Synchronicity of the East Asian Summer Monsoon variability and Northern Hemisphere climate change since the last deglaciation

T. Shinozaki1,2,3, M. Uchida2, K. Minoura1, M. Kondo2, S. F. Rella2, and Y. Shibata2

1Institute of Geology and Paleontology, Tohoku University, Sendai, Japan
2Environmental Chemistry Division, National Institute for Environmental Studies (NIES), Tsukuba, Japan
3Life and Environmental Science, University of Tsukuba, Tsukuba, Japan

Received: 2 June 2011 – Accepted: 18 June 2011 – Published: 27 June 2011

Correspondence to: M. Uchida (uchidama@nies.go.jp)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

Understanding of the mechanism of the East Asian Summer Monsoon (EASM) is required for the prediction of climate change in East Asia in a scenario of modern global warming. In this study, we present high-resolution climate records from peat sediments in Northeast Japan to reconstruct the EASM variability based on peat bulk cellulose $\delta^{13}C$ since the last deglaciation. We used a 8.8 m long peat sediment core collected from the Tashiro Bog, Northeast Japan. Based on 42 ^{14}C measurements, the core bottom reaches \sim15.5 ka. $\delta^{13}C$, accumulation rate and accumulation flux time-series correlate well to Greenland ice core $\delta^{18}O$ variability, suggesting that the climate record in Northeast Japan is linked to global climate changes. The $\delta^{13}C$ record at Tashiro Bog and other paleo-EASM records at Northeast and Southern China consistently demonstrate that hydrological environments were spatially different in mid-high and mid-low latitude regions over the last 15.5 kyr. During global cooling (warming) periods, mid-high and mid-low latitude regions were characterized by wet (dry) and dry (wet) environments, respectively. We suggest that these climatic patterns are related to the migration of the EASM-related rain belt during global climate changes, as a consequence of variations in intensity and location of both the Intertropical Convergence Zone (ITCZ) and the Western Pacific Subtropical High (STH). The location of the rain belt largely influences the East Asian hydrological environment. Our $\delta^{13}C$ time-series are characterized by a 1230 yr throughout the Holocene and a 680 yr periodicity during the early Holocene. The 1230 yr periodicity is in agreement with North Atlantic ice-rafted debris (IRD) events, suggesting a teleconnection between the Northeast Japan and the North Atlantic during the Holocene. In addition, it is the first evidence that the Bond events were recorded in terrestrial sediment in Japan. On the other hand, the 680 yr periodicity between 10.0 and 8.0 kyr is consistent with a prominent 649 yr solar activity cycle, suggesting that solar activity affected EASM precipitation during the Hypsithermal, when orbital-scale solar insolation was at a maximum in the Northern Hemisphere.
1 Introduction

The East Asian Summer Monsoon (EASM) is one of the most important components that influence East Asian climate. East Asia, which is home for about one third of the world population, is an economically fast growing region. People in East Asia depend on food supply supported by monsoonal precipitation. However, monsoonal rainfall fluctuations often cause devastating floods and/or droughts. Reliable predictions of the EASM variability under a scenario of global warming are therefore of foremost interest. Besides modeling efforts, the reconstruction of the behavior of the paleo-EASM during past global climate change is necessary to predict future climate in East Asia.

The continuous history of the paleo-EASM become understanding from the high-resolution analyses of stalagmite $\delta^{18}O$ in Southern China since late Pleistocene to Holocene (Wang et al., 2001, 2005; Yuan et al., 2004). During the last deglaciation and the Holocene, the stalagmite $\delta^{18}O$ is well synchronous with the $\delta^{18}O$ records of Greenland ice core, suggesting that the East Asian region is influenced by global climate change (Yuan et al., 2004; Wang et al., 2005). The stalagmite $\delta^{18}O$ records are from the mid-low latitude region in East Asia; there are, however, only few studies from the East Asian mid-high latitudes in high-resolution time scale.

Peat sediments constitute an important terrestrial archive for reconstructing continental paleoenvironmental histories (Jackson et al., 2010). In general, a continuous record of terrestrial environments is difficult to reconstruct from terrestrial sediments, because terrestrial sediments are eroded and transported away by wind or water. Therefore, marine sediments were often used in paleoclimatology. However, it is difficult to reconstruct environment and climatic changes from marine sediments in high resolution during recent periods such as the Holocene epoch due to low accumulation rates. Peat sediments, on the other hand, are a useful terrestrial archive for the Holocene epoch: the hydrological environments, in which peat forms, encourage growth of vascular plants and retard decomposition of their remains to produce thick accumulations of organic-rich material that can be used for high resolution (decadal...
to centennial time-scale) palaeoenvironmental reconstructions. The balance between precipitation and evapotranspiration in a particular bog controls the kind and abundance of bog plants and their preservation as peat. Climate changes modify this balance by altering the precipitation of water and its temperature-sensitive evaporation. These changes can be recorded in the organic geochemical and paleoclimatic proxies of the peat layers that were deposited at different stages in the bog history.

A lot of proxies obtained from peat sediment have been used for climatic reconstruction, such as \(\delta^{13}C \) (Sukumar et al., 1993; Hong et al., 2001, 2003, 2005; Zhu et al., 2009; Hong et al., 2010a), \(\delta^{18}O \) (Siegenthaler and Oeschger, 1980; Rozanski et al., 1992; Aucour et al., 1996; Hong et al., 2000, 2009; Ménot-Combes et al., 2002; Daley et al., 2010), \(\delta D \) (Schiegl, 1972; Brenninkmeijer et al., 1982), \(\delta^{15}N \) (Novak et al., 1999; Asada et al., 2005; Jones et al., 2010) and stable isotopic ratios of plant wax (Zhou et al., 2005, 2010; Zheng et al., 2007; Seki et al., 2009; Yamamoto et al., 2010a, b). We used \(\delta^{13}C \) to reconstruct the hydrological environment. The amount of rainfall is negatively correlated to plant \(\delta^{13}C \) value: the larger the amount of rainfall, the smaller the \(\delta^{13}C \) value (Hong et al., 2010b) (for more details see Sect. 3.1).

In this study, we aim to reconstruct the EASM variability and its linkages with the global climate system during the last deglaciation and Holocene in Northeast Japan, using a 8.8 m long peat sediment core. We used bulk sediments \(^{14}C \) for dating and bulk cellulose \(\delta^{13}C \) as a proxy indicator for EASM intensity. To reconstruct the paleo-EASM variability, our records were compared with other EASM records. We compared our results with the migration pattern of the Intertropical Convergence Zone (ITCZ) to further discuss the EASM mechanism. We also revealed the EASM-related climatic periodicity and discussed the interaction between the EASM and the Northern Hemisphere climate at millennial time scales.
2 Study area and sediment samples

2.1 Geographical setting

The Tashiro Bog (40°41′ N, 144°55′ E) is located in Northeast Japan at an altitude of 570 m above sea level (Fig. 1). Records from the meteorological institute (http://www.jma.go.jp/jma/index.html) of Aomori City (40°49′ N, 140°45′ E; about 18 km northwest of our core site; Fig. 1c) between 1971 and 2000 show that annual mean atmospheric temperatures, annual precipitation and annual mean relative humidity are 10.1 °C, 1290 mm and 75 %, respectively. The Tashiro Bog is covered by heavy snow in winter. After fast completion of the plant growth process during summer, the plants die fast with the arrival of the long cold season. It can be seen that the degree of humification of the dead plants is lower and the plant remains preserved in peat deposition are more intact. As the Tashiro Bog does not receive river input and is not drained by rivers (Fig. 1d), the swamp water originates from precipitation. Therefore the formed peat layer was not disturbed.

2.2 Sediment sample

The 880 cm long core was drilled in the center of the bog (Fig. 1d) using a thin-walled core sampler. This core is generally composed of peat with two sand layers (between 841 and 820 cm depth, and 338 and 328 cm depth), a clay layer (between 798 and 780 cm depth) and five tephra layers (between 880 and 849 cm depth, 845 and 841 cm depth, 347 and 338 cm depth, 76 and 65 cm depth, and 62 and 58 cm depth) intercalated (Fig. 2).

3 Analytical procedures

The collected sediment core was cut into 1.0 cm intervals. We loaded sediment samples into 1 cm³ polycarbonate cubes, where they were left at least two months for drying.
at room temperature. After drying, we weighed the samples to determine their dry bulk density (DBD) (g cm\(^{-3}\)). Prior to following analysis, samples were homogenized using mortar and pestle.

3.1 Stable carbon isotope ratios of peat cellulose

The stable carbon isotopic ratio of peat cellulose (\(\delta^{13}C_{\text{cellulose}}\)) is used as a proxy indicator for evaluating atmospheric humidity (e.g. Hong et al., 2010b). The \(\delta^{13}C_{\text{cellulose}}\) values are mostly influenced by humid environment in summer when the plant grows (Hong et al., 2001). At least for the last 15.5 kyr peat sediments of the Tashiro Bog are a mixture consisting of different species of C3 plants, for example *Betula*, *Fagus* and *Quercus* (Yoshida and Takeuti, 2009). Vascular plants respond to variations in water availability and relative humidity by regulating the opening or closing of leaf stomata. When the plant was relatively dry and the hyaline cells were nearly devoid of water, CO\(_2\) diffusion to the chloroplast is relatively high. Carbon fixation is limited by reduced metabolic activity and the \(\delta^{13}C_{\text{cellulose}}\) values are dominated by carbon isotope fractionation due to the photosynthetic enzyme. The desiccation effect results in an increase in fractionation against \(^{13}\text{CO}_2\) during photosynthesis (Williams and Flanagan, 1996). In contrast, when the plant was relatively wet in response to sufficient water availability, the hyaline cells are filled with water. Diffusion of CO\(_2\) to the chloroplasts is reduced and \(\delta^{13}C_{\text{cellulose}}\) values are predominantly influenced by stable carbon isotope fractionation (Ménot and Burns, 2001). Consequently, the smaller the water reservoir surrounding the chloroplast, the lower the \(\delta^{13}C_{\text{cellulose}}\), and vice versa (Moschen et al., 2009). Therefore \(\delta^{13}C_{\text{cellulose}}\) variation indirectly indicates fluctuation of humidity and precipitation during the plant growing season (summer), and can be used to reconstruct the past water environments. Especially, because precipitation are largely restricted by EASM in East Asia, \(\delta^{13}C_{\text{cellulose}}\) seems to be able to the indicator of EASM intensity.

We employed the method of Shinozaki et al. (2011), to extract cellulose from the peat sediments. The method of Shinozaki et al. (2011) is a modified standard extraction
method (Green, 1963; Loader et al., 1997). The standard method is not used for peat sediments but for tree-rings. Shinozaki et al. (2011) compared and discussed various cellulose extraction methods for peat sediments to find the most suitable one. Accordingly, we used the following method: First, homogenized bulk sediments were weighed and treated following an Acid – Alcali – Acid procedure (5.0%, 60°C, 2 h, respectively) to remove contaminating carbonate and humic acid. Second, the treated samples were reacted with 7% NaClO₂ (60°C) to remove lignin. Finally, samples were reacted with 17% NaOH at room temperature to remove hemicellulose, and freeze-dried.

The peat cellulose $\delta^{13}C$ was measured at least duplicate using an EA/IRMS (Elemental Analyzer/ Isotope Ratio Mass Spectrometer; FLASH 2000/DELTA V ADVANTAGE, Thermo Fisher Scientific) at the National Institute for Environmental Studies (NIES) in Tsukuba, Japan. Acetanilide ($\delta^{13}C = -30.99\%$) was used as internal standard for drift corrections. The overall precision of replicate analysis is estimated to be better than ±0.1‰.

3.2 Radiocarbon dating

We conducted 42 radiocarbon analyses of bulk sediment sample. The graphitization of bulk sediments were carried out according to a procedure by Uchida et al. (2005) and Uchida et al. (2008), and the method is as follow: homogenized bulk sediment samples were combusted in sealed quartz tubes (with CuO), and the CO₂ produced was purified and graphitized by reduction with H₂ using Fe powder as a catalyst. The graphite cathodes were then loaded into the AMS at NIES-TERRA in Tsukuba, Japan (Uchida et al., 2004). The measured ^{14}C values were calibrated to calendar age using the calibration program CALIB-6.0 (http://calib.qub.ac.uk/calib/). And then, we regard carbon content obtained during graphitization as total organic carbon (TOC).
4 Results

4.1 Radiocarbon dating and peat accumulation rate

The 14C results of bulk sediments are given in Table 1 and Fig. 2a. We measured not only bulk sediment but also bulk cellulose, however, the differences between two materials are up to \sim620 yr during the last deglaciation (Shinozaki et al., 2011). Chronology of this core was established by 42 bulk sediment samples. The bottom of the core (between 849 and 848 cm depth) corresponds to 15407 ± 242 cal yr BP. From this 14C age, the tephra layer of the bottom of the core (below 849 cm depth) seems to be the Towada-Hachinohe tephra (To-H; about 15521 cal yr BP; Horiuchi et al., 2007). 14C ages furthermore suggest that the tephra layers between 347 and 338 cm depth, 76 and 65 cm depth, and 62 and 58 cm depth correspond to the Towada-Cuseri tephra (To-Cu; 6188 ± 292 cal yr BP; Hayakawa, 1983), the Towada-a tephra (To-a; 990 ± 195 cal yr BP; Hayakawa, 1985), and the Baekdu-san-Tomakomai tephra (B-Tm; 985 ± 20 cal yr BP; Horn and Schmincke, 2000), respectively.

Considerably high accumulation rates of $106.9 \text{ cm kyr}^{-1}$, $164.4 \text{ cm kyr}^{-1}$ and $172.3 \text{ cm kyr}^{-1}$ occur between 795 and 768 cm, 667 and 650 cm, and 604 and 564 cm, respectively.

4.2 TOC and DBD

Temporal variations of TOC and DBD are shown in Fig. 2b, c. Between 849 and 640 cm depth, TOC values were low and DBD high as the lithofacies in this interval is sand and/or mud layers. Between 640 and 550 cm depth, TOC gradually increases and DBD decreases, indicating a decrease in the amount of minerals in this interval that is characterized by a low degree of decomposition of organic materials. In the upper 550 cm, TOC and DBD are relatively constant, although they slightly fluctuate.
5 Discussions

5.1 Climate change in Northeast Japan

In Fig. 3b, c, d, we show peat accumulation rate (cm kyr\(^{-1}\)), peat accumulation fluxes (mgC cm\(^{-2}\) kyr\(^{-1}\)) and \(\delta^{13}C\) (‰) time series at the Tashiro Bog for the period from 16.0 cal kyr BP to present. In order to isolate the influence of different sediment materials, we have calculated the peat accumulation fluxes from the TOC, DBD and accumulation rate as follows: accumulation flux (mgC cm\(^{-2}\) kyr\(^{-1}\)) = TOC (mgC g\(^{-1}\)) × DBD (g cm\(^{-1}\)) × accumulation rate (cm kyr\(^{-1}\)). In order to isolate the influence of atmospheric \(\delta^{13}C\) variability, we deducted the difference between the present (−8 ‰) and past values (Leuenberger et al., 1992; Elsig et al., 2009; Fig. 3d), and defined calculated \(\delta^{13}C_{cellulose}\) as \(\delta^{13}C'\).

Temporal variation of accumulation rate, accumulation flux and the \(\delta^{13}C'\) for the past 15.5 kyr are relatively similar (Fig. 3b, c, d). Coeval high peaks of accumulation rates/fluxes and \(\delta^{13}C'\) values suggest that the plant growing season (summer) might have been warm and dry. On the other hand, periods of coeval low values might suggest cold and wet conditions.

The variations in our records correspond well to the \(\delta^{18}O\) records of the GISP2 ice core (Stuiver and Grootes, 2000) in the period between 15.5 and 8.0 ka. The peak positions of low accumulation rates, accumulation fluxes and \(\delta^{13}C'\) values in Tashiro Bog between 15.5 and 14.9 ka, 14.1 and 13.7 ka, 12.5 and 11.5 ka, and 8.4 and 8.0 ka seem to correspond to cold periods, namely the Oldest Dryas, the Older Dryas, the Younger Dryas and the 8.2 ka event, respectively. In addition, according to the \(\delta^{13}C'\) values, the Oldest Dryas (between 15.5 and 14.9 ka) might have been characterized by relatively wetter climatic conditions than the Younger Dryas (between 12.5 and 11.5 ka) around Northeast Japan. On the other hand, coeval peaks of high accumulation rates, accumulation fluxes and \(\delta^{13}C'\) values in Tashiro Bog between 14.9 and 14.1 ka, 13.7 and 12.5 ka, and 11.5 and 11.2 ka seem to correspond to warm periods, namely the
Bølling, the Allerød and the Preboreal, respectively. During warm periods, plant productivity and deposition are larger than during cold periods due to stronger photosynthetic activity. Therefore, accumulation rates are high only during warm periods, when plant deposition largely exceeds organic decomposition. Thus, high accumulation rates and fluxes during warm periods are reasonable and suggest that the Tashiro Bog was affected by global climate change. Also, alkenone SSTs in marine sediments of the Northwest Pacific off Shimokita rose from about 7.5 to 20°C from the termination of the Younger Dryas to the early-Holocene (M. Uchida, personal communication). Apparently, the Northwest Pacific regions was generally influenced by abrupt global climate changes, and δ¹³C' in Tashiro Bog seems to have a significant potential as an indicator for paleoclimatic changes.

5.2 Linkage with the paleo-EASM variability

There are numerous studies on EASM variability based on stalagmite δ¹⁸O (Wang et al., 2001; Yuan et al., 2004; Dykoski et al., 2005; Wang et al., 2005; Hu et al., 2008; Wang et al., 2008; Rohling et al., 2009), peat cellulose δ¹³C and δ¹⁸O (Hong et al., 2003, 2005, 2009; Hong et al., 2010a), stable isotopic ratios of plant wax in peat sediments (Zhou et al., 2005; Zheng et al., 2007; Seki et al., 2009; Yamamoto et al., 2010a, b), geochemical data in lake sediments (Rhodes et al., 1996; Schettler et al., 2006), pollen data in lake sediments (Jarvis, 1993; Nakagawa et al., 2003, 2006; Stebich et al., 2009) and stable isotopic ratios in marine sediments (Wang et al., 1999; Kubota et al., 2010). We compared our peat cellulose δ¹³C data (Fig. 4c) with the stalagmite δ¹⁸O records from Hulu Cave (Wang et al., 2001) and Dongge Cave (Yuan et al., 2004) (Figs. 1b, 4b), which reflect paleo-EASM variability, and with the peat cellulose δ¹³C records from the Hani peat bog in Northeast China (Hong et al., 2005; Fig. 1b, 4d) and the Hongyuan peat bog in Southern China (Hong et al., 2003; Figs. 1b, 4e). Stalagmite δ¹⁸O variability corresponds well to our δ¹³C' variability especially during the last deglaciation, although the low δ¹³C' during the Older Dryas in Tashiro Bog are not seen in stalagmite δ¹⁸O. However, the timing of δ¹⁸O anomaly recorded from
Hani Bog also corresponds to the Older Dryas period (Hong et al., 2009). Although the Older and/or Oldest Dryas are not obviously shown in both stalagmite δ^{18}O at Southern China and ice core δ^{18}O of GISP2, peat sediment seems to be able to record such climate change. These correspondences between stalagmite δ^{18}O and δ^{13}C’ suggest that the climate around Northeast Japan is largely influenced by the EASM. However, while high (low) δ^{13}C’ events at Tashiro Bog suggest dry (wet) climate around Northeast Japan, coeval high (low) stalagmite δ^{18}O of Hulu and Dongge Cave during the same periods suggest that precipitation was increased (decreased) around Southern China. This anti-phase variability suggests a latitudinal effect on climate in East Asia.

This hypothesis is supported by peat cellulose δ^{13}C data of the Hani and the Hongyuan Bog: To reconstruct the paleo-EASM variability during the last 12 kyr, Hong et al. (2005) and Hong et al. (2003) used peat bulk cellulose δ^{13}C and δ^{13}C of Carex mulieensis cellulose, respectively. The δ^{13}C’ variability at Tashiro Bog is similar to the δ^{13}C of Hani Bog (Fig. 4d), suggesting that wet climatic conditions prevailed in the mid-high latitudes during cold periods. Therefore the mid-high latitude regions, between Northeast China and Northeast Japan appear to be dominantly affected by the EASM during cold periods. On the other hand, the δ^{13}C records at the Hongyuan Bog show an anti-phase relationship with our records (Fig. 4e), and indicate dry climatic condition during cold periods and wet condition during warm periods in Southern China. We conclude from our comparisons of δ^{13}C’ with δ^{13}C records at the Hani and Hongyuan Bog that the mechanism of climate changes in these regions differ between mid-low and mid-high latitudes. While in the mid-high latitude regions of East Asia climate seems to have been relatively dry during global warming periods such as the Preboreal, the Bølling and the Allerød, relatively wet conditions may have prevailed during global cooling periods such as the 8.2 ka event and the Younger Dryas. In the mid-low latitudes of East Asia, on the other hand, it may have been wetter during warm periods, and drier during cold periods.

We summarized research about the hydrological environment in East Asia in relation with the EASM during cold periods in Table 2 and Fig. 5, which suggests wetter
conditions in the Northern China and the Northern Japan (An et al., 1993; Zhou et al., 1996; Hong et al., 2005; Nakagawa et al., 2006; Ishiwatari et al., 2009; Seki et al., 2009; Yamaguchi et al., 2010; Zhou et al., 2010), and drier conditions in Central and Southern China, the South China Sea and the East China Sea (Wang et al., 1999, 2001; Hong et al., 2003; Zhao et al., 2003; Yuan et al., 2004; Schettler et al., 2006; Zheng et al., 2007; Stebich et al., 2009; Kubota et al., 2010; Wei et al., 2010).

However, the δ¹³C data in Hani Bog (Hong et al., 2005) show opposite climatic patterns compared to records of geochemical data (Schettler et al., 2006) and pollen data (Stebich et al., 2009) in Lake Sihailongwan near Hani Bog. It was suggested that this discrepancy would be due to relative increase in the contribution of *Sphagnum* species that could have resulted in changes of δ¹³C change during this period (Yamamoto et al., 2010b; Schettler, 2011). However, the influence of an increased relative contribution of *Sphagnum* species in peat sediments of the Hani Bog on peat cellulose δ¹³C seems to be negligible (Hong et al., 2011). In addition, the records of δD of plant wax n-alkanes (Seki et al., 2009), elevated n-alkane *P*ₐ₉ values and *C*₂₃/₉₉ ratios (Zhou et al., 2010) in the Hani Bog indicate the wetter climatic conditions during the Younger Dryas, consistent with the δ¹³C results in Hani Bog. Accordingly, Northeast China seems to have experienced increased precipitation during the Younger Dryas, although further research is necessary to confirm this interpretation. Our results on peat cellulose δ¹³C are thus conform with most previous multi-proxy analyses strengthening the hypothesis of a precipitation boundary reaching from Central China to Japan.

5.3 Mechanism of the presence of the precipitation boundary

Which processes restrict EASM variability? We propose that changes in atmospheric circulation largely affected the variability of EASM intensity. Previous paleoclimate reconstructions generally agree that the EASM was weaker during cold periods in the Northern Hemisphere (Ding et al., 1992; Porter and An, 1995; Sirocko et al., 1996; Thompson et al., 1997; Liu and Ding, 1998; Heslop et al., 1999; Wang et al., 2001; Yuan et al., 2004; Dykoski et al., 2005; Oppo and Sun, 2005) when the ITCZ tends to...
move southward (Hughen et al., 1996; Haug et al., 2001; Yancheva et al., 2007) as it does during El Niño years (Koutavas et al., 2002; Cane, 2005; Ivanochko et al., 2005). The mechanism is as follows: When SSTs in the Equatorial Pacific take on an El Niño-like pattern (warm SSTs extend to the Eastern Equatorial Pacific due to weakening of easterly trade winds), the ITCZ migrates southward due to strong sea level pressure in the Eastern Equatorial Pacific (Fedorov and Phillander, 2000; Cane, 2005). In association with southward migration of the ITCZ and weaker atmospheric circulations, both the Western Pacific Subtropical High (STH) and EASM tend to weaken. On the other hand, when SSTs in the Equatorial Pacific take on a La Niña-like pattern (increase of the Western Equatorial Pacific SSTs due to strengthening of the easterly trade winds), the ITCZ migrates northward due to the strong sea level pressure in the Western Equatorial Pacific. In association with a northward migration of the ITCZ and stronger atmospheric circulations, both the STH and EASM intensify due to strong convection in the Western Tropics. In fact, the migration of the ITCZ reconstructed from the Ti contents of in a sediment core from the Cariaco basin (Haug et al., 2001) is well synchronous to EASM variability (Fig. 4b) (Hastenrath and Greischar, 1993; Yancheva et al., 2007).

Thus how may we explain the anti-phased paleoclimate states in East Asia (Fig. 5)? We propose a link between the EASM, the ITCZ and the location of the rain belt. During global warming periods (Fig. 6b), equatorial SSTs tend to be high leading to a La Niña-like pattern, associated with a northward migration of the ITCZ and the STH. As a result, both the EASM and STH intensity become stronger. A strong STH positioned in the subtropical Northwest Pacific, close to Japan, impedes the formation of a rain belt in the mid-high latitudes of East Asia. The rain belt is therefore restricted to Southeast Asia: the mid-low latitude regions experience enhanced precipitation, while the mid-high latitude regions remain relatively dry. On the other hand, equatorial SSTs tend to be low during global cooling periods (Fig. 6c), and take on an El Niño-like pattern associated with a southward migration of the ITCZ and STH. As a result, both the EASM and STH intensity weaken. A weak STH positioned far from Japan allows the rain
belt reaching Northeast China and Japan. The rain belt, therefore, dominantly forms in Central China and Japan: the mid-high latitudes experience enhanced precipitation while the mid-low latitudes remain relatively dry. We thus suggest that the different hydrological environments in the mid-high and mid-low latitudes are a consequence of the migration of the rain belt associated with the EASM, ITCZ and STH in response to global climate changes.

5.4 Millennial-scale climate changes in East Asia

Two power spectral analyses for the last 12 kyr show periodic changes of δ^{13}C' from the Tashiro Bog. The Blackman Tuckey method using AnalySeries 2.0 (Paillard et al., 1996) reveals 6 periodicities ranging from 580 yr to 8470 yr (Fig. 7a). We exclude the 8470 yr periodicity because it is too large compared to our studied time window of 12,000 yr. To cross-check these periodicities and to specify the terms of periodicity, we conducted another power spectral analysis, Wavelet Analysis (Torrence and Compo, 1998; http://ion.researchsystems.com/IONScript/wavelet/). It shows two characteristic features (Fig. 7b), one is a ∼1230 yr periodicity throughout the Holocene, and the other a strong periodicity ranging from 250 to 750 yr between 10.0 and 8.0 ka. From the results of the two spectral analyses, we conclude that there exists one long periodicity (1230 yr), which is evident all through the Holocene, and two short periodicities (580 yr and 680 yr) evident only during the early Holocene.

The 1230 yr periodicity can be compared to Bond events, exhibit a distinct pacing on millennial-scale during the Holocene in the high-latitude North Atlantic that might be related to reduced North Atlantic Deep Water formation due to the melting iceberg armadas launched from the Hudson Straits presumably as the results of a collapse of the Hudson Bay lobe of the Laurentide ice sheet (Bond et al., 1997, 2001). These nine abrupt ocean surface cooling events show a periodicity of about 1470 ± 500 yr (Bond et al., 1997), which is similar to the 1230 yr periodicity of δ^{13}C'. In fact, δ^{13}C' in the Tashiro Bog show low values during the Bond events (Fig. 4c, f). We therefore suggest that wet climatic conditions in the mid-high latitude region coincide with
cooling events in the North Atlantic. In addition, evidence for remarkable millennial scale climate change that seems to be related the Bond events during the Holocene in East Asia using marine sediments has been reported (Isono et al., 2009; Kubota et al., 2010). Isono et al. (2009) found that the mean latitude of the Kuroshio Extension has varied on a 1500 yr periodicity during the Holocene from the alkenone SSTs in the Northwestern Pacific off Central Japan, and suggest that a climatic link exists between the North Pacific gyre system and the high-latitude North Atlantic thermohaline circulation. Kubota et al. (2010) reported that millennial scale dry (less EASM precipitation) events occurred during the Holocene from the variations in Mg/Ca-based SSTs and δ¹⁸O of the surface water in the Northern East China Sea, suggest that a teleconnection between the EASM and the North Atlantic climate. Our results also suggest that a teleconnection existed between the Northwest Pacific region and the North Atlantic during the Holocene, and revealed that not only marine sediment but also terrestrial sediment record the climate change events related to the high-latitude North Atlantic.

The 680 yr periodicity between 10.0 and 8.0 ka is consistent with a prominent 649 yr cycle discovered by (Damon and Sonnett, 1991). Damon and Sonnett (1991) conducted power spectrum analysis using discrete Fourier transformation (DFT) of concatenation of La Jolla-Becker-Stuiver-Pearson ¹⁴C sequence for the last ~9.2 ka. They found a sharp 649 yr periodicity, and interpreted it terms of a solar activity cycle. The 680 yr periodicity between 10.0 and 8.0 ka obtained from two power spectral analyses occurs at a time when summer solar insolation was strongest during the last 15 kyr (Kutzbach et al., 1998), also known as the Hypsithermal (Deevey and Flint, 1957; Davis, 1984). Already mentioned in chapter 5.2, δ¹³C of Tashiro Bog is sensitive to the variability of EASM. Therefore, the EASM precipitation could be modulated by strong solar output variation during the Hypsithermal. Consequently, the 680 yr periodicity observed in the precipitation pattern of Tashiro Bog might be correlated to solar activity cycles. Moreover, the periodicity of δ¹³C' recorded in the early Holocene could be related to high solar activity at the onset of the Hypsithermal in the Northern Hemisphere mid-high latitudes. The 680 yr periodicity is also evident in the δ¹³C of Sphagnum peat
in Central China (Zhu et al., 2009). However, these periodicities are recorded between 4.0 and 1.0 kyr, which is in contrast to the 680 yr periodicity in the Tashiro Bog, which is evident only in the early Holocene. This difference in timing might be related to the different geographical locations of the two sites. In any case, our study presents for the first time evidence for the existence of a 680 yr periodicity in the Hypsithermal in the Northwest Pacific region.

6 Conclusions

In order to discuss the spatial and temporal variations of the EASM in East Asia since the last deglaciation, we measured peat bulk cellulose $\delta^{13}C$ collected at the Tashiro Bog, Northeast Japan. The following results were obtained from this study:

1. The variability of peat cellulose $\delta^{13}C$ records, accumulation rates and accumulation fluxes from the Tashiro Bog correspond well to abrupt climate changes recorded in the Greenland ice core between 15.5 and 8.0 ka, suggesting that the Tashiro Bog was influenced by global abrupt climate changes. $\delta^{13}C$ data in the Tashiro Bog have therefore good potential as an indicator for paleoclimatic changes.

2. There is evidence for a precipitation boundary across Central China to Japan during global warm and cold periods as observed from our $\delta^{13}C$ data and previous studies. While wet (dry) climatic conditions prevailed at mid-high latitudes, the mid-low latitudes were characterized by dry (wet) climatic conditions during cooling (warming) period.

3. The rain belt seems to migrate due to the global climate change. During warming periods (related to La Niña-like patterns), EASM and STH strengthen, resulting in a more southern position of the rain belt in the mid-low latitudes, and dryer conditions in the mid-high latitudes. During the cooling periods (related to El Niño-like patterns), on the other hand, EASM and STH weaken, resulting in a more
northern position of the rain belt in the mid-high latitudes, and wetter conditions in the mid-high latitudes.

4. Power spectral analyses revealed long (1230 yr) and short (580 yr and 680 yr) periodicities during the Holocene and the Hypsithermal, respectively. The 1230 yr periodicity seems related to Bond events, suggesting a climatic teleconnection between Northwest Pacific region and the North Atlantic. The Bond events are recorded not only in marine sediments but also in terrestrial sediments around Northwest Pacific region. The 680 yr periodicity seems related to solar activity variations and might suggest that solar activity affected precipitation during the early Holocene. Our findings propose the possibility that the EASM variability in Northwest Pacific region is synchronous to the Northern Hemisphere climate change.

Acknowledgements. We thank Y. T. Hong for providing $\delta^{13}C$ data from the Hani and Hongyuan Bog. We also thank A. Yoshida and K. Horiuchi for sampling the core together with authors. We are grateful to T. Kobayashi, N. Iida, A. Matsuda and Y. Minoura for ^{14}C measurement at NIES-TERRA. This research was supported by the Environment Research and Technology Development Fund (A-1003) of the Ministry of Environment, Japan.

References

Hastenrath, S. and Greischar, L.: Circulation mechanisms related to Northeast Brazil rainfall

2176

Nakagawa, T., Tarasov, P. E., Kitagawa, H., Yasuda, Y., and Gotanda, K.: Seasonally spe-

Synchronicity of the East Asian Summer Monsoon

T. Shinozaki et al.

Introduction

Conclusions

References

Tables

Figures

Sirocko, F., Garbe-Schönberg, D., McIntyre, A., and Molfin, B.: Teleconnections between the subtropical monsoons and high-latitude climates during the last deglaciation, Science, 272, 526–529, 1996.

Table 1. Measured radiocarbon data of bulk sediment in core from the Tashiro Bog, Northeast Japan. Two data point, 8–10 cm depth and 121114 cm depth, are modern value (newer than AD 1950).

<table>
<thead>
<tr>
<th>depth (cm)</th>
<th>14C age (yr BP)</th>
<th>Calendar age (cal yr BP) (1σ)</th>
<th>Lab. Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>8–10</td>
<td>-1205 ± 34</td>
<td>-38 (modern)</td>
<td>TERRA-113009a19</td>
</tr>
<tr>
<td>12–14</td>
<td>-1322 ± 32</td>
<td>-37 (modern)</td>
<td>TERRA-113009a20</td>
</tr>
<tr>
<td>52–54</td>
<td>840 ± 26</td>
<td>$726–781$</td>
<td>TERRA-120709a03</td>
</tr>
<tr>
<td>76–78</td>
<td>1161 ± 21</td>
<td>$1054–1091$</td>
<td>TERRA-020410a12</td>
</tr>
<tr>
<td>111–112</td>
<td>2034 ± 23</td>
<td>$1947–2003$</td>
<td>TERRA-120209a18</td>
</tr>
<tr>
<td>141–142</td>
<td>2303 ± 23</td>
<td>$2330–2348$</td>
<td>TERRA-120209a19</td>
</tr>
<tr>
<td>181–182</td>
<td>2862 ± 23</td>
<td>$2941–3005$</td>
<td>TERRA-120209a20</td>
</tr>
<tr>
<td>220–221</td>
<td>3445 ± 26</td>
<td>$3681–3723$</td>
<td>TERRA-120209a21</td>
</tr>
<tr>
<td>268–269</td>
<td>4441 ± 27</td>
<td>$4971–5054$</td>
<td>TERRA-120209a23</td>
</tr>
<tr>
<td>337–338</td>
<td>4969 ± 27</td>
<td>$5658–5720$</td>
<td>TERRA-020410a13</td>
</tr>
<tr>
<td>347–348</td>
<td>5010 ± 38</td>
<td>$5697–5752$</td>
<td>TERRA-112609a36</td>
</tr>
<tr>
<td>361–362</td>
<td>5509 ± 29</td>
<td>$6281–6317$</td>
<td>TERRA-113009a22</td>
</tr>
<tr>
<td>383–384</td>
<td>6789 ± 33</td>
<td>$7610–7665$</td>
<td>TERRA-113009a23</td>
</tr>
<tr>
<td>392–393</td>
<td>6954 ± 31</td>
<td>$7739–7831$</td>
<td>TERRA-120709a06</td>
</tr>
<tr>
<td>396–397</td>
<td>7111 ± 33</td>
<td>$7931–7969$</td>
<td>TERRA-120709a06</td>
</tr>
<tr>
<td>401–402</td>
<td>7571 ± 33</td>
<td>$8371–8406$</td>
<td>TERRA-113009a24</td>
</tr>
<tr>
<td>414–415</td>
<td>7765 ± 36</td>
<td>$8536–8592$</td>
<td>TERRA-113009a25</td>
</tr>
<tr>
<td>437–438</td>
<td>8028 ± 36</td>
<td>$8972–9010$</td>
<td>TERRA-120709a08</td>
</tr>
<tr>
<td>449–450</td>
<td>8595 ± 48</td>
<td>$9524–9599$</td>
<td>TERRA-113009a26</td>
</tr>
<tr>
<td>503–504</td>
<td>9131 ± 40</td>
<td>$10 230–10 297$</td>
<td>TERRA-113009a27</td>
</tr>
<tr>
<td>533–534</td>
<td>9599 ± 46</td>
<td>$10 790–10 968$</td>
<td>TERRA-113009a28</td>
</tr>
<tr>
<td>563–564</td>
<td>9889 ± 40</td>
<td>$11 238–11 314$</td>
<td>TERRA-120709a09</td>
</tr>
<tr>
<td>604–605</td>
<td>$10 051 \pm 46$</td>
<td>$11 463–11 564$</td>
<td>TERRA-091709a31</td>
</tr>
<tr>
<td>612–613</td>
<td>$10 116 \pm 40$</td>
<td>$11 688–11 825$</td>
<td>TERRA-111809a02</td>
</tr>
<tr>
<td>619–620</td>
<td>$10 289 \pm 45$</td>
<td>$11 892–12 147$</td>
<td>TERRA-091709a32</td>
</tr>
<tr>
<td>627–628</td>
<td>$10 432 \pm 38$</td>
<td>$12 235–12 324$</td>
<td>TERRA-120709a11</td>
</tr>
<tr>
<td>631–632</td>
<td>$10 456 \pm 42$</td>
<td>$12 450–12 610$</td>
<td>TERRA-111809a03</td>
</tr>
<tr>
<td>649–650</td>
<td>$10 652 \pm 34$</td>
<td>$12 700–12 786$</td>
<td>TERRA-091509a33</td>
</tr>
<tr>
<td>667–668</td>
<td>$10 861 \pm 40$</td>
<td>$12 833–12 872$</td>
<td>TERRA-120709a12</td>
</tr>
<tr>
<td>677–678</td>
<td>$11 042 \pm 33$</td>
<td>$12 904–12 995$</td>
<td>TERRA-091509a34</td>
</tr>
<tr>
<td>691–692</td>
<td>$11 396 \pm 58$</td>
<td>$13 207–13 309$</td>
<td>TERRA-112609a35</td>
</tr>
<tr>
<td>707–708</td>
<td>$11 624 \pm 50$</td>
<td>$13 392–13 549$</td>
<td>TERRA-091709a35</td>
</tr>
<tr>
<td>725–726</td>
<td>$11 849 \pm 41$</td>
<td>$13 676–13 771$</td>
<td>TERRA-090809a27</td>
</tr>
<tr>
<td>739–740</td>
<td>$12 048 \pm 50$</td>
<td>$13 832–13 963$</td>
<td>TERRA-120709a13</td>
</tr>
<tr>
<td>753–754</td>
<td>$12 188 \pm 42$</td>
<td>$13 990–14 106$</td>
<td>TERRA-111809a04</td>
</tr>
<tr>
<td>768–769</td>
<td>$12 324 \pm 43$</td>
<td>$14 091–14 320$</td>
<td>TERRA-120709a14</td>
</tr>
<tr>
<td>795–796</td>
<td>$12 447 \pm 46$</td>
<td>$14 269–14 647$</td>
<td>TERRA-111809a29</td>
</tr>
<tr>
<td>823–824</td>
<td>$12 555 \pm 45$</td>
<td>$14 627–14 940$</td>
<td>TERRA-090809a29</td>
</tr>
<tr>
<td>835–836</td>
<td>$12 655 \pm 47$</td>
<td>$14 810–15 065$</td>
<td>TERRA-090809a30</td>
</tr>
<tr>
<td>845–846</td>
<td>$12 865 \pm 50$</td>
<td>$15 110–15 518$</td>
<td>TERRA-020410a15</td>
</tr>
<tr>
<td>847–848</td>
<td>$13 005 \pm 45$</td>
<td>$15 203–15 491$</td>
<td>TERRA-090809a31</td>
</tr>
<tr>
<td>848–849</td>
<td>$12 951 \pm 40$</td>
<td>$15 165–15 648$</td>
<td>TERRA-020410a16</td>
</tr>
</tbody>
</table>
Synchronicity of the East Asian Summer Monsoon

T. Shinozaki et al.

Table 2. The list of the research for mosoonal precipitation around East Asia during cold period. From 1 to 9 shows it was wetter environment. From 10 to 19 shows it was drier environment. 8.2 ka, YD, LIA, OlderD/GI and LGM represent 8.2 ka cold event, Younger Dryas cold period, Little Ice Age, Older Dryas/Greenland Interstadial and Last Glacial Maximum, respectively.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Regions</th>
<th>Proxy</th>
<th>Periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. This study</td>
<td>Northeastern Japan (Tashiro Bog)</td>
<td>δ^{13}C of peat bulk cellulose</td>
<td>ex. 8.2ka, YD</td>
</tr>
<tr>
<td>2. Yamaguchi et al. (2010)</td>
<td>Central Japan</td>
<td>δ^{18}O of tree-ring</td>
<td>LIA</td>
</tr>
<tr>
<td>3. Ishiwatari et al. (2009)</td>
<td>Central Japan (Lake Biwa)</td>
<td>soil organic matter</td>
<td>YD</td>
</tr>
<tr>
<td>5. Hong et al. (2005)</td>
<td>Northeastern China (Hani Bog)</td>
<td>δ^{13}C of peat bulk cellulose</td>
<td>YD</td>
</tr>
<tr>
<td>7. Seki et al. (2009)</td>
<td>Northeastern China (Hani Bog)</td>
<td>n-alkane δD, P_{aq} of peat</td>
<td>Last Deglaciation</td>
</tr>
<tr>
<td>8. Zhou et al. (1996)</td>
<td>Central China (Midian paleosol sequences)</td>
<td>pollen data and δ^{13}C_{org}</td>
<td>YD</td>
</tr>
<tr>
<td>9. An et al. (1993)</td>
<td>Central China (Baxie Loess)</td>
<td>dust Magentic Susceptibility</td>
<td>YD</td>
</tr>
<tr>
<td>10. Schettler et al. (2006)</td>
<td>Northeastern China (Lake Sihailongwan)</td>
<td>geochemical data of lake sediment</td>
<td>YD</td>
</tr>
<tr>
<td>11. Stebich et al. (2009)</td>
<td>Northeastern China (Lake Sihailongwan)</td>
<td>pollen data of lake sediment</td>
<td>OlderD/GI</td>
</tr>
<tr>
<td>12. Kubota et al. (2010)</td>
<td>East China Sea</td>
<td>foraminifera Mg/Ca, δ^{18}O</td>
<td>IRD-events</td>
</tr>
<tr>
<td>13. Zhao et al. (2003)</td>
<td>Eastern China (Tangshan Cave)</td>
<td>δ^{18}O of stalagmite</td>
<td>YD, LGM</td>
</tr>
<tr>
<td>14. Wang et al. (2001)</td>
<td>Eastern China (Hulu Cave)</td>
<td>δ^{18}O of stalagmite</td>
<td>ex. YD</td>
</tr>
<tr>
<td>15. Hong et al. (2003)</td>
<td>Central China (Hongyuan Bog)</td>
<td>δ^{13}C of peat plant cellulose</td>
<td>YD</td>
</tr>
<tr>
<td>17. Yuan et al. (2004)</td>
<td>Southern China (Dongge Cave)</td>
<td>δ^{18}O of stalagmite</td>
<td>ex. YD</td>
</tr>
<tr>
<td>18. Wei et al. (2010)</td>
<td>Southern China Mainland (Dahu Swamp)</td>
<td>δ^{13}C_{org} of lacustrine sediment</td>
<td>YD</td>
</tr>
<tr>
<td>19. Wang et al. (1999)</td>
<td>South China Sea</td>
<td>foraminifera δ^{18}O, δ^{13}C</td>
<td>YD</td>
</tr>
</tbody>
</table>
Fig. 1. Location of the study area and other reference sites (yellow star). The blue circle indicates Aomori city in Fig. 1c. The red circle indicates the coring point in Fig. 1d.
Fig. 2. Core lithology, and depth profile of (a) calendar age (cal kyr BP), (b) TOC (%) and (c) DBD (mg cm$^{-3}$). Yellow bands represent the ash layers.
Fig. 3. Variation in (a) GISP2 ice core $\delta^{18}O$ (Stuiver and Grootes, 2000), (b) accumulation rate at Tashiro Bog (This study), (c) accumulation flux at Tashiro Bog (This study), (d) $\delta^{13}C'$ at Tashiro Bog (This study) and (e) $\delta^{13}C$ variability of atmospheric CO$_2$ (Elsig et al., 2009; Leuenberger et al., 1992) since 16 000 to −60 cal yr BP. Black triangles indicate ^{14}C age control point. 8.2 ka, PB, YD, A, OlderD, B and OldestD represent 8.2 ka cold event, Preboreal warming, Younger Dryas cold period, Allerød warm period, Older Dryas, Bølling warm period and Oldest Dryas, respectively.
Fig. 4. Variation in (a) Ti content of ODP Site 1002 marine sediment core at Cariaco basin (Haug et al., 2001), (b) stalagmite δ^{18}O at Hulu Cave (Wang et al., 2001) and Dongge Cave (Yuan et al., 2004), located in southern China, (c) δ^{13}C' at Tashiro Bog (This study), (d) peat cellulose δ^{13}C at Hani Bog, Northeast China (Hong et al., 2005), (e) δ^{13}C of Carex mulieensis cellulose at Hongyuan Bog, southern China (Hong et al., 2003) and (f) hematite-strained grains content of VM29-191 marine sediment core, located in a North Atlantic (Bond et al., 2001) since 16,000 to −60 cal yr BP. The numbers shown in (f) indicate IRD-events numbers. Yellow bands indicate the period of IRD-events. PB, YD, A, OlderD, B and OldestD represent Preboreal warming, Yonger Dryas cold period, Allerød warm period, Older Dryas, Bølling warm period and Oldest Dryas, respectively.
Fig. 5. Sketch maps showing the location of research site for monsoonal precipitation during cold period. Green and brown circles show wetter and dryer conditions, respectively, during this period. These numbers correspond to the reference numbers of Table 2.
Fig. 6. Sketch maps showing the (a) today's mean meteorological feature in summer and paleo-meteorological features during (b) global warming period and (c) global cold period over East Asia.
Fig. 7. Results of two type spectral analyses. (a) The Blackman-Tukey Spectral Analysis. Numbers above peaks indicate the corresponding periodicities (years). (b) Wavelet Power Spectral Analysis using the Morlet wavelet. The y-axis is the wavelet period in years. The shaded contours are at normalized variances. The thick contours are the 10% significance regions. The dashed line indicates the characterized periodicity, 1230 yr, which is also shown in Black-Tukey Spectral Analysis.