Strong summer monsoon during the cool MIS-13

Q. Z. Yin1,2 and Z. T. Guo1

1Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. Box 9825, Beijing 100029, China
2Institute of Astronomy and Geophysics G. Lemaître, Catholic University of Louvain, Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium

Received: 1 October 2007 – Accepted: 1 October 2007 – Published: 11 October 2007

Correspondence to: Q. Z. Yin (yin@astr.ucl.ac.be)
Abstract

The δ^{18}O record in deep-sea sediments show a significant reduced amplitude of the ice volume variations before Marine Isotope Stage 11, about 400 kyr ago, with less warm interglacials and less cold glacialis. The deuterium temperature and the greenhouse gases records in the Antarctic ice cores show the same feature. As the reduction in the amplitude of climate and greenhouse gases concentration variations before 400 kyr BP is present in both deep-sea and ice cores, it is tempting to conclude that this is a worldwide phenomenon. This is not necessarily true, at least as far as some of the records, in particular of China, are concerned. The loess in northern China, the sedimentary core in the eastern Tibetan Plateau and the palaeosols in southern China all record an unusually warm and wet climate during Marine Isotope Stage 13, indicating an extremely strong East Asian summer monsoon. During the same interglacial, unusually strong African and Indian monsoon are recorded in the sediments of the equatorial Indian Ocean and of the Mediterranean Sea. Other extreme climate events are also recorded in sediment cores of the equatorial Atlantic, the Pacific, the subtropical South Atlantic Ocean and in the Lake Baikal of Siberia.

The need to better understand the global climatic system leads inevitably to the close inspection of paleoclimatic archives to provide a long-term perspective from which any future change may be more effectively assessed. Such climatic variations of the past are perhaps best illustrated by the oxygen isotopic composition of calcium carbonate in marine organism tests which leads to the definition of Marine Isotopic Stages (MIS). These fluctuations are explained in terms of changing global ice volumes. They are characterized by warmer periods (interglacials which are assigned odd numbers) and colder periods (glacials which are assigned even numbers) defining the glacial-
Based on such records, two major transitions have been identified for the Quaternary climate. The mid-Pleistocene revolution (MPR) is characterized by an increase in mean global ice volume, and a change in the dominant period from 41 to 100 kyr (Imbrie et al., 1993; Raymo et al., 1997). Its timing is often considered to be at about 900 kyr BP. A second distinct climate change, the mid-Brunhes event (MBE, Jansen et al., 1986), roughly corresponds to the transition between MIS-12 and MIS-11 about 430 kyr ago. The MBE is characterized by a further increase of ice-volume variations with four large-amplitude 100-kyr glacial-interglacial cycles from then to present day (Fig. 1). The intermediate period between MPR and MBE is characterized by a less-clear pattern, with significantly weaker amplitude of ice-volume variations than after MBE. The deuterium measurements in the EPICA dome C ice core (EPICA, 2004; Jouzel et al., 2007) show also the same characteristics with less cold glacial maxima and very significantly less warm interglacials during the period before MIS-11 than after (Fig. 1). Not only the deuterium temperature record shows a reduced amplitude but also the CO₂ and CH₄ variations (Siegenthaler et al., 2005; Spahni et al., 2005). Explaining the reduction in the amplitude of these variations before MIS-11 is certainly one of the exciting challenges for the paleoclimate community over the next years.

As this phenomenon is present in both deep-sea and ice cores, it is tempting to conclude that this is a worldwide phenomenon with signs of “cool” interglacials before MIS-11 over the whole Earth. This is not necessarily true, at least as far as some of the records from China are concerned.

Chinese loess, which covers an area of about half a million square kilometers (Fig. 2) with a thickness of 150–300 m, provides one of the most complete and sensitive terrestrial records for the past climatic changes (Liu, 1985). The loess-soil sequences are constituted by loess layers alternating with paleosols layers. Loess layers are interpreted as having been deposited during glacials, and soils developed during interglacials. The alternations between soil and loess layers are commonly interpreted as an indication of the waxing and waning of the East Asian monsoon circulation, with the
soil-forming periods corresponding to a strengthened summer monsoon and loess de-
posits to a strengthened winter monsoon (An et al., 1990). Soil layers are designated as
“S”, loess layers are designated as “L”, and they are numbered sequentially downward.
Based upon independently dated stacks obtained from the Chinese loess sections on
the one hand and the deep-sea cores on the other hand (Kukla, 1987), S0 soil unit can
be correlated to MIS-1, S1 to MIS-5, S4 to MIS-11 which is the longest interglacial over
the last 450 kyr (Berger and Loutre, 2003), and S5-1 to MIS-13 (Liu, 1985). Paleocli-
mate reconstructions based on morphological comparison of paleosols and loess units
with present day soils (Liu, 1985) suggest that mean annual temperature during the
formation of the S1, S4 and S5 pedocomplexes did not differ significantly (it is about
13°C), but that precipitation ranged from 680 mm for S1, 650 mm for S4 and 800 mm
for S5. The climofunction of Lü et al. (1994) suggests a maximum rainfall increase
of 325 mm for S5-1 in the central Loess Plateau region compared to the present-day.
Similar results were obtained from carbon and oxygen isotope composition (e.g. Han
et al., 1997; An et al., 2005), from pedogenical characteristics (e.g. An and Wei, 1980;
Guo et al., 1998; Vidic et al., 2003), from geochemical properties (e.g. Chen et al.,
1999; Guo et al., 2000), from pollen assemblages (Wu et al., 2004) and from magnetic
susceptibility (e.g. Kukla, 1987; Hao and Guo, 2005). These results show that S5-1 soil
has undergone the most intense pedogenesis (Fig. 1) and represents a warm period
with the greatest humidity of the past 1.2 Ma.

At the same time, in the eastern Tibetan Plateau (Fig. 2), the high sedimentary car-
bonate content within a lacustrine and fluvial sediment core from the Zoige Basin im-
plies an unusually warm and wet climate during MIS-13 (Chen et al., 1999). The pollen
and charcoal data from this core also distinguish MIS-13 from the other interglacials
over the last 800 kyr and indicate the appearance of forest or mixed forest-grassland in
the catchment basin during MIS-13.

This extreme climate is not only recorded in the loess of northern China and the
sediment core in the eastern Tibetan Plateau, but is also recorded in the paleosol of
southern China, which is widely distributed in the areas south of the Yangtze River.
The prominent characteristic of that soil, called Vermiculated Red Soil (VRS), is a mixture of red and white veins. Based on micromorphological, chemical and mineralogical methods, Yin and Guo (2006) investigated VRS from two sections (Fig. 2) and concluded that the red and white veins were formed from a previously homogeneous matrix, with much more abundant iron oxides in the red veins than in the white veins. This iron-depletion from the white veins differs from the ordinary oxidation-reduction by a near complete removal of iron and by their wide geographic extents in southern China, a difference which indicates abundant rainfall throughout the year without significant desiccations. Because most of the rain in the investigated regions is under the control of the East Asian Summer Monsoon (EASM), the iron-depleted white veins indicate primarily an extremely strong EASM.

On the other hand, paleomagnetic stratigraphy and luminescence measurement (Qiao et al., 2003) allow to conclude that VRS formation dates back between 850 and 360 kyr BP. As VRS is the most developed soil since 850 kyr BP in southern China, one might attempt to correlate it with the strongest developed soil, S5-1, in northern China. As this last soil represents a period of greatest humidity, it can be concluded that the white veins within VRS correspond mainly to S5-1 which itself correlates to MIS-13, so providing an age of roughly 500 kyr BP.

This extremely strong MIS-13 EASM coincides with other exceptional events recorded in the terrestrial and marine records in the world. Prokopenko et al. (2002) note that the region around Lake Baikal (Siberia) remained forested through MIS-11 to MIS-15, which suggests that the climate there was nor arid neither particularly cold. The severely reduced eolian mass accumulation rates at 540 kyr recorded in KK75-02 core from Pacific (Janecek and Rea, 1984) indicate an increasing humidity at the beginning of MIS-13 in Central Asia. A thick sapropel deposited in the deep eastern Mediterranean Sea following high floods of the Nile river and dated at 528–525 kyr ago by astronomical tuning using insolation variations described by a monsoon index indicates unusually heavy monsoon rainfall over Africa (Rossignol-Strick et al., 1998). At the same time, at 525 kyr BP, in the equatorial Indian Ocean there was an extreme
event of low surface-water salinity caused by heavy monsoonal fluvial discharge to the ocean (Bassinot et al., 1994). The Mediterranean sapropel is also synchronous with an unusual mid-Pleistocene climate excursion (Gingele and Schmieder, 2001), indicated by unique carbonate-rich diatom ooze layers deposited under the low productivity regime of the subtropical gyre in the South Atlantic. The fraction of goethite in total iron oxides, a precipitation proxy in the terrigenous sediments from Ceara Rise in the western tropical Atlantic Ocean, has a maximum peak during MIS-13, indicating a maximum precipitation over the lowland Amazon Basin (Harris and Mix, 1999). Finally, the stable benthic foraminiferal δ¹³C from different oceans indicates that the δ¹³C maximum events appear during MIS-13 (e.g. Raymo et al., 1997; Wang et al., 2004).

Facing this paradox of extreme monsoon climates during a cool interglacial, it is useful to recall that this peak in monsoon activity is also associated to a maximum in δ¹³C recorded in deep-sea cores from different oceans. Three important factors may affect the deep ocean δ¹³C values. Firstly, an increase in continental biomass may result in a rise of the average δ¹³C of the oceans (Raymo et al., 1990). Secondly, the organic versus inorganic ratio in oceanic carbon deposition influences the δ¹³C value, and δ¹³C maximum occurs when the ratio is unusually high (Wang et al., 2004). Thirdly, the North Atlantic deep-water (NADW), which is formed with an initial high δ¹³C value flows southwards to the Southern Ocean and then to the Pacific. Such a circulation may therefore affect the deep ocean δ¹³C values on a worldwide scale (Raymo et al., 1990, 1997). Consequently, the coupling between the summer monsoon proxy and the world ocean δ¹³C records may be explained in three possible ways: (1) Continental land biomass significantly increased during the periods when the summer monsoon was particularly strengthened; (2) Enhanced weathering and runoff caused by strengthened summer monsoon can supply a high silica flux to the oceans, which in turn leads to high organic/inorganic ratios and finally leads to a high δ¹³C value (Wang et al., 2004); and/or (3) the strengthened summer monsoon is coupled with a stronger rate of formation of NADW. Although data do not show exceptional
strengthening of NADW at MIS-13 (e.g. Fig. 5d in Raymo et al., 1990), we can not
definitely reject this suggestion trying to explain the cool MIS-13 recorded in EPICA ice
core through the so-called “see-saw” argument (Stocker and Johnsen, 2003): stronger
NADW would indeed bring more heat from the equator and the Southern Hemisphere
to the Northern Hemisphere, leading to a cooler Southern Hemisphere and a warmer
Northern Hemisphere, which would possibly lead to stronger monsoon.

Is such an intense EASM related to the long term variations of the energy that the
Earth is receiving from the Sun? Prell and Kutzbach (1987) showed that paleoclimatic
records adjacent to India and Africa over the last 150,000 years displayed four monsoon
maxima which occurred during interglacial conditions and coincided with summer sol-
stice at perihelion and with maxima of Northern Hemisphere summer radiation. From
general circulation model experiments, they concluded that under interglacial condi-
tions, increased Northern Hemisphere incoming solar radiation (or insolation) produces
a strong monsoon because of a larger land-ocean pressure gradient, stronger winds
and greater precipitation. In addition for MIS-1 and 5e, such insolation maxima also
occur around the peaks of MIS-11, 13 and 15. For example, 60° N June insolation is
46, 66, 41, 50 and 58 W m\(^{-2}\) above the present-day value of 476 W m\(^{-2}\) (Berger, 1978),
respectively 11, 128, 410, 505 and 600 kyr ago. However, as MIS-13 receives less inso-
lation, is more glaciated but has a monsoon stronger than MIS-5e, it is not obvious that
a high insolation can alone explain the strong monsoon there. There are indeed two
competing factors coming into play, insolation and ice sheets. On one hand, mollusk
assemblages in the Chinese Loess Plateau reflect a strengthened summer monsoon
during the glacials MIS-10 and 12 (Wu et al., 2007), and some modeling experiments
show that the glacial conditions do not prevent high insolation to generate an increased
monsoon activity during MIS-6.5 (175 kyr BP) (Masson et al., 2000). On another hand,
observations and modeling studies have shown that a large Eurasian snow cover would
have, for present day, a negative impact on monsoon strength (Barnett et al., 1989;
Vernekar et al., 1995), and an increased high latitudes glacial ice cover (11 and 18 kyr
BP) reduces summer monsoon over South Asia (Prell and Kutzbach, 1987; DeMenno-
This duality makes the problem definitely more complex, but does not mean that we can exclude the possibility that ice sheets might partly solve this seeming paradox of having a strong monsoon during a cool interglacial. Another possibility might be related to Asian orography (mainly the Tibetan Plateau) which seems to play an important role on Asian monsoon (Kutzbach et al., 1989; DeMenocal and Rind, 1993).

This apparently global cool (more ice) MIS-13 interglacial accompanied by a very strong EASM in China and other extreme events over the world was quite unexpected. More data must be found at the regional scale to see whether or not such a much less warm interglacial and extreme warm and wet events are also observed locally. Moreover, climate model experiments must be made to test whether such strong monsoon in East Asia can exist during a cool interglacial and if yes, why.

Acknowledgements. Q. Z. Yin thanks EGU for the Keith Runcorn Travel Award for Non-Europeans which allowed her to deliver an oral presentation at the General Assembly 2006 and the Belgium FNRS (Fonds National belge de la Recherche Scientifique) for a “Bourse de séjour scientifique” as a visiting researcher at Université catholique de Louvain in Louvain-la-Neuve. A. Berger is thanked for his valuable discussions and comments.

References

Strong summer monsoon during the cool MIS-13

Q. Z. Yin and Z. T. Guo
Strong summer monsoon during the cool MIS-13

Q. Z. Yin and Z. T. Guo

Strong summer monsoon during the cool MIS-13

Q. Z. Yin and Z. T. Guo

Fig. 1. Comparison of the loess weathering intensity as reflected by the stacked FeD/FeT ratio with marine benthic δ^{18}O and Antarctic deuterium temperature records. Upper panel: the benthic δ^{18}O stack (Lisiecki and Raymo, 2005), middle panel: EPICA Dome C ice core temperature anomaly (Jouzel et al., 2007) and lower panel: the stacked FeD/FeT ratio of the loess in northern China (Guo et al., 2000).
Fig. 2. The map indicates the main sites (black dots, referred in this paper) in China where extremely strong East Asian summer monsoon during MIS-13 is recorded. These are listed below from north to south: Jiaodao (35.9° N, 109.4° E), Luochuan (35.75° N, 109.42° E), Xifeng (35.63° N, 107.42° E), Changwu (35.2° N, 107.7° E), Chaona (35.12° N, 107.2° E), Lingtai (35.07° N, 107.65° E), Weinan (34.33° N, 109.48° E), Lantian (34.12° N, 109.17° E), RH core (33.9° N, 102.53° E), Xuancheng (30.9° N, 118.85° E) and Bose (23.77° N, 106.7° E).