The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles

A. Ganopolski and R. Calov

Potsdam Institute for Climate Impact Research, Potsdam, Germany

Received: 24 June 2011 – Accepted: 28 June 2011 – Published: 18 July 2011

Correspondence to: A. Ganopolski (andrey@pik-potsdam.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

The origin of the 100 kyr cyclicity which dominates ice volume variations and other climate records over the past million years remains debatable. Here, using a comprehensive Earth system model of intermediate complexity, we demonstrate that both strong 100 kyr periodicity in the ice volume variations and the timing of glacial terminations during past 800 kyr can be successfully simulated as the direct, strongly nonlinear response of the climate-cryosphere system to the orbital forcing alone, if the atmospheric CO$_2$ concentration stays below its typical interglacial value. The existence of long glacial cycles is primarily attributed to the North American ice sheet and requires presence of a large continental area with exposed rocks. We show that the sharp peak in the power spectrum of ice volume at 100 kyr period results from the long glacial cycles being synchronized with the Earth’s orbital eccentricity. Although 100 kyr cyclicity can be simulated with a constant CO$_2$ concentration, temporal variability in the CO$_2$ concentration plays an important role in the amplification of the 100 kyr cycles.

1 Introduction

Although it is generally accepted that, as postulated by the Milankovitch theory (Milankovitch, 1941), Earth’s orbital variations play an important role in Quaternary climate dynamics, the nature of glacial cycles still remains poorly understood. One of the major challenges to the classical Milankovitch theory is the presence of 100 kyr cycles that dominate global ice volume and climate variability over the past million years (Hays et al., 1976; Imbrie et al., 1993; Paillard, 2001). This periodicity is practically absent in the principal “Milankovitch forcing” – variations of summer insolation at high latitudes of the Northern Hemisphere (NH). The eccentricity of Earth’s orbit does contain periodicities close to 100 kyr, but the direct effect of the eccentricity on Earth’s global energy balance is very small. Moreover, eccentricity variations are dominated by a 400 kyr cycle which is also seen in some older geological records (e.g. Zachos et
al., 1997), but is practically absent in the frequency spectrum of the ice volume variations for the last million years. In view of this long-standing problem, it was proposed that the 100 kyr cycles do not originate directly from the orbital forcing but rather represent internal oscillations in the climate-cryosphere (Gildor and Tziperman, 2000) or climate-cryosphere-carbonosphere system (e.g. Saltzman and Maasch, 1988; Paillard and Parrenin, 2004). It was also suggested that the 100 kyr cycles result from the terminations of ice sheet buildup by each second or third obliquity cycle (Huybers and Wunsch, 2005), or each fourth or fifth precessional cycle (Ridgewell et al., 1999). None of these hypotheses, however, explain the robust phase relationship between glacial cycles and 100-kyr eccentricity cycles seen in the paleoclimate records (Hays et al., 1976; Berger et al., 2005; Lisiecki, 2010).

A number of modeling studies were undertaken in recent decades to understand the origin of 100 kyr glacial cycles. Simulations with simplified climate-cryosphere models (Pollard, 1983; Deblonde and Peltier, 1991; Berger et al., 1999; Crowley and Hyde, 2008) have shown that 100 kyr cyclicity does appear in ice volume variations driven by orbital variations alone. However, in most cases, the simulated 100 kyr cycles were weaker than in the paleoclimate records and were additionally accompanied by pronounced variability at another eccentricity frequency – 400 kyr – which is not seen in the spectra of reconstructed ice volume. It was only when realistic CO$_2$ forcing was applied in addition to orbital forcing that realistic simulations of the glacial cycles became possible (Berger et al., 1998). The notable exception is the work by Pollard (1983) where after adding several nonlinear process, the model forced by orbital variations alone, simulates strong 100 kyr cycles in agreement with the ice volume reconstructions available at that time. It is interesting to note that the agreement is even more impressive when Pollard’s modelling results are compared to the most recent reconstructions of the ice volume.

Although simplified climate-cryosphere models demonstrate the possibility of the appearance of the 100 kyr cycle as a direct response of the climate-cryosphere system to the orbital forcing, due to their simplicity (usually these models were based on a
one-dimensional ice sheet model and an energy balance atmosphere model), doubt remains that these results are not fully applicable to the real world. Moreover, the presence of 400 kyr cycles in many simulations remains an obvious problem. Therefore, it is crucial to corroborate earlier results and further advance the understanding of glacial cycles by using more physically based and geographically explicit climate-cryosphere models. While coupled GCMs still remains too expensive for simulating glacial cycles, models of intermediate complexity (EMICs, Claussen et al., 2001) can be coupled to 3-D ice sheet models and are sufficiently computationally efficient to perform simulations of the glacial cycles. Using CLIMBER-2 coupled to different ice sheet models, Bonelli et al. (2009) and Ganopolski et al. (2010) performed simulations of the last glacial cycles, Calov and Ganopolski (2005) analysed the stability of the climate-cryosphere system in the phase space of Milankovitch forcing and Bauer and Ganopolski (2010) reported simulations of the last four glacial cycles. Here we will present a large suite of simulations for the last 800 kyr, a period of time which was dominated by 100 kyr cyclicity.

2 Model description and experimental setup

The model used in the study is the most recent version of the Earth system model of intermediate complexity CLIMBER-2 (Petoukhov et al., 2000; Ganopolski et al., 2001; Brovkin et al., 2002) which includes a 3-D thermomechanical ice sheet model (Greve, 1997). The ice sheet model is only applied to the Northern Hemisphere and is coupled to the climate component via a high-resolution, physically-based surface energy and mass balance interface (Calov et al., 2005), which explicitly accounts for the effect of aeolian dust deposition on snow albedo. Here we use the same approach as in Ganopolski et al. (2010) but apply it to simulate glacial cycles over the past 800,000 years.

In all experiments the equilibrium state of the climate-cryosphere system obtained for present-day conditions was used as the initial condition and the model was run from
860 kyr BP until the present. The first 60 000 years, representing the model spin-up, were not used for further analysis.

In the first Baseline Experiment (referred to hereafter as BE), we prescribed variations in orbital parameters following Berger (1978) and the equivalent CO$_2$ concentration, which accounts for the radiative forcing of three major greenhouse gases – carbon dioxide, methane and nitrous oxide. Their concentrations were derived from the Antarctic ice cores (Petit et al., 1999; EPICA community members, 2004). The method used to calculate the equivalent CO$_2$ concentration is described in Ganopolski et al. (2010). A continuous record of N$_2$O is not available for the last 800 kyr, but existing data suggest that, to the first approximation, the N$_2$O concentration has a temporal dynamic similar to CO$_2$. Therefore, we assumed that the radiative forcing of N$_2$O (relative to preindustrial) is 20% of that for CO$_2$ during the whole simulated period, i.e. the ratio between radiative forcings of N$_2$O and CO$_2$ is the same as at the LGM.

Although, concentrations of GHGs from the ice cores are only available for the last 800 000 years, the time 800 kyr BP is not the best choice for the beginning of the simulations, because it was close to a glacial maximum and therefore would require initialization of the large continental ice sheets in the Northern Hemisphere. For this reason, we begin our simulations at 860 kyr BP, which corresponds to the MIS 21 interglacial, for which we can use the equilibrium present-day climate state as initial conditions. However, this choice of the initial state requires prescription of the equivalent CO$_2$ concentration for the time interval when reliable data for GHGs concentration are not yet available. To extend the time series of equivalent CO$_2$ concentration beyond 800 kyr BP, we made use of a close correlation between the total radiative forcing of GHGs and benthic δ^{18}O stack (Lisiecki and Raymo, 2005) observed for the last 800 kyr. By using a simple linear regression, we calculated equivalent CO$_2$ concentration for these initial 60 kyr. Since this period was considered as the model spin-up and was not used for the further analysis, the accuracy of this reconstruction of the equivalent CO$_2$ is not crucial for the results presented in the paper.
In addition to the BE, we performed a large suite of experiments with constant CO₂, modified orbital forcing and terrestrial sediment mask. These experiments are summarized in Table 1.

3 Results

3.1 Baseline experiment

Figure 1 shows that the model successfully simulates the waning and waxing of the ice sheets with dominant 100 kyr periodicity and a pronounced asymmetry of the glacial cycles. For the second half of the run, modeling results agree favorably with reconstructed variations of global sea level by (Waelbroeck et al., 2002). For the earlier part of the modeled period, reliable reconstructions of the global ice volume are absent, and the benthic δ¹⁸Oc stack by Lisiecki and Raymo (2005) was used for comparison. Since benthic δ¹⁸Oc is not an accurate proxy for the ice volume, we computed the model’s equivalent of δ¹⁸Oc from simulated global ice volume and the deep ocean temperature using a simple relationship between δ¹⁸Oc and the ice volume and the deep ocean temperatures (Duplessy et al., 1991). In addition, based on the results of simulations of the Antarctic Ice sheet evolution during the last glacial cycle (Huybrechts, 2002), we assume that the Southern Hemisphere contributed an additional 10 % to the global ice volume variations. Computed in this way, the modeled δ¹⁸Oc agrees well with the empirical stack (Fig. 1d). The frequency spectra of modeled and empirical δ¹⁸Oc are also in good agreement (Fig. 2a). All three major peaks – 100, 41 and 23 kyr are reproduced with the dominance of 100 kyr cycle and a weaker precessional cycle, even though the modeled δ¹⁸Oc contains more spectral power in the precessional band than the empirical spectrum. It is also important that all simulated terminations occur at the right time. This realistic simulation performed with prescribed orbital and GHG forcings represents an important test for the model. However, such an experiment does not answer the question about the origin of the strong 100 kyr cycles, since it is possible that
the dominant 100 kyr periodicity and the correct timing of glacial terminations are solely attributed to the prescribed GHG forcing, the temporal dynamics of which strongly resembles the ice volume.

3.2 Experiments with constant CO\textsubscript{2}

To clarify whether the 100 kyr cycles directly originate from the orbital forcing, we performed a set of additional experiments (referred to hereafter as CC\textsubscript{n}, where \textit{n} is the prescribed CO\textsubscript{2} concentration in ppm, also see Table 1) with the same orbital forcing as in the BE described above, but maintaining a constant CO\textsubscript{2} concentration in time. We performed ten experiments with the CO\textsubscript{2} concentration ranging from 180 to 300 ppm (for every 20 ppm). Figure 3a shows a representative subset of these simulations, while Fig. 4 shows the results of all CC\textsubscript{n} experiments for the range of CO\textsubscript{2} concentrations from 200 to 280 ppm. Quasi-regular glacial cycles are simulated for CO\textsubscript{2} concentrations below 300 ppm, with the magnitude of the ice volume variations increasing for decreasing CO\textsubscript{2}. For CO\textsubscript{2} concentrations above 260 ppm, simulated glacial cycles are dominated by obliquity and precession, but for lower CO\textsubscript{2} concentrations, the model simulates long and asymmetric glacial cycles with a strong peak in the 100 kyr band in the frequency spectra (Figs. 2c and 3a). It is also noteworthy that, together with 100 kyr peak, another one, although weaker, appears in the 400 kyr band. This peak is also seen in the results of previous simulations of the glacial cycles and coincides with another eccentricity periodicity. Therefore, the presence of both 100 and 400 kyr periodicities strongly indicates a direct relationship of the long glacial cycles with eccentricity variations. Unlike Crowley and Hyde (2008), who found the existence of 100 kyr cycles in a narrow range of CO\textsubscript{2} concentrations, in our simulations, 100 kyr cycles are robust over a broad range of CO\textsubscript{2} concentrations (180–260 ppm).

It is important to note that in the simulations with a constant CO\textsubscript{2} concentration below 260 ppm, not only are the ice volume changes dominated by the 100 kyr cycles, but simulated glacial terminations also occur at the same time as in the experiment with prescribed time-dependent CO\textsubscript{2} and, within the dating accuracy, in good agreement.
with paleoclimate reconstructions. The only exception is for MIS11 (around 400 kyr BP), when complete deglaciation of the Northern Hemisphere does not occur in the experiments with low CO$_2$ concentrations. The later fact is not surprising since the orbital forcing was weak during MIS11 due to low eccentricity. Whether this problem implies that for this specific termination the role of CO$_2$ is more important than for the others or that the model is still not sufficiently non-linear to remove the ice under MIS11 orbital forcing cannot be answered within the context of this study.

Although 860 kyr BP represents a convenient time to start simulations of the last glacial cycles, since it corresponds to an interglacial state and therefore does not require initialisation of the continental ice sheets, it is theoretically possible, that this choice can be crucial for the timing of simulated glacial terminations and therefore a good agreement between simulated and real glacial terminations would be accidental. To show that this is not the case and the timing of the glacial terminations is solely controlled by the orbital forcing, we performed an additional set of model simulations for constant CO$_2$ concentration equal to 220 ppm, where we began the model runs at the different astronomical times: 800, 820, 840, ... 900 kyr BP using the same (interglacial) initial conditions. These experiments are referred as CC220/m, where m denotes the timing of the start of the experiment. Figure 5 shows that in all experiments CC220/m the simulated ice volume converged within one glacial cycle to the same solution. Therefore, the temporal dynamics and timings of glacial terminations after the model spin-up are not sensitive to the choice of the beginning of the models runs.

3.3 Sensitivity of glacial cycles to different components of the orbital forcing

To find which component of the orbital forcing is responsible for the existence of 100 kyr cyclicity, we performed a suite of additional experiments in which, similar to the CCn set, the CO$_2$ concentration was held constant but the orbital forcing was modified. In the first set of experiments (referred as COBn), we removed the effect of obliquity variations by setting obliquity constant in time and equal to its average value over the
simulated period (Fig. 6b). As shown in Fig. 3b, the removal of obliquity variations does not qualitatively affect the simulated glacial cycles. For sufficiently low CO$_2$ concentrations, long glacial cycles with a sharp maximum in the frequency spectra at 100 kyr periodicity are simulated (Fig. 2d). However, fixing of the obliquity results in a narrower range of CO$_2$ concentrations for which 100 kyr cyclicity dominates the frequency spectra. In addition, fixing obliquity makes glacial terminations less robust for the periods of low eccentricity, in particular, during the most recent termination. At the same time, all terminations that occurred during high eccentricity are correctly simulated in the COBn experiments.

In the complimentary set of experiments (referred as CECn/e), we modified the orbital forcing by setting eccentricity constant in time, with a value in the range 0–0.05, which covers real variations of eccentricity (Fig. 6c). Variations of obliquity and precession were the same as in reality. For eccentricity lower than 0.02, the model failed to simulate pronounced glacial cycles and for eccentricity of 0.04 and higher, the ice volume variations are dominated by precession (not shown). However, for intermediate values of eccentricity (0.02 and 0.03) and sufficiently low CO$_2$ concentrations, the model simulates long glacial cycles (Fig. 3c). Moreover, many (but not all) simulated glacial terminations occur in the CEC220/0.02 experiments at the right time. However, the frequency spectra of ice volume variations in CECn/e experiments lack a sharp peak in the 100 kyr band (Fig. 2e). In fact, the shape of the frequency spectrum in these experiments is very sensitive to the CO$_2$ level and the maximum of spectral power tends to occur at one or multiples of obliquity periods, rather than at 100 kyr. Therefore, in our experiments, obliquity variations themselves are not responsible for the existence of the 100 kyr cycles, but they do contribute to the robustness of the long glacial cycles.

3.4 The role of regolith

To gain insight into the possible origin of the mid-Pleistocene transition (around 1 million years ago), when the dominant periodicity of the glacial cycles changed from 40 kyr
to 100 kyr (Ruddiman et al., 1989), we performed a set of model experiments identical to the CC\textit{n} set, except for the spatial distribution of terrestrial sediments. Namely, we prescribed the presence of thick terrestrial sediment layer for all continental grid cells, while in the previous, we use a realistic distribution of terrestrial sediments. This set of experiments is referred as REG\textit{n}. With the continents completely covered by sediments, 100 kyr cyclicity is absent in the simulated ice volume for the whole range of prescribed CO\textsubscript{2} concentrations and the ice volume variations are of a smaller magnitude than in the CC\textit{n} experiments. This result lends support to the hypothesis that the gradual removal of the sediments from the large area of North America stabilized the North American ice sheet and led to the regime change in glacial cycles (Clark and Pollard, 1998). It is important to note that the presence of terrestrial sediments in our model has a dual effect on the ice sheets: (i) it enhances the velocity of the ice sheet sliding in the areas where the ice base is at the pressure melting point and (ii) it increases production of glaciogenic dust around the margins of the ice sheets, which affects surface albedo and facilitates surface melt (Ganopolski et al., 2010). Both factors affect the stability of the ice sheets by making them more sensitive to changes in orbital forcing. Only when a large area of North America is free of sediments can the ice sheet survive several precessional cycles, before it expands well into the area covered by the sediments, making the ice sheet more sensitive to summer insolation changes.

4 Conclusions

Results of our experiments support the notion that 100 kyr cycles represent a direct, strongly nonlinear response of the climate-cryosphere system to orbital forcing and it is directly related to the corresponding eccentricity period. In terms of nonlinear dynamics, this link can be interpreted as the phase-locking of the long glacial cycles to the shortest (100 kyr) eccentricity cycles. Physically, this phase-locking is explained by the fact that the ice sheets tend to grow monotonously during periods of low eccentricity.
and reach their critical size (volume) around the minimum of eccentricity. When eccentricity starts to grow, the first sufficiently large positive anomaly in orbital forcing can lead to the rapid and irreversible meltback of the Northern Hemisphere ice sheets. This mechanism requires the existence of long glacial cycles which, in turn, require sufficiently low CO$_2$ concentrations and the presence of a large area of the continents free of sediment. The CO$_2$ concentration not only determines the dominant regime of glacial variability, but also strongly amplifies 100 kyr cycles. Therefore, realistic simulations of the glacial cycles require comprehensive Earth system models that include both physical and bio-geochemical components of the Earth system.

Acknowledgements. We would like to thank Ralf Greve for providing us with the ice sheet model SICOPOLIS and Alexander Robinson for useful suggestions. This project was partly funded by the Deutsche Forschungsgemeinschaft CL 178/4-1 and CL 178/4-2.

References

Brovkin, V., Bendtsen, J., Claussen, M., Ganopolski, A., Kubatzki, C., Petoukhov, V., and Andreev, A.: Carbon cycle, vegetation and climate dynamics in the Holocene: experiments with
Orbital forcing, carbon dioxide and regolith
A. Ganopolski and R. Calov

Greve, R.: A continuum-mechanical formulation for shallow polythermal ice sheets, Philos.
Milankovitch, M.: Kanon der Erdbestrahlung und Seine Andwendung auf das Eiszeitenproblem, Royal Serbian Academy Special Publication 132, Belgrade, Serbia, 1941.

Table 1. List of model experiments.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>CO₂ concentration (ppm)</th>
<th>Orbital forcing</th>
<th>Initial time (kyr BP)</th>
<th>Sediment mask</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE (Baseline)</td>
<td>realistic</td>
<td>realistic</td>
<td>860</td>
<td>realistic</td>
</tr>
<tr>
<td>CCn</td>
<td>constant, (n = 180) to 300, step = 20</td>
<td>realistic</td>
<td>860</td>
<td>realistic</td>
</tr>
<tr>
<td>CCn/m</td>
<td>constant, (n = 220)</td>
<td>realistic</td>
<td>(m = 800) to 900, step = 20</td>
<td>realistic</td>
</tr>
<tr>
<td>CECn/e</td>
<td>constant, (n = 180) to 300, step = 20</td>
<td>constant eccentricity, (e = 0.01, 0.02, 0.03, 0.04, 0.05)</td>
<td>860</td>
<td>realistic</td>
</tr>
<tr>
<td>COBn</td>
<td>constant, (n = 180) to 300, step = 20</td>
<td>constant obliquity = 23.1°</td>
<td>860</td>
<td>realistic</td>
</tr>
<tr>
<td>REGn</td>
<td>constant, (n = 180) to 300, step = 20</td>
<td>realistic</td>
<td>860</td>
<td>all continents covered by thick regolith</td>
</tr>
</tbody>
</table>
Fig. 1. (a) Maximum summer insolation at 65° N; (b) radiative forcing of prescribed equivalent CO₂ concentration; (c) simulated (black) versus reconstructed (grey) global ice volume (Waelbroeck et al., 2002); (d) simulated (black) versus reconstructed (grey) benthic δ¹⁸Oc stack (Lisiecki and Raymo, 2005).
Fig. 2. (a) frequency spectrum of the simulated (black) versus reconstructed (grey) benthic δ^{18}O c stack (Lisiecki and Raymo, 2005); (b)–(f) frequency spectra of the simulated ice volume: (b) baseline experiment, (c) CCn experiments with constant CO₂, (d) COBn experiments with constant obliquity, (e) CECn/0.02 experiments with constant (0.02) eccentricity, (f) REGn experiments with continents completely covered by sediments. In (c)–(f), purple lines correspond to a CO₂ concentration of 200 ppm, blue – 220 ppm, green – 240 ppm, orange – 260 ppm and red – 280 ppm.
Fig. 3. Simulated ice volume variations in the subset of the experiments with constant CO$_2$ (colored lines) versus the Baseline experiment (grey shading). (a) CCn experiments, (b) COBn experiments (constant obliquity), (c) CECn/0.02 experiments (constant eccentricity equal to 0.02), (d) REGn experiments (with continents completely covered by thick regolith layer). Purple lines correspond to a CO$_2$ concentration of 200 ppm, blue – 220 ppm and red – 280 ppm.
Fig. 4. Simulated ice volume variations in the experiments CCn (constant CO$_2$). The colours indicate the CO$_2$ levels: 200 ppm (purple), 220 ppm (blue), 240 ppm (green), 260 ppm (orange), 280 ppm (red).
Fig. 5. Simulated ice volume variations in the experiments CC220/m starting from identical (interglacial) initial conditions but at a different time: $m = 900$ kyr BP (red), $m = 880$ kyr BP (orange), $m = 860$ (black), $m = 840$ (green), $m = 820$ (light blue) and $m = 800$ (blue) kyr BP.
Fig. 6. Maximum summer insolation at 65° N in (a) the BE, CCn and REGn experiments, (b) the experiment with constant obliquity (COBn) and (c) constant eccentricity ($e = 0.002$, CECn/0.02). The dashed line in panel (b) shows the amplitude modulation of the precessional cycle by eccentricity.