation, tropical peat, and fuelwood) were population-density dependent. And finally, we built a simple model that could mimic GFED emissions estimates for savanna areas in order to estimate the sensitivity of savanna fire emissions to changes in fire return time (i.e. the time between consecutive fires for a given area). These three steps are described below in more detail.

2.2 Global Fire Emissions Database (GFED) and chemical transport modelling

GFED3 fire emissions are calculated by taking the product of burned area, fuel loads, combustion completeness, and emission factors (Danckelman, 1884; Seiler and Crutzen, 1980) at a spatial and temporal resolution of 0.5° and one month, respectively. Burned area estimates were from Giglio et al. (2010, 2009) based mostly on
Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. Fuel loads and combustion completeness were calculated with the Carnegie-Ames-Stanford Approach (CASA) biogeochemical model (van der Werf et al., 2010). Total fire emissions were partitioned in various sources, including deforestation, forest, savanna, woodland, agricultural waste burning, and tropical peat fires using a land-cover classification and a metric based on the persistence of active fire detections (van der Werf et al., 2010). The resulting carbon emissions were converted to trace gas emissions estimates based on an emission factor literature survey by Andreae and Merlet (2001) with annual updates. Here we combined several sources occurring in low tree cover density areas (savanna, woodland, and agricultural waste burning) into one class, named non-forest. GFED does not include emissions from the burning of fuelwood; these were taken from the Emissions Database for Global Atmospheric Research (EDGAR) version 4.1 (http://edgar.jrc.ec.europa.eu/; Olivier et al., 2011) with the methodology partly based on the work of Yevich and Logan (2003).

We used the TM5 chemical transport model (Krol et al., 2005) to simulate the atmospheric transport and chemical breakdown of CO from GFED fire emissions (climatology of 14 yr of emissions data) as well as other sources such as fossil fuel emissions and methane oxidation. TM5 was driven by ECMWF meteorological fields at 3-hourly resolution to transport CO through the atmosphere by advection, wet and dry convection, and vertical diffusion in a mass-conserving approach. Once in the atmosphere, CO was removed by the CO + OH chemical reaction using rates as in Huijnen et al. (2010), with monthly mean OH prescribed from the Spivakovsky et al. (2000) spatial distribution scaled with a factor of 0.92 to yield better correspondence with observed methylchloroform (Huijnen et al., 2010). Additionally, CO was removed at the surface by dry deposition as described in Hooghiemstra et al. (2011). We used the average CO mole fractions at SPO of the simulations using 2002–2007 meteorology in our simulations, thus averaging out interannual variations in weather. Note that past changes in atmospheric circulation relative to this period were not included in our analysis.
We performed so-called tagged tracer runs, wherein we introduced different CO source categories by geographic region as separate tracers to assess their contribution to CO mixing ratios at SPO where ice cores have been taken. The seasonal cycle in fire emissions was based on GFED, while we assumed that fuelwood emissions had no seasonal cycle.

2.3 Fire emissions since 1400 AD

To reconstruct fire emissions since 1400 AD, we scaled the fire source categories that are driven by humans (deforestation, tropical peat, and fuelwood) back in time using rural population density maps for each century (Goldewijk, 2001). To scale fuelwood emissions with population densities, we assumed that per-capita fuelwood use is constant over time. We kept the other sources constant for this exercise. This does not mean that humans do not influence fire activity in savannas and forests, but that we cannot say a-priori whether they increase or decrease fire activity because of opposing effects.

The link between population density and tropical peat fires was demonstrated by Field et al. (2009) and independent deforestation assessments support our approach for fires in deforestation regions. For example, about 80% of the Legal Amazon was still forested up to 1958 when road construction began (the Belém – Brasília and later the Cuiabá – Porto Velho highway). Clearly, tropical deforestation has happened in the centuries before. However, if deforestation has happened continuously then deforestation rates must have been much lower than the current rates of about 0.5% yr\(^{-1}\) (Hansen et al., 2008). As an alternative, we also explored scenarios where rates were high in earlier centuries after which the forest could regrow in subsequent periods.

2.4 Sensitivity of savanna fire emissions to changes in fire return time

To estimate how sensitive CO emissions in savannas are to changes in fire return time we built a simple fuel accumulation model. In savanna ecosystems, the grass layer is
the main source of fuel. These grasses build up during the wet season and become susceptible to fire during the dry season. In arid and medium rainfall areas, it takes several wet seasons before the grass layer has fully built up. One approach to simulate this behavior is to use the Olson equation (Cook, 2003; Olson, 1963):

\[
\text{Fuel} = \frac{\text{Litterfall}}{k} \left(1 - e^{-kt}\right) \tag{1}
\]

where \(k \) is the turnover rate of litter and \(t \) the time step, in our case in years. To estimate litterfall, we plotted net primary production (NPP) from the CASA model used in GFED against mean annual precipitation (MAP; Huffman et al., 2009) and mean annual temperature (MAT; Hansen et al., 1999) based on the 1997–2010 time period overlapping with the GFED time period (Fig. 2). We then fitted lines roughly corresponding with the 95th percentiles for 100 mm yr\(^{-1}\) MAP or 1 °C bins (grey lines in Fig. 2).

Modeled NPP maps were then based on the combination of MAP and MAT and the scaling factors derived from the grey lines in Fig. 2, with the lowest factor defining NPP. The resulting NPP map and the difference with CASA NPP are shown in Fig. 3 as maps and in Fig. 4 as scatter plots. The relations generally hold well, with largest discrepancies over human populated areas (India, China, and West Africa) possibly due to the dependence of CASA NPP on satellite-derived vegetation indices. In addition, our approach underestimated the productivity gradient in the forest-savanna transition zone. The latter is likely reduced by human influence compared to its temperature and moisture driven potential. Litterfall was then assumed to be 50% to account for NPP allocation to roots, in line with the original CASA scheme for grass-dominated ecosystems.

To estimate the turnover rate of litter, we followed the CASA structure and used a temperature and moisture scalar that would lower a set turnover rate when temperature or moisture were limiting. The highest turnover rate was set to 10 months after several iterations to best match CASA-GFED results (see below) and the scalars followed a \(Q_{10} \) approach (defining the rate of change as a consequence of changing ambient conditions). For temperature we used a \(Q_{10} \) of 1.5 (so litter turnover rate increases with
50% of each increase in temperature of 10°C) with a maximum of 1 when temperature was 30°C, and for precipitation we used a similar scalar but it reached its maximum of 1 at rainfall rates of 2000 mm yr⁻¹ MAP. The combined scalar was based on the multiplication of the temperature and moisture scalar and shown in the top panel of Fig. 5, while the inverse of this scalar is the mean litter turnover rate in years and shown in the middle panel. Combining NPP and k using the Olson equation yields the amount of litter (to which we will refer as fuel) when NPP and respiration are in equilibrium (bottom panel of Fig. 5).

As an example of how the model behaves, we plotted fuel build-up for a typical productive savanna site with 800 g C m⁻² yr⁻¹ of NPP in Fig. 6. In our approach this corresponded to 400 g C m⁻² yr⁻¹ litterfall, and with a turnover rate of 1 yr the maximum fuel load was 400 g C m⁻² yr⁻¹ that was reached after about 5 yr (Fig. 6). For areas with slower turnover rates it takes longer for the fuel to reach its maximum. Figure 6 also shows mean annual fire emissions as a function of fire return time. Only for the case of fire return times exceeding the number of years required to reach equilibrium will the relationship be linear. For example, while halving the fire return interval from 10 to 5 yr boosts emissions with about 100% in our example, halving it from 2 to 1 yr adds only 46%.

While simple, this model captured about 80–85% of the variability in NPP as predicted by CASA (depending on the domain, see Fig. 4). More importantly, when the model was combined with GFED burned area it captured about 92% of the variability in savanna fire emissions (Fig. 7). Lowering or boosting fuel turnover rates (k) lowered the fit. Emissions from the simple model were derived by inverting the mean fraction of each grid cell that burned (averaged over 1997–2010), rounding this, and combining it with the fuel loads as predicted by the Olson equation as a function of time since last fire. For example, if the satellite data indicated that on average 30% of the 0.5° grid cell burned in a year we assumed it had a fire return interval of 3.33 yr. By rounding this number and combining it with the fuel load since last fire – in this case after 3 yr – we could calculate mean annual emissions as shown in Fig. 8.
3 Results

3.1 Present day emissions and chemical transport

Our simulations indicated that the 3.1 Pg C yr^{-1} ($P = \text{peta} = 10^{15}$) emitted due to landscape fires and fuelwood combustion, of which $512 \text{ Tg CO yr}^{-1}$ ($T = \text{tera} = 10^{12}$) was emitted as CO, contributed to almost 7 ppb CO at SPO over the last decade (Table 1). Due to the lifetime of CO of about 2 months, regions close to SPO contributed more strongly than regions further away. As an example, while over 50% of global fire CO emissions came from the Northern Hemisphere (mostly due to fuelwood combustion), these fires contributed only 1.5 ppb CO to SPO. Southern Hemisphere America by itself was more important than all of the Northern Hemisphere for SPO CO mixing ratios with over 2 ppb CO, even though its global share of CO fire emissions was just over 10% (Fig. 9).

Also within the Southern Hemisphere there was substantial variability in the efficiency of transport from the various regions to SPO. Southern Hemisphere America, Africa, Asia, and Australia contributed 11, 19, 9, and 4% of total global CO fire emissions, respectively. The corresponding contribution at SPO, however, was 31, 29, 7, and 11% (Table 1). In other words, emissions from South America and Australia were about twice as efficient at impacting SPO CO mixing ratios as Africa. Sources that were relatively close to the SPO impacted SPO most. These included temperate forest fires and fuelwood burning mostly in Australia and South America. These fires burned predominantly in the Southern part of the continents. However, these sources were relatively small so although they were efficient (high SPO mixing ratios ratio to emissions ratio), they are at current rates not crucial for SPO CO mixing ratios.

In Table 1 we also included the carbon emissions from which CO emissions were derived, as well as the efficiency with regard to carbon emissions. The conversion of C to CO was based on the average of emission factor measurements (Andreae and Merlet, 2001). The number of studies from which the average was drawn varied between fire types and the representativeness is still uncertain (van Leeuwen and van...
der Werf, 2011), but in general fire types with a large smoldering component (e.g. deforestation, peat, forest fires) have higher CO emission factors than those fires that burn predominantly in the flaming phase (e.g. savanna fires).

Due to the variation in emission factors, the efficiency for C to SPO was different than that for CO (Table 1). Specifically, the efficiency for fire sources with a high CO emission factor (deforestation, forest, and especially peat) measured per unit C was higher than measured per unit CO. For example, when we compare non-forest and peat fires in Southern Hemisphere Asia then each unit CO burned in these two fire types elevated CO mixing ratios with about the same amount, but when considering units of C instead of CO then the peat areas were almost three times more “efficient” than the grasslands, because they emitted almost three times as much CO per unit carbon compared to non-forests. Conversely, to explain a certain amount of CO one must have three times more grassland burning than peat burning. Since C is a more accepted unit for quantifying fire emissions and because it is directly related to dry biomass we will focus the discussion on the efficiency per unit C.

3.2 Fire emissions reconstructions: fire sources driven by humans

The largest changes in population density occurred during the last century, which is reflected in emission estimates for the human-driven sources fuelwood, tropical peat, and deforestation (Fig. 10). Combining these time-dependent human-driven sources with constant emissions in forests and non-forests, emissions might have been roughly 50% of current rates with the largest drop due to lower fuelwood burning rates in the Northern Hemisphere.

Combining the reconstructed emissions with present-day chemical transport showed that the decrease in SPO CO mixing ratios was smaller than the estimated decrease in fire emissions (Fig. 10) because the largest emissions decreases in our rural population scaling approach occurred far away from the South Pole. The model estimated SPO CO mixing ratios in 1400 AD were about 35% below present-day, with the largest drop due to decreased deforestation in Southern Hemisphere America.
3.3 Sensitivity of savanna fire emissions to changes in fire return time

If all of the Southern Hemisphere non-forest area could and would burn annually, emissions would be about 7.1 Pg C yr\(^{-1}\) with about 910 Tg yr\(^{-1}\) emitted as CO. Our model indicated that these fires would elevate SPO CO mixing ratios by about 29 ppb compared to a Southern Hemisphere without savanna fires (Table 2). The current mean fire return time of these regions is about 32 yr corresponding to 2.5 ppb CO with the current fire distribution (Table 1), or 3 ppb CO with a uniformly applied fire return time of 32 yr (Table 2). The reason for the 0.5 ppb CO difference is that with the current fire distribution several savanna regions experience fire return times well below the time required to reach maximum fuel build-up (Fig. 6).

Repeated halving of fire return times (doubling fire frequencies) from current rates led to an almost doubling of emissions as long as the fire return time was longer than the time required to reach fuel equilibrium (Figs. 6 and 11). This is reflected in Table 2 where emissions almost doubled when fire return intervals decreased from 32 to 16 yr. Further halvings increased emissions by 83, 61, 38, and 21% for changes from 16 to 8, 8 to 4, 4 to 2, and 2 to 1 yr, respectively. The message here is that although more frequent burning always leads to an increase in emissions, the rate of increase is reduced when fire return times are lower than the time required to reach maximum fuel build-up.

4 Discussion

4.1 Introduction

Our results indicate that while all fires impact SPO CO mixing ratios, there is large variability between different fire sources and regions in the ratio between burned biomass and corresponding SPO CO mixing ratio. Within the Southern Hemisphere, we calculated that fire emissions from South America and Australia may have impacted SPO CO
mixing ratios about twice as much per unit CO combusted as emissions from Africa and Southern Hemisphere Asia; fire sources in the Southern Hemisphere closer to the SPO (for example, temperate forest fires and fuelwood burning) had a more pronounced influence than non-forest burning; and when considering carbon emissions instead of CO emissions then the fire sources that burn predominantly in the smoldering phase such as peat fires were more important than fires burning mostly in the flaming phase. Similar patterns have been observed by other studies based on different atmospheric transport models (Kaminski et al., 1996; Krinner and Genthon, 2003). Besides proximity to the Southern Hemisphere storm tracks that bring air to SPO relatively quickly, the blocking of westward transport due to the Andes and subsequent southward funnelling of air masses during the fire season may increase the efficiency of South American fires compared to regions along the same latitude.

Due to these large differences in “efficiencies” (the elevation of SPO CO mixing ratios per unit carbon combusted) that varied between 0.54 ppb CO per Pg C burned for forest fires in the Northern Hemisphere to over 20 ppb CO per Pg C for forest fires in Australia, one could in principle envision scenarios where Southern Hemisphere biomass burning rates decreased while their contribution to SPO CO mixing ratios increased, or vice versa. However, we showed that this would require a large boost in the sources that are the most efficient, but these are also a relatively small fraction of total fire emissions. It is not likely that they have been orders of magnitude higher in the past.

We calculated that the about 3.1 Pg C yr\(^{-1}\) or 512 Tg CO yr\(^{-1}\) emitted from contemporary fires elevated SPO CO mixing ratios by about 7 ppb (Table 1, Fig. 10). This can be directly compared to the 9.6 ppb CO found by Wang et al. (2010) for present-day conditions. However, they used a different atmospheric model and a previous version of GFED (version 2) with higher emission estimates. According to the ice-core data from Wang et al. (2010) this has been 30 ppb in the past for at least decadal-scale periods of time (Fig. 1). The key questions we aimed to answer here is what could have caused this large difference, taking into account that several sources were likely lower in pre-industrial times than they are now, amounting to a decrease of about 3 ppb SPO CO.
mixing ratio (Fig. 10). The maximum difference to explain is thus about 26 ppb (30 ppb measured minus 4 ppb simulated for those decades), and below we detail several scenarios that might have played a role.

4.2 Potential causes of high pre-industrial SPO CO mixing ratios

1. Clearing of forests in the temperate Northern Hemisphere: over the past centuries, large areas of forest in temperate regions have been cleared to make way for agriculture. This occurred mostly in the Northern Hemisphere and total cleared area was about 10 million km2 (Ramankutty and Foley, 1999). If we take typical literature values for biomass stocks, combustion completeness, emission factors, and the efficiency of 4.5 ppb CO Pg$^{-1}$ CO$^{-1}$ (the mean of forest and non-forest in Table 1), then total CO mixing ratio at SPO would be elevated by 26 ± 14 ppb (Table 3) if all burning from clearing of forests over the past three centuries happened in one year, or on average 0.09 ± 0.05 ppb per year over the past three centuries if clearing rates were constant. Even though clearing rates were not constant, according to Ramankutty and Foley (1999) they were relatively uniform over time so temperate forest clearing can only explain a tiny fraction of the discrepancy.

2. Clearing of forests in the temperate Southern Hemisphere: the amount of temperate forest cleared in the Southern is much smaller than in the Northern Hemisphere, but due to its relative proximity Southern Hemisphere clearing fires could impact SPO CO mixing ratios much more. According to Ramankutty and Foley (1999) about 1 million km2 has been cleared in Argentina, Uruguay, Chile, and Australia. Using the same logic and biomass numbers as for the temperate forests, but an efficiency of 122 ppb CO Pg$^{-1}$ CO$^{-1}$ (fuelwood combustion in Australia, the source category closest to SPO and overlapping with the areas where forests have been cleared) total CO elevation at SPO would be 69 ± 39 for one year of burning, or 0.23 ± 0.13 over 300 yr under constant deforestation rates. This number is probably biased high because much of the clearing, especially in South
America, was in lower biomass regions such as steppe. So even though these areas are relatively close to SPO, emissions rates were probably too low to explain a significant fraction of the SPO CO mixing ratio elevation. However, if much of this area was burned frequently as suggested by Mouillot and Field (2005), then the contribution could be more significant; if 50 million ha was burned annually as grassland fires (Mouillot and Field, 2005), then the elevation could be 1.5 ± 0.8 ppb CO at SPO (Table 3).

3. **Tropical forest conversion:** although clearing rates in tropical forests are presently larger than those in Northern temperate regions, this was the other way around up to about 1930 (Hansen et al., 2008; Houghton, 1999). However, since tropical forests are closer to SPO their impact on SPO CO mixing ratios could be larger than temperate Northern Hemisphere forest clearing. Our simple rural population scaling indicated that emissions from tropical forest clearing during 1400–1900 AD were on average about 25% of current emissions. It is impossible that current tropical forest clearing rates of about 0.5% yr$^{-1}$ (Hansen et al., 2008) have persisted for centuries; there simply was not that much tropical forest to clear. However, cleared areas can regrow so there is the potential for higher rates of forest clearing in the past, as long as those forests have had enough time to regrow. The same holds for slash and burn agriculture. This source of emissions, where peasants clear small patches of forest and use it for several years after which the land is abandoned, causes emissions without necessarily leading to permanent deforestation. In our scaling approach this source of emissions is included in deforestation emissions and thus scaled with rural population density. It should be noted that there is large uncertainty in the population density estimates for these regions, especially for pre-Columbian times, and estimates vary by an order of magnitude (Bush et al., 2007). In the part below we will focus on the Amazon because it is the largest area of tropical forest and because the basin is relatively well studied. More importantly, there is clear evidence of elevated use of fire in earlier time periods here.
There is a substantial body of literature describing charcoal records from soils or lakes in the Amazon (Bush et al., 2007; Cordeiro et al., 2008; Sanford et al., 1985; Turcq et al., 1998), and many of them find a long history of human-induced disturbance in the region. There is also archaeological evidence for intensive occupation of parts of the Amazon (Heckenberger et al., 2008) and a scientific debate as to whether or not these areas are representative for larger parts of the Amazon (Bush et al., 2007; Heckenberger et al., 2003). In other words, it is uncertain whether the Amazon was to some extent parkland or a tropical forest in almost natural state. Similar to the clearing of temperate forests, we can calculate what the parkland hypothesis would mean for CO mixing ratios at SPO if we make several assumptions. The Amazon rainforest area was around 6 million km². If the whole Amazon were to be deforested in one year using fires, the total CO mixing ratio at SPO would be elevated by 234 ± 131 ppb for this year (Table 3), or 2.3 ± 1.3 ppb if it happened over a century. This time window would imply deforestation rates of 1 % per year compared to 0.5 % per year over 2000–2005 aided by heavy machinery. Annual burning of grasslands that may have replaced the forests at that time could have enhanced SPO CO mixing ratios by 6.6 ± 3.7 ppb each year (Table 3).

Clearly, these are extreme scenarios and there is no evidence in the literature for complete clear-cut of the Amazon. However, these values can give some guidance to the impact of partial deforestation on SPO CO mixing ratio elevations, which is more likely in a parkland scenario. As an example, a more plausible 25 % clear-cut over 100 yr with 50 % of the clear-cut area being burned annually could have elevated SPO CO mixing ratio with 1.4 ± 0.8 ppb at most (25 % of 2.3 + 12.5 % of 6.6). The most likely time period when this could have happened is the 15th century when both the charcoal and CO data reach high values. It is, however, also a time when ENSO activity was low (Cobb et al., 2003), so climate conditions were likely not favorable for large-scale use of fire in this humid region (van der Werf et al., 2008). In addition, the Law dome CO₂ record (Trudinger et
al., 1999) shows no evidence for increased deforestation in the 15th century, although a deforestation signal of about 0.5 Pg C yr$^{-1}$ for a century in our example of 25% deforestation would be relatively low compared to background fluxes. We conclude that while this source of emissions is a potential candidate in enhancing SPO CO mixing ratios especially over timescales of a century, its magnitude may be barely enough to offset our calculated decrease in emissions due to lower rates of human induced fires. It cannot explain the higher than modern mixing ratios seen in the CO ice core record.

4. **Higher fire frequencies and/or larger areas available for burning in savannas and grasslands**: although savannas have often been reported to burn annually or bi-annually, according to satellite-derived burned area data this is only true for a small fraction of the landscape, mostly African national parks where moisture levels are sufficient to produce a continuous fuel bed each year (Archibald et al., 2010). Other parts of the landscape that are more under human control burn less frequently than savannas that are in natural state due to road networks and other forms of landscape fragmentation, agricultural activity, and grazing (Archibald et al., 2009). This is shown in Fig. 12 where even in Africa, which is considered “the burning continent”, about half of the area classified as savanna or woody savanna had no satellite burned area observations (Giglio et al., 2009) over 2001–2010. In monsoonal Australia with lower population densities, fires have been part of the landscape for a long time but no reliable record of fire activity can be constructed from historical accounts, except that fires were observed on most, if not all, landscapes (Preece, 2002). The African example where humans may have decreased fire activity is not necessarily representative for Australia and South America with lower population densities, but it does provide us with the remaining option for much higher emissions in pre-industrial times.

By running our model for multiple fire return times (Fig. 11) we have estimated the increase in emissions due to lower fire return times and/or larger areas available for burning. In the most extreme case where all non-forest area in the Southern
Hemisphere would burn annually SPO CO mixing rations would be elevated with 26 ppb (Table 2). This scenario is an upper bound and not very likely. Only savannas that are productive enough to build up a continuous fuel bed each year can burn each year. As a case in point, the interior of Australia rarely burns but in 2011 it burned large areas for the first time in a decade due to excess rainfall in the wet season.

In conclusion, we were unable to reproduce a realistic fire landscape that resulted in an increase in emissions large enough to reproduce the findings of Wang et al. (2010) unless we consider unlikely fire return times over all savanna areas or equally unlikely forest clearing rates. Taking the uncertainties in our approach into account though, we cannot definitively rule out that changes in biomass burning rates caused a quadrupling of the enhancement in SPO CO from fires.

4.3 Are current biomass burning rates below pre-industrial ones?

Our results indicated that while it was possible to construct a fire landscape that produced emissions much higher than current rates thus matching CO mixing ratios in ice core data, this fire landscape is not very likely in our opinion. This provides an incentive to replicate the CO results and its interpretation, ideally using a different ice core. If the results are reproduced, it implies a totally different fire landscape from the present, with large implications for climate and biogeochemical reconstructions. If not, it may spark the debate on the magnitude of current fire emissions rates compared to pre-industrial levels.

Prentice (2010) argued that current rates are at a historic low, which seems a valid conclusion when interpreting the results of Wang et al. (2010) and Marlon et al. (2008). However, it neglects the findings of Ferretti et al. (2005) and Mischler et al. (2009) on CH$_4$ in ice cores (see Fig. 1) which show that the highest fire activity occurs now with consequently an increase in fire activity over the past decades that is also supported by new CO data for the Northern Hemisphere (Wang et al., 2012). With regard to the
charcoal record, one could argue that the observational coverage does not fully overlap with the current distribution of wildfires; by far the most observations are in the US and Europe which contribute less than 1% of total global carbon emissions (van der Werf et al., 2010). Ongoing work using the charcoal database shows that several crucial regions including South America show an increase over the past decades (Marlon et al., 2012; Power et al., 2012).

Weighing charcoal records with regional burned area or emissions estimates may be a useful approach to improve the representativeness of the charcoal record for global analyses. In addition, more records in Africa are necessary to understand how fire activity has changed in the past in this continent, which is crucial from a global fire perspective as currently this region accounts for 70% of global burned area (Giglio et al., 2010) and about 50% of global carbon and black carbon emissions (van der Werf et al., 2010). In addition, the cerrado (savanna) regions of South America may be key to comprehend the CO record as they impact SPO twice as strongly as Africa.

4.4 Uncertainties

We performed several steps and each of those has uncertainties. Unfortunately they cannot easily be quantified, so we revert to a more qualitative discussion below. A Monte-Carlo simulation of the GFED fire emissions estimates indicated that these emissions are uncertain to at least 20% (1σ) and more likely to be conservative than too high. GFED is based on 500-m maps of burned area, and misses small fires such as agricultural fires. These are more prevalent in the Northern Hemisphere but there is a realistic chance that our estimates of fire emissions will increase when we can better address the importance of these small fires. This would lower the discrepancy that needs to be explained to match historic CO mixing ratios, but probably not by more than 1 or 2 ppb.

The atmospheric transport model was run for 6 yr (2002–2007) to test the sensitivity to variations in meteorology and thus transport to SPO. Interannual variability in the sensitivity as reported in Table 1 was less than 3%. Changes in large-scale circulation...
patterns may have been more important but cannot be easily quantified (Lambert et al., 1990). Another source of uncertainty stems from changes in atmospheric composition; CO is mainly removed from reaction with the hydroxyl radical (OH). If the OH concentration was reduced in pre-industrial times, lower emissions might suffice to explain 30 ppb of CO at SPO. However, simulations of the pre-industrial OH-budget point to a relatively constant OH instead (Lelieveld et al., 2002).

The model we developed here to assess the sensitivity of savanna emissions to changes in fire return times, while simple, was able to mimic GFED emissions within about 90% of its variability. Moreover, we expect that the uncertainty decreases with decreasing fire return times; with annual burning the emissions are for a large part a function of NPP which is reasonably well constrained in the GFED model (van der Werf et al., 2006).

5 Conclusions

We have used biogeochemical and atmospheric chemical transport modelling to investigate how fire emissions contributed to CO mixing ratios at a remote location at the South Pole and tried to answer what could have caused pre-industrial biomass rates to exceed current rates by up to a factor of 4 as suggested by recent results using ice cores. Our main findings can be summarized as follows:

- The difference between the current contribution of fires to SPO CO mixing ratios (±7 ppb) and the values of around 30 ppb during extended periods of the 14th, 15th, and 19th century as found in ice cores is very large, especially when one considers that several human driven fire emission sources including fuel-wood burning and tropical peat fires were probably lower then than they are now. The only possible candidate for explaining the difference is savanna fires if they burned substantially larger areas and more frequently than they do now. It is likely that savanna fires were more extensive in earlier time periods because fuel beds were less fragmented and probably denser due to lower grazing rates. Thus, the
amount of land available for burning was larger and these emissions could offset reductions in emissions from human-driven sources. However, to fully explain the difference in CO mixing ratios all of the Southern Hemisphere non-forest land had to burn annually or bi-annually during the highest fire episodes. This is not likely if only for the reason that dry savannas do not build up enough fuel each year to be able to burn annually.

- Increased emissions in Southern Hemisphere temperate forest as well as increased rates of deforestation and slash and burn agriculture in the tropical forests could have helped in explaining the excess biomass burning rates necessary to mimic pre-industrial CO SPO mixing ratios, but the magnitude of these sources is much smaller than that derived from savanna fires, even when extreme scenarios of deforestation are envisioned.

- There is substantial variability in the relative contribution of fires from different sources and different regions to SPO mixing ratios, even in the Southern Hemisphere. Per unit CO emissions, savanna fires in South America contribute twice as much to SPO CO mixing ratios as African savanna fires due to proximity to SPO in combination with different atmospheric transport pathways. The differences are largest between Australia and the Northern Hemisphere; fires burning in the former are over 8 times more efficient in influencing SPO CO mixing ratios than those burning in the latter. Care should thus be taken when interpreting CO mixing ratios at SPO as a proxy for Southern Hemisphere biomass burning rates due to the relatively short lifetime of CO of about two months on average and the variability in emission rates of CO per unit biomass combusted.

Our results call for a confirmation of the CO ice core measurements and their interpretation, as well as more charcoal records from savanna regions in South America and Africa. Both are needed to better understand how variable global fire rates have been over the past centuries and to answer the question whether current global fire emissions are unprecedentedly low (or high). With the current available information, this
question cannot be fully answered but is crucial for climate reconstructions because of the importance of fires for several radiative forcing agents.

Acknowledgements. We thank Patricia Castellanos and Jennifer Marlon for helpful suggestions and Zhihui Wang, John Mak, and the Global Paleofire Working Group for making their data available. Guido van der Werf received support from the European Research Council (ERC), and Wouter Peters was partially supported by an NWO VIDI grant (864.08.012). Thijs van Leeuwen was supported by the Dutch User Support Programme from the Netherlands organization for scientific research (NWO) under program number GO/AO-11, and support for Louis Giglio was provided by National Aeronautics and Space Administration (NASA) grant NNX11AF96G.

References

Pre-industrial biomass burning emissions

G. R. van der Werf et al.

Table 1. GFED3 emissions estimates of carbon (C) and carbon monoxide (CO) for various regions and sources, the resulting CO mixing ratio at SPO, and the relative ratio between C and CO emissions and SPO mixing ratios as a measure of how much the various sources contribute to contemporary SPO mixing ratios. $T_g = 10^{12}$ g, $P_g = 10^{15}$ g. See also Fig. 9.

<table>
<thead>
<tr>
<th>Region</th>
<th>Fire type</th>
<th>Deforestation</th>
<th>Forest</th>
<th>Non-forest</th>
<th>Tropical peat</th>
<th>Fuelwood</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C emissions [$Tg \text{ C yr}^{-1}$]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Hemisphere</td>
<td></td>
<td>147</td>
<td>202</td>
<td>577</td>
<td>12</td>
<td>825</td>
<td>1763</td>
</tr>
<tr>
<td>Southern Hemisphere America</td>
<td>155</td>
<td>23</td>
<td>124</td>
<td>–</td>
<td>26</td>
<td>328</td>
<td></td>
</tr>
<tr>
<td>Southern Hemisphere Africa</td>
<td>27</td>
<td>52</td>
<td>537</td>
<td>–</td>
<td>83</td>
<td>699</td>
<td></td>
</tr>
<tr>
<td>Southern Hemisphere Asia</td>
<td>45</td>
<td>5</td>
<td>6</td>
<td>88</td>
<td>30</td>
<td>174</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td>2</td>
<td>12</td>
<td>117</td>
<td>–</td>
<td>3</td>
<td>134</td>
</tr>
<tr>
<td>Globe</td>
<td></td>
<td>375</td>
<td>294</td>
<td>1362</td>
<td>100</td>
<td>967</td>
<td>3097</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Fire type</th>
<th>CO emissions [$Tg \text{ CO yr}^{-1}$]</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Hemisphere</td>
<td></td>
<td>30.8</td>
<td>44.3</td>
<td>73.9</td>
<td>4.4</td>
<td>134.1</td>
<td>287.6</td>
</tr>
<tr>
<td>Southern Hemisphere America</td>
<td>32.5</td>
<td>5.1</td>
<td>15.9</td>
<td>–</td>
<td>4.2</td>
<td>57.7</td>
<td></td>
</tr>
<tr>
<td>Southern Hemisphere Africa</td>
<td>5.6</td>
<td>11.5</td>
<td>68.8</td>
<td>–</td>
<td>13.4</td>
<td>99.3</td>
<td></td>
</tr>
<tr>
<td>Southern Hemisphere Asia</td>
<td>9.4</td>
<td>1.2</td>
<td>0.8</td>
<td>32.3</td>
<td>4.9</td>
<td>48.6</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td>0.5</td>
<td>2.6</td>
<td>15.0</td>
<td>–</td>
<td>0.4</td>
<td>18.5</td>
</tr>
<tr>
<td>Globe</td>
<td></td>
<td>78.8</td>
<td>64.7</td>
<td>174.4</td>
<td>36.7</td>
<td>157.1</td>
<td>511.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Fire type</th>
<th>CO mix. ratio [ppb @ SPO]</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Hemisphere</td>
<td></td>
<td>0.22</td>
<td>0.11</td>
<td>0.49</td>
<td>0.05</td>
<td>0.60</td>
<td>1.47</td>
</tr>
<tr>
<td>Southern Hemisphere America</td>
<td>0.98</td>
<td>0.20</td>
<td>0.69</td>
<td>–</td>
<td>0.27</td>
<td>2.13</td>
<td></td>
</tr>
<tr>
<td>Southern Hemisphere Africa</td>
<td>0.10</td>
<td>0.17</td>
<td>1.31</td>
<td>–</td>
<td>0.42</td>
<td>1.99</td>
<td></td>
</tr>
<tr>
<td>Southern Hemisphere Asia</td>
<td>0.09</td>
<td>0.01</td>
<td>0.01</td>
<td>0.26</td>
<td>0.09</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td>0.01</td>
<td>0.24</td>
<td>0.46</td>
<td>–</td>
<td>0.05</td>
<td>0.77</td>
</tr>
<tr>
<td>Globe</td>
<td></td>
<td>1.39</td>
<td>0.74</td>
<td>2.96</td>
<td>0.32</td>
<td>1.42</td>
<td>6.82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Fire type</th>
<th>Efficiency [ppb Pg$^{-1}$ C$^{-1}$]</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Hemisphere</td>
<td></td>
<td>1.49</td>
<td>0.54</td>
<td>0.85</td>
<td>4.60</td>
<td>0.72</td>
<td>0.83</td>
</tr>
<tr>
<td>Southern Hemisphere America</td>
<td>6.34</td>
<td>8.74</td>
<td>5.52</td>
<td>–</td>
<td>10.31</td>
<td>6.51</td>
<td></td>
</tr>
<tr>
<td>Southern Hemisphere Africa</td>
<td>3.62</td>
<td>3.26</td>
<td>2.44</td>
<td>–</td>
<td>5.03</td>
<td>2.85</td>
<td></td>
</tr>
<tr>
<td>Southern Hemisphere Asia</td>
<td>1.96</td>
<td>1.86</td>
<td>1.19</td>
<td>2.98</td>
<td>2.88</td>
<td>2.60</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td>3.95</td>
<td>20.71</td>
<td>3.96</td>
<td>–</td>
<td>19.86</td>
<td>5.75</td>
</tr>
<tr>
<td>Globe</td>
<td></td>
<td>3.71</td>
<td>2.51</td>
<td>2.17</td>
<td>3.17</td>
<td>1.47</td>
<td>2.20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Fire type</th>
<th>Efficiency [ppb Pg$^{-1}$ CO$^{-1}$]</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Hemisphere</td>
<td></td>
<td>7.1</td>
<td>2.5</td>
<td>6.6</td>
<td>12.5</td>
<td>4.4</td>
<td>5.1</td>
</tr>
<tr>
<td>Southern Hemisphere America</td>
<td>30.2</td>
<td>39.7</td>
<td>43.1</td>
<td>–</td>
<td>63.4</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td>Southern Hemisphere Africa</td>
<td>17.2</td>
<td>14.8</td>
<td>19.1</td>
<td>–</td>
<td>31.0</td>
<td>20.1</td>
<td></td>
</tr>
<tr>
<td>Southern Hemisphere Asia</td>
<td>9.3</td>
<td>8.5</td>
<td>9.3</td>
<td>8.1</td>
<td>17.7</td>
<td>9.3</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td>18.8</td>
<td>94.2</td>
<td>30.9</td>
<td>–</td>
<td>122.2</td>
<td>41.6</td>
</tr>
<tr>
<td>Globe</td>
<td></td>
<td>17.7</td>
<td>11.4</td>
<td>17.0</td>
<td>8.6</td>
<td>9.0</td>
<td>13.3</td>
</tr>
</tbody>
</table>
Table 2. Modeled non-forest emissions and resulting CO mixing ratios at SPO for various uniformly-applied fire return times (FRT) applied to all Southern Hemisphere areas not occupied by forest. The current mean fire return time is about 32 yr (indicated in italic), but with substantial regional variability.

<table>
<thead>
<tr>
<th>FRT [yr]</th>
<th>Emissions [Tg CO yr(^{-1})]</th>
<th>SPO mean CO mixing ratio [ppb]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S-Ame</td>
<td>S-Afr</td>
</tr>
<tr>
<td>1</td>
<td>387</td>
<td>327</td>
</tr>
<tr>
<td>2</td>
<td>313</td>
<td>271</td>
</tr>
<tr>
<td>4</td>
<td>222</td>
<td>197</td>
</tr>
<tr>
<td>8</td>
<td>136</td>
<td>121</td>
</tr>
<tr>
<td>16</td>
<td>74</td>
<td>65</td>
</tr>
<tr>
<td>32</td>
<td>38</td>
<td>33</td>
</tr>
<tr>
<td>64</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>128</td>
<td>10</td>
<td>8</td>
</tr>
</tbody>
</table>
Table 3. CO mixing ratio enhancements at SPO due to various types of fires in selected regions using efficiencies from Table 1. NH is Northern Hemisphere, SH is Southern Hemisphere, CC is combustion completeness, and EF is emission factor.

<table>
<thead>
<tr>
<th>Region</th>
<th>Area 1 [m2]</th>
<th>Biomass 2 [kg DM m$^{-2}$]</th>
<th>CC</th>
<th>EF3 [g CO kg$^{-1}$ DM$^{-1}$]</th>
<th>Efficiency [ppb CO Pg$^{-1}$ CO$^{-1}$]</th>
<th>Mix. ratio4 [ppb CO @ SPO]</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH Temperate deforestation</td>
<td>1×10^{13}</td>
<td>21.44</td>
<td>0.25</td>
<td>106</td>
<td>4.57</td>
<td>25.5 ± 14.38</td>
</tr>
<tr>
<td>SH Temperate deforestation</td>
<td>1×10^{12}</td>
<td>21.44</td>
<td>0.25</td>
<td>106</td>
<td>122.2</td>
<td>69.2 ± 38.78</td>
</tr>
<tr>
<td>SH Temperate grassland</td>
<td>5×10^{11}</td>
<td>0.45</td>
<td>1.00</td>
<td>61</td>
<td>122.2</td>
<td>1.5 ± 0.8</td>
</tr>
<tr>
<td>Amazon deforestation</td>
<td>6×10^{12}</td>
<td>25.86</td>
<td>0.50</td>
<td>100</td>
<td>30.2</td>
<td>233.7 ± 130.78</td>
</tr>
<tr>
<td>Amazon grassland</td>
<td>6×10^{12}</td>
<td>0.65</td>
<td>1.00</td>
<td>61</td>
<td>30.2</td>
<td>6.6 ± 3.7</td>
</tr>
</tbody>
</table>

1 Temperate deforestation extent based on cropland areas from Ramankutty and Foley (1999), SH temperate grassland burned area from Mouillot and Field (2005).
2 Based on Andreae and Merlet (2001) with annual updates.
3 Uncertainties based on assigned standard deviation of 25% for all variables, combined in quadrature.
4 Mean of cool temperate dry and cool temperate moist from Keith et al. (2009).
5 This work
6 Mean of tropical wet and tropical dry from Keith et al. (2009).
7 Mean of Northern Hemisphere forest and Northern Hemisphere fuelwood.
8 If all forest was cleared in one year.
Fig. 1. Variability of biomass burning rates over the last centuries based on a worldwide compilation of charcoal records (Marlon et al., 2008), CO mixing ratios from fires using CO concentration measurements at the South Pole (SPO), its isotopic signature, and a mass balance model (Wang et al., 2010), and a similar approach but based on CH$_4$ (Ferretti et al., 2005). The CO data ice core data ended in 1897 but was extended (dashed line) by Wang et al. (2010) to present-day using firn samples (1968 and 1986) as well as modelling (year 2000). Shaded areas indicate reported uncertainty. Note that the datasets have different footprints and that absolute values cannot be compared directly.
Fig. 2. CASA predicted net primary production (NPP) against mean annual precipitation (MAP, left panel) and temperature (MAT, right panel) and for all terrestrial 0.5° grid cells.
Fig. 3. NPP derived from the CASA model (top panel), the MAP and MAT based model (middle panel), and the absolute difference between the two approaches (bottom panel).
Fig. 4. NPP derived from the simple MAP and MAT dependent variables versus CASA NPP for all terrestrial 0.5° grid cells globally (left panel) and the Southern Hemisphere (right panel). Least squares linear regression lines are shown in grey.
Fig. 5. Decomposition scalars based on a temperature and moisture scalar (top panel), turnover rates based on the inverse of the decomposition scalar (middle panel), and equilibrium litter (or fuel) combining NPP and turnover rates (bottom panel).
Fig. 6. Litterfall, fuel build-up, and corresponding mean annual emissions as predicted by the Olson equation (Eq. 1) for a site with 800 g C m$^{-2}$ yr$^{-1}$ of NPP of which 50% is available to grow aboveground biomass. The graph shows the first ten years after a fire, and we assumed no aboveground biomass was left on the site after the fire that burned in year zero. Mean annual emissions were calculated by dividing the amount of fuel in that year (red dot) by the number of years since fire. After a fire in a given year (which would correspond to the fire return time), the amount of fuel would be reset to zero.
Fig. 7. Modeled emissions based on satellite-derived fire return times and the Olson equation versus GFED3 emissions for all terrestrial 0.5° × 0.5° grid cells (left panel) and those in the Southern Hemisphere (right panel). Solid lines indicate the 1:1 fit.
Fig. 8. Fire return intervals based on inverting the mean fraction of each grid cell that burned over 1997–2010 (top left panel), modeled emissions based on the fire return intervals and the Olson equation (top right panel), GFED3 emissions (bottom left panel), and the difference between modeled and GFED3 emissions (bottom right panel).
Fig. 9. GFED3 emissions estimates for various regions and sources (top panel), the resulting CO mixing ratio at SPO (middle panel), and the relative ratio between emissions and SPO mixing ratios as a measure of how much the various sources contribute to SPO mixing ratios. NH is Northern Hemisphere, SH is Southern Hemisphere. See also Table 1.
Fig. 10. Reconstructed emissions and corresponding SPO CO mixing ratios when all sources except forest and “nonforest” (savanna, woodland, agricultural waste burning) are scaled with rural population density. NH is Northern Hemisphere, SH is Southern Hemisphere.
Fig. 11. Fire return intervals and corresponding emissions for contemporary, doubled, and pentupled fire return intervals, as well as for annual burning in all of the Southern Hemisphere's non-forest area.
Fig. 12. Distribution of number of years with burned area observed over various land cover classes for Africa south of 30° N. Only the land cover classes occupying over 1% of the land area are shown. The graph can be read as follows: between 64 and 100% of the evergreen broadleaf forests, which occupies 8% of the land area, had no area burned over the 2001–2010 period while between 1 and 2% had burned area observed in one year. Both land cover (MCD12Q1; Friedl et al., 2010) and burned area (MCD64A1; Giglio et al., 2009) were derived from MODIS 500-m data.