Interactive comment on “Laurentide Ice Sheet basal temperatures at the Last Glacial Cycle as inferred from borehole data” by C. Pickler et al.

C. Pickler et al.

hugo@stfx.ca

Received and published: 25 September 2015

Response to comments by reviewer VM Hamza

We appreciate the time spent by the reviewer to prepare this lengthy discussion and we welcome the opportunity to clarify some points that may be unclear to those unfamiliar with heat flow measurements and inversion of borehole temperature profiles.

The reviewer made the following comments:

1) Transient signals identified in the thermal profiles of shallow and deep-seated sections. It is curious that such high frequency variations in vertical heat flow are present mainly in the depth intervals where post-glacial warming trends are absent. Such fluctuations in heat flow are unlikely to have sound physical basis. These appear to be artifacts arising from erroneous procedures employed in obtaining first order estimates.

The heat flux profiles are calculated continuously by determining the temperature gradient of the measured temperature-depth profile and multiplying it with the respective thermal conductivity. This is a common and non erroneous procedure to determine heat flux (e.g., Beck and Judge, 1969; Jaupart and Mareschal, 2010). Some noise in the temperature profile is due to minor changes in lithology. It is well known that noise is amplified in the derivative of the temperature field, thus resulting in such spikes in the heat flux profile without smoothing. Repeat measurements at Sept-Iles (Mareschal et al., 1999) have shown that these temperature fluctuations are consistent between measurements taken at several years interval, i.e. they are not caused by errors. The reviewer points out that the fluctuations are larger in the lowermost part of the profile and therefore could not be due to ground surface temperature variations. No one who understands heat diffusion would ever claim that these spikes could in any way be related to climate. However, there is a reason why the lowermost part of these profiles is noisy. The boreholes are mining exploration holes that reach exploration targets in their lowermost part. These targets are always associated with important variations in lithology, hence, variations in conductivity and fluctuations in the temperature gradient. This is the case in Pipe Mine, Owl, and Balmertown. Sept-Iles is a layered intrusion, with more variations in lithology near the bottom. The observation of the reviewer that there are fluctuations in temperature gradient at the base of the
holes is indeed correct, but there is nothing unusual about it. Our results are
typical and resemble those present in other publications (e.g., Clauser et al.,
1997; Mottaghy et al., 2005; Demezhko et al., 2013).

2) Estimates of ground surface temperature (GST) histories derived using
inversion techniques also seem to be incorrect. Consider for example the
GST history reported for Flin Flon (Manitoba). It indicates temperatures less
than 2°C for the period of last glacial maximum (around 10000 to 20000 years
BP), which is followed by temperatures in excess of 6°C at times greater than
approximately 50000 years BP (see upper panel in Figure 4 of the discussion
paper). Such high temperatures are in sharp contrast with values of 0 to 1°C
reported for two nearby sites (Pipe and Owl) in Manitoba (see lower panels in
Figure 4 of the discussion paper).

Although Thompson and Flin-Flon are both in Manitoba, these towns are
350 km apart with significantly different ground surface temperature conditions
at present. Ground surface temperature is near freezing at Thompson and
≈4°C at FlinFlon. This difference is noted in our Table 2 that shows that the
reference ground surface temperature is 3-4°C higher at Flin Flon than in
Thompson. With present temperature near freezing at Thompson, it is not
surprising that the GSTH does not indicate much variations if temperatures
were not much below freezing point during the LGM.

3) In addition, unpublished results of inversions (carried out using the same
primary data set for Flin Flon) indicate GST less than 1°C for the time interval
of 20000 to 100000 years and values of about 3°C for the time interval of
200000 to 1000000 years. A comparison of the two inversion results for Flin
Flon is presented in Figure (2).

The reviewer compares our inversion results with results obtained with a
different algorithm the source of which is not specified. (We assume that it
is the functional space inversion of Shen and Beck (1991)). We note that we
inverted the 3,000m temperature profile for a GST covering 100,000 years
while the reviewer's inversion covers 1,000,000 years. This difference in time
scales invalidates any possible comparison between the two results. A second
point is that it is impossible to resolve a 1My GST from a 3000m profile as
the reviewer has tried. Considering the differences, one could wonder why
the two GSTH are not extremely different. As a matter of fact, the range of
temperatures in the two inversions is the same but the timing of the of the
minima maxima is different which is not surprising in view of the different
periods involved. Our GST history reconstruction for Flin Flon is consistent
with the findings of Sass et al. (1971) that the Last Glacial Maximum surface
temperature could not have been more than 5 K colder than present.

4) The SVD code used in the discussion paper does not make use of smoothing
constraints. That works fine when the GSTH is divided into steps of equal
time duration. However, when dealing with GSTH of over 100,000 years, it
becomes necessary to use steps of unequal duration. This is when a smoothing
constraint, which requires the GSTH to become increasingly smoother into the
past, becomes essential. I suspect that the lack of smoothing is probably the
cause of poor result obtained for Flin Flon. In this context, it is convenient for
the authors of the discussion paper to verify the computational procedures and
data set used in the inversion program.

The reviewer is mistaken. It is obvious from the figure that the GSTH is
not divided in steps of equal duration since the time scale is logarithmic. Concerning smoothing, the singular value decomposition smoothes the solution by using a singular value cutoff which in practical terms filters out the high frequency part of the solution or by damping progressively the part of the solution corresponding to small singular values (Mareschal and Beltrami, 1992; Clauser and Mareschal, 1995). If SVD did not smooth out efficiently high frequency noise, the spikes noted by the reviewer in the heat flow profile, would be included and cause non-physical oscillations in the GSTH. Incidentally, this method has been thoroughly tested, compared with other methods, validated, and used many times (e.g., Shen et al., 1992; Beck et al., 1992).

5) Table 3 is not referred to in the text. Missing references: Fahnestock et al., 2001; Pritchard et al., 2012.

The reviewer is correct. These corrections will be made.

References


