The Biogeophysical Climatic Impacts of Anthropogenic

Land Use Change during the Holocene

M. Clare Smith1, Joy S. Singarayer1, Paul J. Valdes2, J. Ed O. Kaplan3, Nicholas P. Branch4

1 Centre for Past Climate Change and Department of Meteorology, University of Reading, Reading, United Kingdom
2 School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
3 Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
4 School of Archaeology, Geography and Environmental Science, University of Reading, Reading, United Kingdom

Correspondence to: M. Clare Smith (mcsmith@pgr.reading.ac.uk)

Abstract

The first agricultural societies were established around 10kaBP and had spread across much of Europe and southern Asia by 5.5kaBP with resultant anthropogenic deforestation for crop and pasture land. Various studies (e.g. Joos et al., 2004, Kaplan et al., 2011, Mitchell et al., 2013) have attempted to assess the biogeochemical implications for Holocene climate in terms of increased carbon dioxide and methane emissions. However, less work has been done to examine the biogeophysical impacts of this early land use change. In this study, global climate model simulations with HadCM3 were used to examine the biogeophysical effects of Holocene land cover change on climate, both globally and regionally, from the early Holocene (8 kaBP) to the early industrial era (1850 CE).

Two experiments were performed with alternative descriptions of past vegetation: (i) potential natural vegetation simulated by TRIFFID but no land-use changes, and (ii) where the anthropogenic land use model, KK10 (Kaplan et al., 2009, 2011) has been used to set the HadCM3 crop regions. Snapshot simulations have been run at 1000 year intervals to examine...
when the first signature of anthropogenic climate change can be detected both regionally, in
the areas of land use change, and globally. Results from our model simulations indicate that in
regions of early land disturbance such as Europe and S.E. Asia detectable temperature
changes, outside the normal range of variability, are encountered in the model as early as
7kaBP in the June/July/August (JJA) season and throughout the entire annual cycle by 2-
3kaBP. Areas outside the regions of land disturbance are also affected, with virtually the
whole globe experiencing significant temperature changes (predominantly cooling) by the
early industrial period. The global annual mean temperature anomalies were found to be
-0.22°C at 1850 CE, -0.11°C at 2kaBP and -0.03°C at 7kaBP. Regionally, the largest
temperature changes were in Europe with anomalies of -0.83°C at 1850 CE, -0.58°C at 2kaBP
and -0.24°C at 7kaBP. Large-scale precipitation features such as the Indian monsoon, the
intertropical convergence zone (ITCZ), and the North Atlantic storm track are also impacted
by local land use and remote teleconnections. We investigated how advection by surface
winds, mean sea level pressure (MSLP) anomalies, and tropospheric stationary wave train
disturbances in the mid- to high-latitudes led to remote teleconnections.

1 Introduction

The first agricultural societies were established in the Near East around 10kaBP and had
spread across most of Europe by 5.7kaBP (Zohary et al., 2012) and to India by 9kaBP
(Tauger, 2013). In China domestication of millet and rice began about 8.5 kaBP initially
spreading more slowly than in Europe but reaching S.E. Asia by 5.5kaBP (Roberts, 2013;
Tauger, 2013). Agriculture was also independently developed in Mesoamerica with maize
possibly being cultivated as far back as 9kaBP (Piperno et al., 2009) but, as in China, it spread
slowly to other areas.

The most important anthropogenic alteration of the natural environment was the clearing of
forests to establish cropland and pasture, and the exploitation of forests for fuel and
construction materials (Darby, 1956). This long history of anthropogenic land use—cover
change (ALCC) has implications for regional hydrology and climate, and possibly for global
climate. Deforestation results in both biogeochemical and biogeophysical changes. The
biogeochemical changes tend to increase temperature by the emission of greenhouse gases
such as CO₂ and CH₄ (CH₄ emissions are influenced not just directly by deforestation but by
irrigation in rice agriculture and by emissions from livestock and humans). The impacts of
biogeophysical changes are many and varied, being dependent on the local climate, soil, and
the natural vegetation that is being replaced, e.g. if natural savannah or grassland is replaced
by crops the impact will not be as great as if woodland is replaced.

There are several mechanisms by which biogeophysical changes due to deforestation can
affect regional climate. A combination of reduction in aerodynamic roughness, in the root
extraction of moisture and in the capture of precipitation on the canopy leads to reduced
evaporation and thus decreases the fluxes of moisture and latent heat from the surface to the
atmosphere. These changes work to increase the local surface temperature (Lean and
Rowntree, 1993). Conversely, the increase in surface albedo due to deforestation acts to
decrease surface temperature by increasing the reflection of shortwave radiation. This is
particularly true at high latitudes where lying snow is a factor for some of the year and the
snow covered ground is no longer masked by the canopy of the forest. Generally, in mid to
high latitudes the albedo increase is considered to be the dominant effect; leading to a net
cooling of the regional surface temperature, whereas in the moist tropics the evaporation is
more important and, therefore, a localised overall warming may result (Betts et al., 2006).

During the Holocene the climate has been influenced by natural forcings. Orbital variations
have caused a decline in summer solar insolation in the Northern Hemisphere over the last
6000 years. During the same period concentrations of greenhouse gases such as CO2 and
CH4 have been increasing. On decadal to centennial timescales fluctuations in solar and
volcanic activity have also had a climatic impact. (Wanner et al., 2008; Schmidt et al., 2011)
The impact of ALCC is superimposed on these natural forcings. The extent and timing of
these early anthropogenic land surface changes is the subject of much debate, as is their role
in changing Holocene climate. Ruddiman (2003) proposed the idea that anthropogenic
impacts on greenhouse gases, and consequently climate change, began thousands of years ago
as a consequence of early agriculture and have been increasing in amplitude ever since, which
he termed ‘the early anthropogenic hypothesis’. The idea has been hotly debated in the
literature (e.g. Broecker and Stocker, 2006; Joos et al., 2004; Singarayer et al., 2011; Mitchell
et al., 2013; Kaplan et al., 2011). Whilst the early anthropogenic hypothesis may likely not
account entirely for the pre-industrial rises in CO2 and CH4 there is no doubt that land use
changes do have climatic impact on both regional and global scales. The real debate is the
scale of these effects of early agriculture.
Whilst paleoecological and archaeological evidence of anthropogenic land use changes exists, there are not enough sites to comprehensively determine continental scale impacts of deforestation (Kaplan, 2009). Therefore, in order to better estimate impacts of anthropogenic land use, several databases of land use change have been developed. Examples of these include the HYDE 3.1 (History Database of the Global Environment, Goldewijk et al., 2011), KK10 (Kaplan et al., 2009 and 2011) and Pongratz et al. (2008) models. Although the methodologies differ in the details, the basic premise of these models is that from an estimated database of historical population trends, anthropogenic deforestation is calculated based on population density and the suitability of land for crops or pasture.

To quantify the impact of ALCC on climate, datasets of past ALCC can be used in conjunction with climate models. Several studies have estimated the influence of pre-industrial ALCC on global climate (He et al., 2014; Kutzbach, 2011; Pongratz et al., 2010). Globally, the biogeophysical effects of anthropogenic land use change have been estimated to cause a slight cooling that is offset by the biogeochemical warming, giving a net global warming (He et al., 2014; Pongratz et al., 2010). At the local to regional scale, in the most intensively altered landscapes of Europe, Asia, and North America, the biogeophysical effects can be comparable with the biogeochemical (He et al., 2014; Pongratz et al., 2010). In addition, Strandberg et al. (2014) used a regional climate model to evaluate the climatic effect of anthropogenic deforestation in Europe at 6kaBP and 0.2kaBP with both the HYDE 3.1 and KK10 ALCC scenarios. For the KK10 scenario at 6kaBP small but significant temperature differences were found in summer and, at 0.2kaBP, changes up to ±1 °C were found over widespread areas in both summer and winter. Other authors (e.g. Oglesby et al., 2010; Cook et al., 2012) have modelled a decrease in precipitation in response to deforestation in Mesoamerica.

These existing studies are, however, limited in either temporal or spatial extent and do not address the question of when anthropogenically induced climate change first occurs. In this study global climate model simulations are used to provide a comprehensive evaluation of the influence that the biogeophysical effects of regional human-induced land cover change have had on the climate both globally and regionally throughout much of the Holocene. As described in detail in Sect. 2, the period under consideration is from 8kaBP to pre-industrial (1850) and snapshot simulations with HadCM3 were run at 1000-year intervals. The results are highlighted in Sect. 3. For evaluation purposes palaeoclimate reconstructions from
Bartlein et al. (2011) and Marcott et al. (2013) have been compared with the results from the model runs (Sect. 4). The implications are discussed in Sect. 5.

2 Methodology

2.1 Model Description

The climate simulations in this study were performed with the UK Hadley Centre coupled global climate model, HadCM3 (Gordon et al., 2000; Pope et al., 2000) with the Met Office Surface Exchange Scheme (MOSES2.1) (Essery, 2003) and TRIFFID (Top-down Representation of Interactive Foliage and Flora Including Dynamics) (Cox, 2001) dynamic vegetation. The experimental set-up is summarised in Table 1.

HadCM3, is a coupled atmospheric, ocean and sea ice model. The atmospheric component has a horizontal resolution of 2.5° latitude and 3.75° longitude with 19 unequally spaced levels in the vertical and a 30 minute time step. It has an Eulerian advection scheme and includes effects of CO₂, N₂O, CH₄, CFC11 and CFC12. The spatial resolution over the ocean is 1.25° by 1.25° with 20 unequally spaced layers extending to a depth of 5,200m. It also includes a 1.25° by 1.25° resolution model for the formation of sea-ice with simple dynamics whereby the sea-ice drifts on the ocean currents (Cattle and Crossley 1995).

TRIFFID is coupled to the GCM (General Circulation Model) via MOSES every 10 days of the model run. Within TRIFFID nine surface types are specified: 5 plant functional types (PFTs) and 4 non-vegetation types.

HadCM3 was widely used in both the third and fourth assessment reports of the Intergovernmental Panel on Climate Change (IPCC, 2001, 2007) and still performs well in a number of tests relative to other global GCMs (Covey et al., 2003; IPCC, 2007). For the fifth IPCC assessment it has been superseded by HadGEM2 (Collins et al., 2011), but being relatively computationally efficient HadCM3 can be the better choice for some palaeoclimate modelling applications as it allows more and/or longer runs to be conducted than would be possible with a higher-resolution model.
2.2 Project-Specific Model Configuration

The version of HadCM3 used does not include interactive ice, carbon cycle, or methane and thus must be forced with prescribed changes in orbit, greenhouse gases and ice-sheet evolution. Orbital parameters are taken from Berger and Loutre (1991), atmospheric concentrations of gases are determined from ice cores (CO\textsubscript{2} from Vostok (Petit et al., 1999; Loulergue et al., 2008) and CH\textsubscript{4} and N\textsubscript{2}O from EPICA (Spahni et al., 2005)) and the ice-sheet evolution is estimated using the ICE5G model of Peltier (2004). For further details of these natural forcings of the climate model readers are referred to Singarayer et al. (2011).

To prescribe Holocene ALCC the KK10 dataset of Kaplan et al. (2009 and 2011) was used. The original dataset is on a 5\textdegree spatial resolution and has modelled crop and pasture land use for every year from 8 kaBP to present. For this study the data at 1000-year intervals were taken (8kaBP, 7kaBP, etc.) for both crop and pasture combined and upscaled to the spatial resolution of HadCM3 to formulate a time series of cropland masks (Fig. 1). Within TRIFFID the global crop area is designated by a cropland mask, which can only be occupied by agricultural-type vegetation (i.e. C\textsubscript{3} and C\textsubscript{4} grasses) or bare soil (Betts et al., 2007). Hence, the actual cropland is equivalent to the mask area, less inland water, urban and ice tiles, and less the area covered by non-grassland vegetation or bare soil. The crop mask area is not dynamically updated by climate data. The cropland area incorporates the natural C\textsubscript{3}/C\textsubscript{4} grass fractional areas before converting tree fractions.

For each simulation, the boundary condition forcings (orbit, greenhouse gases and ice sheets) were specified, and in all simulations the initial conditions were the same, based on a spun-up early industrial simulation. Simulations were run for 1000 years. By the final 500 years of the simulation the climate system has adjusted to a new surface equilibrium and thus these final 500 years were averaged to result in the mean altered climatic conditions. The relatively long averaging period increases the signal-to-noise ratio between the modified and control climates, and thus distinguishes differences that are statistically significant, but which can be hidden by decadal/multidecadal variability in shorter averaging periods. This is especially important for assessing the impact of agriculture in the earlier time slices of the Holocene when the land use change is small and localised.
3 Results

3.1 Surface Air Temperature

3.1.1 Local Impacts of Land Use

In the regions where ALCC was significant, surface air temperature changes can be seen in all
the time slice simulations (Figs. 2, 3 and 4) and for all time slices except 8kaBP (not shown)
the temperature anomalies in most regions are outside the normal range of variability, which
is considered to be within 2 standard deviations of the mean. The anomalies are more
pronounced in the JJA season (Fig. 2) than DJF (Fig. 3). This is due to a combination of the
land imbalance between the northern and southern hemispheres, the lack of land surface
changes in the extra tropical southern hemisphere and the enhanced effect of land surface
changes during the season of greatest solar insolation and plant growth (which is JJA in the
northern hemisphere).

The direct temperature response to ALCC varies with the degree of latitude but the
relationship is not straightforward as it depends on local climate, soil, and the natural
vegetation. In the extratropics, where the albedo effect is generally dominant, there is a trend
towards increasing (negative) anomalies with an increase in disturbance fraction (Fig. 4a-5a
for P.I.). At 7kaBP the range of extra tropical temperature anomalies within the areas of land
disturbance is +0.1/-1.2°C (JJA) and +0.6/-0.5°C (DJF), by 4kaBP it has increased to +0.4/-
2°C (JJA) and +0.9/-1°C (DJF) and by the pre-industrial period (PI; 1850) it had reached
+0.7/-4°C (JJA) and +0.3/-2°C (DJF). Although there are some positive temperature
anomalies, the vast majority of grid points show a negative temperature trend. Regions with
the highest ALCC intensity show the largest negative temperature anomalies, in particular
Europe and E. Asia/China, where the agricultural land use occurs earliest and has the highest
concentration of land conversion (Figs. 2, 3, 4 and 5a).

The tropical response shows less of a trend because the impact of reduced evaporation is more
significant and thus there are conflicting signals between the cooling effect of increased
albedo and the warming effect of reduced evaporation. In some tropical areas ALCC leads to
net cooling while in other areas net warming is simulated(Figs. 2, 3, 4 and 5a), partly
dependent on the availability of moisture at the surface and partly on cloud cover changes
(not shown). The main areas that show a warm anomaly response are Southern Africa and
India in JJA from 5kaBP and in DJF the area bordering the Bay of Bengal where E. India is
warmer from 6kaBP extending to the east coast of the Bay of Bengal by 2kaBP. The Indian JJA warming is enhanced by cloud feedbacks; a decrease in monsoon circulation leads to decreased cloudiness, thus increasing the shortwave radiation reaching the surface and warming the lower atmosphere. In contrast, tropical South America generally shows a net cooling in response to ALCC. Around the mid to late Holocene the tropical temperature anomaly range within the areas of land disturbance is ±0.5°C and by the early industrial era (1850CE) it had reached ±1°C (Fig. 45a).

Analysis of the standard deviation of both the KK10 and Control simulations indicated no significant changes in the amplitude of interannual variability of surface temperature or precipitation (using the F-test statistic).

3.1.2 Remote Impacts of Land Use

In addition to the local temperature changes described above, cooling can also be observed in regions remote from the areas of major ALCC, particularly in the Northern Hemisphere. The most intense cooling is always in the regions of ALCC but even as early as 7kaBP in the JJA season our model simulations show a band of cooling that stretches across much of the extra-tropical Northern Hemisphere and the North Atlantic (Fig. 2). This cooling starts influencing the northern Pacific regions by 5kaBP and by the early industrial era the surface air temperature over most of the world's land masses and much of the ocean is cooler due to the effects of ALCC in remote areas.

In the DJF season in the Northern Hemisphere ALCC leads to cooling both locally and regionally starting at 7kaBP (Fig. 3). The model simulations also show cooling in the Arctic and warming in Siberia. Cooling remote from the areas of major ALCC becomes more extensive by 3kaBP and most landmasses of the Northern Hemisphere are cooler than the control simulation by 2kaBP. The Siberian warm anomaly has ceased by 3kaBP but it remains less affected by the cooling than other regions. In the Southern Hemisphere, cooling remains more localised until 2kaBP by which time the majority of the land surface is cooler than the control.

There is an increased temperature anomaly response for the same level of disturbance fraction in the later timeslices (Fig. 4b3b) implying that the responses to the land use changes are not just due to the local effects. Some possible mechanisms for these remote impacts are large-scale circulation changes (such as stationary waves in the upper troposphere at mid-high
latitudes and monsoonal circulation changes), near-surface advection, and the amplifying factors of snow cover. These mechanisms will be discussed in more detail in Sect. 3.2 for atmospheric dynamics and Sect. 3.3.2 for snow cover changes. Changes to the natural vegetation cover (outside the regions of land use) due to the climatic impacts of land use were also investigated as a potential mechanism of further feedbacks but were not found to be significant.

3.2 Atmospheric Dynamics

3.2.1 Upper Tropospheric Dynamics

 Cooler surface air temperature means that the density of the air is greater and, therefore, the geopotential height in cooler regions will be lower (See Fig. 67c and d). In the JJA season from 7kaBP there is a reduction of the 500hPa geopotential height over the extra-tropical Northern Hemisphere in a pattern similar to the temperature pattern but more extensive, completely encircling the globe. From 3kaBP onwards the height reduction expands southwards so the geopotential height is lowered almost everywhere by pre-industrial times. The most intense reduction is always in a zonal belt across Europe and E. Asia. The Southern Hemisphere response from 5kaBP appears to show a standing wave pattern affecting the subtropical highs.

In the DJF season a stationary wave in the anomaly field in both the Northern and Southern Hemispheres is apparent at all timeslices but most pronounced at 4kaBP (Fig. 67d). This is a recognised response to surface temperature anomalies as described in Hoskins and Karoly (1981) although, in this case, there are multiple thermal anomalies caused by ALCC. By 2kaBP there is a reduction in 500hPa geopotential height over most of the globe. Note that there are several areas that are not statistically significant in Fig. 67c and d implying a large amount of variability. These geopotential height changes contribute to the simulated remote temperature changes by altering the regions of vorticity, which in turn influence the regions of ascent and descent and thus the surface climatic conditions. The geopotential height anomalies can also alter the pattern of the upper level winds thus influencing surface storm tracks.

In particular, the positioning of the geopotential height anomalies in the earlier timeslices (up to 4kaBP, Fig. 67d) indicate an increased tendency towards a positive Tropical/ Northern Hemisphere (TNH) pattern (Barnston et al.,
with above average heights over the Bering Strait/ Gulf of Alaska and northeastward of the Gulf of Mexico and below average heights over eastern Canada. This would be expected to cause cooler temperatures over the continental United States by increasing the transport of cold polar air into the United States. In several time slices it can be seen that DJF temperature anomalies over Bering Strait/Alaska (e.g. Fig. 3) show a warming pattern where there are positive geopotential height anomalies in Fig. 6c and d. The DJF temperature anomalies (warming) over Siberia up to 4ka (Fig. 3) also relate to the stationary wave pattern. The decreased heights over the polar regions in most of the time slices are indicative of a positive Arctic Oscillation (AO) (Fig. 6b) which has been shown to be correlated with milder winters in Siberia (Tubi and Dayan, 2012).

The unequal latitudinal distribution of the temperature anomalies, with the regions of greatest cooling in the mid-latitudes of the Northern Hemisphere, affects the meridional temperature gradient leading to a change in baroclinicity, which has been shown to impact storm tracks (Yin, 2005).

3.2.2 Mean Sea Level Pressure

3.2.2 Surface Advection

Some of the cooling in regions remote from the areas of land disturbance is due to advection by low level winds. In regions with a prevailing wind direction an advection pattern can be clearly seen. Fig. 5 shows advection of cold air from the areas of land use change in East Asia to the east across the West Pacific and from the region of land disturbance in Mexico to the west across the East Pacific; this also affects the sea surface temperatures (SSTs) in those regions of the Pacific (not shown). In other areas where the surface wind direction is more variable the effect is more difficult to detect but probably does contribute to the spread of the cold anomaly outward from the region of land disturbance.

3.2.3 Mean Sea Level Pressure

Changes to Mean Sea Level Pressure (MSLP) can also have an effect on the climate system. The colder surface air temperature in the region of disturbance means reduced ascent in those regions and thus higher MSLP. This can be seen quite clearly in China from 6ka and
in Europe by 4kaBP (Fig. 5–6 for PI JJA), although the DJF situation in Europe is less coherent probably due to more remote influences such as the North Atlantic storm track. These MSLP changes could play a part in steering weather systems and thus influencing the climate in remote regions. For example, the JJA MSLP anomaly pattern (Fig. 6a–7a and b) over the North and Central Atlantic is indicative of a negative phase of the North Atlantic Oscillation (NAO) with above-normal pressure over the North Atlantic and below-normal pressure over the central Atlantic. This pattern is apparent from 5kaBP. The NAO alters the intensity and location of the North Atlantic jet stream and storm track and thus the patterns of heat and moisture transport (Hurrell, 1995). A negative NAO would contribute to a tendency to wetter summers in all but the southernmost regions of Europe (Folland et al., 2009) and this was seen in the results described in Sect. 3.3.1. The DJF NAO shows a trend towards a positive NAO which could result in drier winters over the Mediterranean region (Hurrell et al., 2003) but although it is difficult to ascertain whether this is the case as the pattern is not as consistent as JJA.

3.2.4.2.3 Surface Advection

Some of the cooling in regions remote from the areas of land disturbance is due to advection by low-level winds. In regions with a prevailing wind direction an advection pattern can be clearly seen. Fig. 56 shows advection of cold air from the areas of land use change in East Asia to the east across the West Pacific and from the region of land disturbance in Mexico to the west across the East Pacific, this also affects the sea surface temperatures (SSTs) in these regions of the Pacific (not shown). In other areas where the surface wind direction is more variable the effect is more difficult to detect but probably does contribute to the spread of the cold anomaly outward from the region of land disturbance.

3.2.5 Upper Tropospheric Dynamics

Cooler surface air temperature means that the density of the air is greater and, therefore, the geopotential height in cooler regions will be lower (See Fig. 6c and d). In the JJA season from 7kaBP there is a reduction of the 500hPa geopotential height over the extra-tropical Northern Hemisphere in a pattern similar to the temperature pattern but more extensive, completely encircling the globe. From 3kaBP onwards the height reduction expands southwards so the geopotential height is lowered almost everywhere by pre-industrial times. The most intense
reduction is always in a zonal belt across Europe & E. Asia. The Southern Hemisphere
response from 5kaBP appears to show a standing wave pattern affecting the sub-tropical highs.
In the DJF season a stationary wave in the anomaly field in both the Northern and Southern
Hemispheres is apparent at all timeslices but most pronounced at 4kaBP (Fig. 6d). This is a
recognised response to surface temperature anomalies as described in Hoskins and Karoly
(1981) although, in this case, there are multiple thermal anomalies caused by ALCC. By
2kaBP there is a reduction in 500hPa geopotential height over most of the globe. Note that
there are several areas that are not statistically significant in Fig. 6c and d implying a large
amount of variability. These geopotential height changes contribute to the simulated remote
temperature changes by altering the region of meridional flux which in turn influence the regions of
ascent and descent and thus the surface climatic conditions. The geopotential height
anomalies can also alter the pattern of the upper-level winds thus influencing surface storm
tracks.

In particular, the positioning of the geopotential height anomalies in the earlier timeslices (up
to 4kaBP) (Fig. 6d) indicate an increased tendency towards a positive Tropical/ Northern
Hemisphere—(TNH)—pattern (http://www.cpc.ncep.noaa.gov/data/teledoc/tnh.shtml) with
above average heights over the Bering Strait/Gulf of Alaska and northeastern of the Gulf of
Mexico and below—average heights over eastern Canada. This would be expected to cause
cooler temperatures over the continental United States by increasing the transport of cold
polar air into the United States. In several time slices it can be seen that DJF temperature
anomalies over Bering Strait/Alaska (e.g. Fig. 3) show a warming pattern where there are
positive geopotential height anomalies in Fig. 6c and d. The DJF temperature anomalies
(warming) over Siberia up to 4ka (Fig. 3) also relate to the stationary wave pattern. The
decreased heights over the polar regions in most of the time slices are indicative of a positive
Arctic Oscillation (AO) (Fig. 6b) which has been shown to be correlated with milder winters
in Siberia (Tubi & Dayan, 2012).

3.3 Hydroclimate

Precipitation responses to ALCC (Fig. 7-8 for JJA and Fig. 8-9 for DJF) tend to be caused by
a response to large-scale circulation changes rather than being directly attributable to local
land use. The European precipitation response in the DJF season is not entirely consistent
throughout the time slices but the general response is a slight decrease in precipitation around the western and Mediterranean coasts with this dryness extending further into the continent by 1 kaBP. The simulations show that Europe in the JJA season has an increase in precipitation compared to the control from 7kaBP onwards, which gradually increases in extent, possibly influenced by the increased tendency to a negative North Atlantic Oscillation (NAO). Positive anomalies begin in the warm pool of the Gulf of Mexico and extend across the North Atlantic following the track of positive anomalies to the 850hPa wind field (Fig. 9). In addition, as the cooler temperature anomalies extend quite high in the troposphere over Europe this increases relative humidity throughout the low to mid troposphere (not shown) and thus the likelihood of large-scale precipitation.

In India there is a decrease in monsoon precipitation from 5kaBP, which then gradually increases in intensity. This is partly driven by the slightly cooler Indian sub-continent temperatures (Fig. 11) in the critical months for monsoon development and also by cooler temperatures in Europe and East Asia and increased snow cover on the Tibetan plateau. This leads to decreased monsoonal circulation and decreased cloudiness. There are also changes to the East Asian monsoon with wetter conditions to the north and south of the region and drier conditions in the centre. This pattern is seen reasonably consistently from 4kaBP onwards.

It should be noted that there are larger uncertainties in climate model simulated precipitation and other variables related to model dynamics than for temperature, which is primarily controlled by thermodynamics (Shepherd, 2014). Different climate models show a wide range of responses in their dynamics to palaeo and future climate change scenarios and we acknowledge that aspects of the precipitation anomaly patterns in this study may be less robust than that for other climate variables.

3.3.1 Inter Tropical Convergence Zone (ITCZ)

Analysis of the precipitation fields (Figs. 8-9 and 10) shows an overall southward migration of the ITCZ. These changes are most obvious in the Atlantic and Pacific Oceans and over the continent of Africa. In the DJF season there are changes to the ITCZ in the Western Pacific but a consistent pattern is not seen until 3ka when there is southward shift in the ITCZ over the Atlantic and Atlantic coasts leading by 2kaBP to a decrease in precipitation in the interior of southern Africa and wetter conditions on the coasts. There is generally increased
precipitation over the Indian Ocean and the Amazonian region of South America and a reduction over the Bay of Bengal but this pattern is not entirely consistent throughout the timeslices. Similarly, in the JJA season there are changes to the ITCZ throughout all the timeslices but these do not all show a consistent pattern. The most persistent changes are increased precipitation over the Pacific from 5kaBP, over Central America from 7kaBP and a southward shift from 2kaBP. This southward shift in the ITCZ in the JJA season impacts the West African monsoon with lower precipitation in a belt across the monsoon region by 2kaBP although the west coast of North Africa is wetter.

The generally cooler temperatures in the Northern Hemisphere may influence the latitudinal position of the Hadley cell and thus the location of the ITCZ via the influence on the inter-hemispheric temperature gradient resulting in the strengthening of the northward cross-equatorial energy transport (e.g. Kang et al., 2008). This shift south of the ITCZ to transport heat to the cooler northern hemisphere is seen in both the DJF and JJA seasons.

3.3.2 Snow Cover

Lower surface air temperatures in the ALCC scenario relative to the control lead to an increase in winter snow accumulation (Fig. 11). This increase is seen by 5kaBP mostly in northern and mountainous regions. The areas affected gradually increase so that by 3kaBP more temperate and lower lying areas see increases in snow depth. The effects are most pronounced in North America and Europe. In regions outside the areas of permanent snow cover increases in snow depth will delay the melting of the snow pack and thus result in a longer period of snow cover. The increased snow cover due to the cold temperature anomalies will cause additional cooling due to the increased albedo. This will be greatest in regions of deforestation where the snow-covered ground is no longer masked by the canopy of the forest. This increased snow cover would also lead to decreases in precipitation due to lower rates of moisture recycling over land.

4 Temporal Evolution of Holocene Climate

The inclusion of land use changes through the Holocene has a significant impact on the progression of global average temperatures, such as to alter the direction of the multi-millennial trend. In the control experiment the changes in orbital configuration, greenhouse gases (GHG), and icesheets/sea level lead to monotonically increasing global temperatures
through the Holocene (Fig. 42a13a). Analysis of previous experiments to assess the sensitivity
to different natural forcings (data from Singarayer and Valdes, 2010; Singarayer et al., 2011)
suggest that while the changes to orbital configuration effect a cooling in global temperature
over the Holocene, this is outweighed by increases in greenhouse gases (~17ppm CO₂ from
8kaBP to late pre-industrial time), which result in overall warming. Cooling through the
Holocene occurs in northern hemisphere summer, when forced with orbit and GHG
variations, but is not as pronounced as when only forced by orbital variations. In winter, when
HadCM3 is forced with orbit-only variation there is little change in temperature, but when
GHG increases are included this becomes a warming over the Holocene, which then
outweighs the reduced summer cooling. Whilst this contrasts with recent data compilations
that suggest a general decline in global temperatures since the mid-Holocene (Marcott et al.,
2013) it is within the range of other climate model responses when compared with the
Paleoclimate Model Intercomparison Project 3 (PMIP3) Mid-Holocene (MH) minus late Pre-
Industrial (PI) temperature anomalies. Although palaeodata syntheses may suggest a cooling
of northern hemisphere temperatures, there are regional and seasonal variations in the data
such as that from the Bartlein et al. (2013) (Fig. 14c) and Mauri et al (2015) data compilations.
In both these compilations and the combined proxy reconstructions of Wanner et al. (2008)
the cooling is most evident over the higher latitude northern hemisphere.

The inclusion of land use changes through the Holocene has a significant impact on the
progression of modelled global average temperatures, such as to alter the direction of the
multi-millennial trend described above. The increasing magnitude and spread of ALCC
through the Holocene reconstructed in KK10 counteracts the influence of increasing
 greenhouse gases, so that temperatures are effectively steady from 3kaBP in HadCM3 (Fig.
42a14a).

These global trends are composed of considerable heterogeneity at the regional scale. When
broken down into zonal regions it can be clearly seen that the difference in trends
with/without land use is greatest in the Northern extratropics (Fig. 42b13b), where the
Holocene trend is modified from increasing temperatures to decreasing temperatures in the
late Holocene by the addition of ALCC. There are impacts on mean temperatures in the
tropics (Fig. 42e13c) and southern extratropics (Fig. 42d13d) but not sufficient to influence
the direction of the Holocene trend.
Mid-Holocene (MH) minus late Pre-Industrial (PI) anomalies of annual mean surface air temperature (Fig. 13a14a) show near global distribution of cooling, except over high latitude sea-ice regions, which are particularly influenced by changes in obliquity (higher in the MH than PI). The PMIP3 suite of models show a similar pattern of surface air temperature anomalies. The cooling is most dramatic over the tropics and monsoonal regions, where changes in the seasonality of insolation (due to orbital precession variation) intensify monsoon circulation in the early and mid-Holocene and the resulting additional cloud cover reduces incoming shortwave radiation as well as increased surface water altering the balance of sensible to latent heat fluxes. The inclusion of land use change in the KK10 experiment reduces the magnitude of MH cooling, especially in the mid-latitudes. Over Europe and eastern North America the anomaly is reversed to a warming (i.e. over these regions the cooling from deforestation shown in Fig. 2, increases and outstrips the warming from greenhouse gases). These are also regions where there is the highest concentration of pollen reconstructions (Fig. 13e14c; Bartlein et al., 2011; Mauri et al., 2014). The influence of land use change improves the data-model comparison with the reconstruction by Bartlein et al. (2011) over these key areas (Fig. 13a14a-c). Likewise, when simulated top-level ocean temperatures are compared with SST data used within the Marcott et al. (2013) compilation, the inclusion of land use improves the data-model comparison (Fig. 13d14d and e). However, the largest MH warming in the model is in the summer months, whereas, recent seasonal temperature reconstructions (also using pollen; Mauri et al., 2014) suggest the largest and most widespread MH warming may have occurred in winter in the MH.

In contrast, using the KK10 ALCC scenario as a boundary condition to the climate model does not improve the agreement in annual mean MH - PI precipitation anomalies when compared to the palaeoclimate reconstruction of Bartlein et al. (2011) (Fig. 14f15). Model and data are in reasonable agreement in most regions except for Europe and the temperate regions of Asia where the data implies a wetter MH than PI, which is not seen in the model runs. The difference over Europe is exacerbated by the inclusion of land use, which results in a drier MH.

5 Discussion

Anthropogenic land cover change leads to climate change well beyond the core regions of land use early in the Holocene. These results suggest that regional ALCC has an effect on the
atmospheric circulation, e.g. the ITCZ shift is a remote response on global scale. The implications of this finding are that regional models or atmospheric-only models would not simulate these atmospheric circulation changes as well as a global coupled model. In this study we observed multiple thermal anomalies (from intense regions of cooling directly over anthropogenic land use change), but the standing wave response of the geopotential height field would likely also be seen even for a single thermal source from just one region (Hoskins and Karoly, 1981). A Regional models have the advantages of higher spatial resolution and more detailed orography but they may not include these potential remote atmospheric changes (e.g. Strandberg et al., 2014) and may possibly result in different impacts from the same land cover forcing for in regional and global model simulations. The positioning of the major temperature anomalies in the mid-latitudes and at similar latitudes may be particularly significant in producing the stationary wave pattern.

Whilst these are the results from only one model there are many similarities in the distribution of the temperature anomalies with those found by He et al. (2014) for 1850 CE and Pongratz et al. (2010) for the 20th century although the temperature changes found in this study were greater e.g. a pre-industrial global annual mean temperature anomaly of -0.23°C as opposed to the -0.17°C estimated by He et al. (2014). Running similar simulations with a greater number of models would improve the robustness of the results particularly with respect to hydroclimate due to the high uncertainties involved. The variability in the results from different models can be greater than the variability of the property that is being assessed (Pitman et al., 2009; de Noblet-Ducoudre et al., 2012; Brovkin et al., 2013). These inconsistencies have been attributed to disagreements in how land use change is implemented, the parameterisation of albedo, the representation of crop phenology and evapotranspiration and the partitioning of available energy between latent and sensible heat fluxes (Pitman et al., 2009; de Noblet-Ducoudre et al., 2012; Boisier et al., 2012). The albedo and turbulent heat fluxes from our model simulations for the North America/Eurasia region (Fig. 1) are within the range of other climate model responses when compared with those from the Land-Use and Climate, Identification of robust impacts (LUCID) set of experiments (Boisier, 2012). The negative turbulent and latent heat fluxes would offset some of the cooling due to the increased albedo. Although the largest albedo changes are in the DJF season the impact of this will be lessened the due to the lower levels of incoming solar radiation in this season. The results could be further improved by the running of transient simulations that could capture events such as the Maunder minimum. This was included in the 0.2kaBP simulations.
From late preindustrial era simulations, one using observed atmospheric greenhouse gas concentrations and the other using greenhouse gas concentrations in a world with no anthropogenic emissions (based on linear projection from earlier Holocene trends from Kutzbach et al., 2011), He et al. (2014) estimated a net global warming of 0.9°C due to the biogeochemical effects of ALCC, with between 0.5 and 1.5°C warming in the areas of most intense land use changes. Incorporating this degree of warming into our early industrial era (1850 CE) simulations there would still be a net cooling in Europe, E. Asia and N.E. America with, e.g., a net cooling of up to 2°C in parts of Europe. To put this in perspective the IPCC (IPCC WG II, 2014a) consider a temperature rise of more than 2°C to be undesirable and that changes of 1°C could have an impact on vulnerable ecosystems. However, the temperature changes in this study took place over a much longer period than the timeframe considered in the IPCC and ecosystems and human societies would have had more time to adapt. The consequences of these changes for agricultural societies would vary depending on the pre-existing conditions. For example, in drier regions, where crops are more likely to be water limited, cooler, wetter summer conditions may have been beneficial to the agricultural output although the risk of erosion would be increased. The generally lower temperatures might also make societies more vulnerable to further transient cooling effects such as volcanic activity.

There are discrepancies between simulations of the mid-Holocene climate and the independent data-based reconstructions. Both the simulations from this study and virtually all the PMIP3 (Palaeoclimate Model Intercomparison 3; https://pmip3.lsce.ipsl.fr) models show a temperature increase from the mid-Holocene to the PI whereas the Marcott et al. (2013) (and Mann et al. (2008) on a shorter timescale) reconstructions show a decrease. It is interesting to note that ALCC reduces this mismatch for HadCM3, especially in key areas such as Europe. Other factors that could lead to this discrepancy are uncertainties in the proxy reconstructions and deficiencies in climate models. These climate model deficiencies include low resolution and sensitivity and, importantly, their dependence on soil moisture whereby energy is utilised for evaporation rather than for temperature increase.
This study shows a significant increase in precipitation over Europe with increasing land use which means that the PI becomes wetter than the mid-Holocene, which leads to increases in soil moisture and changes in the sensible to latent heat flux balance and, in combination with increased albedo caused by deforestation, this results in cooler temperatures for PI than MH. If the land-atmosphere coupling strength was different and soil moisture was strongly reduced with deforestation it is likely that the cooling effect would be smaller (cf. Strandberg, 2014).

Further uncertainties arise from the robustness of the land use reconstructions, which is difficult to evaluate due to the lack of global-scale evidence for human impact on the Earth’s land surface. Much of the uncertainty comes from the lack of knowledge about the magnitude and distribution of the global human population and the rate of technological evolution and intensification through time. As part of our initial investigations simulations were also run using an alternative land use scenario (the HYDE 3.1 dataset; Goldewijk et al., 2011). The HYDE 3.1 reconstruction has substantially lower levels of land use early in the Holocene (as compared with KK10), which resulted in a later development of consistent temperature anomalies at 4kaBP (not shown) in comparison with the KK10 land use scenario. The decision was taken to proceed with the KK10 data due to its assumptions of a larger per capita land use earlier in the Holocene when agricultural methods were less efficient. Several ongoing international initiatives that aim to synthesise palaeoecological and archaeological data promise to lead to more robust reconstructions of Holocene ALCC in the future (e.g. PAGES LandCover6k project; http://www.pages-igbp.org/workinggroups/landcover6k/intro).

By the early industrial period simulated biogeophysical temperature changes in the regions of land disturbance are of the same order of magnitude (e.g. 0.83°C annual anomaly in the main agricultural areas of Europe) as the changes seen due to CO₂ increases during the industrial period (0.85°C, IPCC synthesis report, 2014b). Part of Ruddiman’s original hypothesis (Ruddiman, 2003) is that pre-industrial global warming caused by anthropogenic CO₂/CH₄ emissions should have been ~2 °C at higher latitudes, but there was no evidence for this warming. Ruddiman (2003) attributed this to a natural cooling trend caused by decreasing summer insolation. This study suggests that biogeophysical effects of the land use changes may also have played a part in counteracting the warming due to anthropogenic greenhouse gas emissions as acknowledged in Ruddiman (2013). The precipitation changes might also have an impact on the availability of water for rice irrigation and on natural wetlands thus affecting the production of methane.
6 Conclusions
In our global model simulations that use a Holocene ALCC scenario as a boundary condition, a surface temperature response to the biogeophysical effects of ALCC is seen in regions of early land use such as Europe and S.E. Asia as early as 7kaBP in the JJA season and throughout the entire annual cycle by 2-3kaBP. Areas outside the major regions of ALCC are also affected, with virtually the whole globe experiencing significant temperature changes with a net global cooling of $0.232\pm 0.22^\circ C$ by the pre-industrial period. Although the temperature changes are predominantly cooling some regions such as India, Southern Africa and Siberia show warming as a response to ALCC. The greatest changes are generally seen in the JJA season with a mean regional cooling of $1.4^\circ C$ experienced in Europe and $1^\circ C$ in E. Asia in the early industrial period (1850 CE). Much of the precipitation response to the land use tends to be due to large-scale circulation changes such as a decrease in the intensity of the Indian monsoon, the southward movement of the ITCZ and changes to the North Atlantic storm track. In Europe there is a slight decrease in precipitation in the DJF season and a more substantial increase in the JJA season. Some causal factors for the teleconnections are advection by surface winds, MSLP anomalies, and tropospheric stationary wave train disturbances in the mid- to high-latitudes.

The potential for an early global impact of ALCC on climate strongly implied by this study suggests that due consideration of this should be taken in simulations covering the Holocene. The inclusion of ALCC in the model improves the model comparison for surface air temperature with the data-driven palaeoclimate reconstructions especially in key areas such as Europe. The remote teleconnections seen in this study have implications for the regional modelling of land use change due to circulation changes that occur outside the domain of the regional model.

Overall, our model simulations indicate an increase in global surface air temperatures through the Holocene. Globally, the inclusion of ALCC data reduces the magnitude of this warming especially in the late Holocene when the temperatures remain relatively constant. Regionally, in the Northern extratropics, this warming is reversed in the late Holocene. It should be noted that in this study it is not possible to distinguish the anthropogenic component of the biogeochemical changes as the same atmospheric CO$_2$ and CH$_4$ concentrations (from ice core measurements) are prescribed for both the KK10 and control simulations. However, the level
of early industrial warming due to the biogeochemical impacts of ALCC predicted by He et al. (2014) would negate the early industrial biogeoophysical cooling seen in this study in all regions except for the most intensively altered landscapes of Europe, E. Asia and N.E. America.

Other caveats are the large uncertainties in the land use data and, therefore, in our understanding of the Holocene evolution of land surface-climate interactions as well as our ability to evaluate climate models. To reduce these uncertainties there is an urgent need to extend land cover reconstructions and prehistory of land use globally (cf. LandCover6k PAGES initiative).

Data Availability
Data is available from the Bristol Research Initiative for the Dynamic Global Environment website: http://www.bridge.bris.ac.uk/resources/simulations

Acknowledgements
MCS is supported by a University of Reading doctoral scholarship. MCS and JSS would like to thank Sandy Harrison and Beni Stocker for useful discussions on land cover reconstructions. JOK was supported by the European Research Council (313797 COEVOLVE)
References

2 Ruddiman, W. F.: The anthropogenic greenhouse era began thousands of years ago, Climatic
4 Ruddiman, W. F.: The early anthropogenic hypothesis: Challenges and responses, Rev.
8 Schmidt, G. A., Shindell, D. T., and Harder, S.: A note on the relationship between ice core
10 2004.
11 Shepherd, T. G.: Atmospheric circulation as a source of uncertainty in climate change
13 Singarayer, J. S., and Valdes, P. J.: High-latitude climate sensitivity to ice-sheet forcing over
15 Singarayer, J. S., Valdes, P. J., Friedlingstein, P., Nelson, S., and Beerling, D. J.: Late
16 Holocene methane rise caused by orbitally controlled increase in tropical sources, Nature,
17 470, 82-85. doi:10.1038/nature09739, 2011.
18 Spahni, R., Chappellaz, J., Stocker, T.F., Loulergue, L., Hausammann, G., Kawamura, K.,
20 methane and nitrous oxide of the late Pleistocene from Antarctic ice cores, Science, 310,
22 Strandberg, G., Kjellström, E., Poska, A., Wagner, S., Gaillard, M.J., Trondman, A.K., Mauri,
24 L., Kangur, M., van der Knaap, W.O. , Kokfelt, U., Kuneš, P., Latalowa, M., Marquier, L.,
26 simulations for Europe at 6 and 0.2 k BP: sensitivity to changes in anthropogenic
28 Tauger, M.B: Agriculture in world history, Routledge, 2013.
29 Tubi, A., and Dayan, U.: The Siberian high: Teleconnections, extremes and association with

<table>
<thead>
<tr>
<th>Component</th>
<th>Model Name</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCM</td>
<td>HadCM3</td>
<td>Coupled atmospheric, ocean and sea ice model</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>Horizontal</td>
<td>2.5° latitude and 3.75° longitude</td>
</tr>
<tr>
<td></td>
<td>Vertical</td>
<td>19 unequally spaced layers</td>
</tr>
<tr>
<td></td>
<td>Time Step</td>
<td>30 minutes</td>
</tr>
<tr>
<td></td>
<td>Advection Scheme</td>
<td>Eulerian</td>
</tr>
<tr>
<td></td>
<td>Chemistry</td>
<td>CO₂, N₂O, CH₄, CFC11 and CFC12</td>
</tr>
<tr>
<td>Ocean</td>
<td>Horizontal</td>
<td>1.25° by 1.25°</td>
</tr>
<tr>
<td></td>
<td>Vertical</td>
<td>20 unequally spaced layers extending to depth of 5200m</td>
</tr>
<tr>
<td>Ice</td>
<td>Horizontal</td>
<td>1.25° by 1.25°</td>
</tr>
<tr>
<td></td>
<td>Vertical</td>
<td></td>
</tr>
<tr>
<td>Land Surface Scheme</td>
<td>MOSES 2</td>
<td>Coupled to GCM every 10 days of model run</td>
</tr>
<tr>
<td>Dynamic Vegetation</td>
<td>TRIFFID</td>
<td>Nine surface types including 5 plant functional types</td>
</tr>
<tr>
<td>Boundary conditions</td>
<td>Orbit</td>
<td>(Berger and Loutre, 1991), greenhouse gases (from ice cores) and ice sheets (Peltier, 2004)</td>
</tr>
<tr>
<td>Initial Conditions</td>
<td>Based on a spun-up early industrial simulation</td>
<td></td>
</tr>
<tr>
<td>Simulations</td>
<td>KK10</td>
<td>Dynamic vegetation from TRIFFID with crop mask based on KK10 land use data set (Kaplan et al., 2009 and 2011)</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>Natural dynamic vegetation from TRIFFID</td>
</tr>
<tr>
<td>Simulation dates</td>
<td>8 kaBP, 7 kaBP, 6 kaBP, 5 kaBP, 4kaBP, 3kaBP, 2kaBP, 1kaBP, 1850CE</td>
<td></td>
</tr>
<tr>
<td>Length of simulations</td>
<td>8000 years</td>
<td></td>
</tr>
<tr>
<td>Averaging Period</td>
<td>500 years</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Summary of the experimental set-up.
Figure 1. Fraction of anthropogenically disturbed land at 1000 year intervals from the late pre-industrial (1850 CE) period to 7kaBP. The land disturbance data is based on the anthropogenic land-use scenario KK10 (Kaplan et al., 2009, 2011).
Figure 2. JJA Temperature Anomalies (°C) for KK10 minus Control at timeslices from the late pre-industrial period (1850 CE) to 7kaBP. The stippling indicates grid boxes where the anomalies are significant at the 95% level using Wilcoxon ranksum statistical analysis.
Figure 3. DJF Temperature Anomalies (°C) for KK10 minus Control at timeslices from the late pre-industrial period (1850 CE) to 7kaBP. The stippling indicates grid boxes where the anomalies are significant at the 95% level using Wilcoxon ranksum statistical analysis.
Figure 4. Annual Temperature Anomalies (°C) for KK10 minus Control at timeslices from the late pre-industrial period (1850 CE) to 7kaBP. The stippling indicates grid boxes where the anomalies are significant at the 95% level using Wilcoxon ranksum statistical analysis.
Figure 45. Relationship between the fraction of anthropogenically disturbed land (from KK10) and the resultant JJA temperature anomaly (°C). (a) For the late pre-industrial (1850 CE) period for extratropical and tropical grid cells. (b) For 7kaBP, 4kaBP, 2kaBP and late pre-industrial (1850 CE) timeslices.
Figure 6. DJF surface temperature anomalies for KK10 - Control and KK10 surface winds for the late pre-industrial (1850 CE) and 2kaBP.
Figure 76. Modifiers of climate in regions outside the areas of anthropogenic land use change. All anomalies are for KK10 - Control: (a) JJA MSLP changes at 1850 CE, the stippling indicates grid boxes where the anomalies are significant at the 95% level using Wilcoxon ranksum statistical analysis; (b) as (a) but for 4kaBP; (c) DJF 500Pa geopotential height anomalies at 1850 CE demonstrating stationary wave pattern. The stippling indicates grid boxes where the anomalies are significant at the 95% level using Wilcoxon ranksum statistical analysis. (d) as (c) but for 4kaBP.
Figure 8. JJA Precipitation Anomalies (mm day$^{-1}$) for KK10 minus Control at timeslices from the late pre-industrial period (1850 CE) to 7kaBP. The stippling indicates grid boxes where the anomalies are significant at the 95% level using Wilcoxon ranksum statistical analysis.
Figure 89. DJF Precipitation Anomalies (mm day$^{-1}$) for KK10 minus Control at timeslices from the late pre-industrial period (1850 CE) to 7kaBP. The stippling indicates grid boxes where the anomalies are significant at the 95% level using Wilcoxon ranksum statistical analysis.
Figure 910. JJA 850hPa Wind Strength Anomalies (m/s) for KK10 minus Control for the late pre-industrial period (1850).
Figure 10.1. Indian temperature seasonality; KK10 - Control surface temperature anomalies for the late pre-industrial (1850CE) simulation; the vertical bars indicate the normal range of variability which is considered to be within 2 standard deviations of the mean.
Figure 11. DJF Snowdepth Anomalies (cm) for KK10 minus Control for the late pre-industrial period (1850 CE). The stippling indicates grid boxes where the anomalies are significant at the 95% level using Wilcoxon ranksum statistical analysis.
Figure 1213. Time series plots for the Holocene simulations from HadCM3. (a) annual mean global Surface Air Temperature (SAT) for the Control simulation in grey, and KK10 simulation in black; (b) anomaly in northern extratropical (30-90N) annual mean temperature from the equivalent simulation at 8kaBP; (c) same as (b) but for the tropics (30N-30S); (d) same as (b) but for the southern extratropics (30-90S).
Figure 13.14. Mid-Holocene minus Pre-Industrial temperature anomalies. (a) annual mean surface air temperature anomalies from the control experiment; (b) annual mean surface air temperature anomalies from the KK10 experiment; (c) Bartlein et al. (2011) pollen-based reconstructions of the mean annual air temperature anomaly; (d) ocean annual mean temperature for the top two layers (25m) from the control experiment with palaeo-proxy reconstructions (Marcott et al., 2013) overlain in coloured circles; (e) as in (d) but for the KK10 experiment.
Figure 44.5. Mid-Holocene minus Pre-Industrial precipitation anomalies. (a) annual mean precipitation anomalies from the control experiment; (b) annual precipitation anomalies from the KK10 experiment; (c) Bartlein et al. (2011) pollen-based reconstructions of the mean annual precipitation anomaly.
Figure 16. JJA and DJF albedo, latent heat flux (QLE) and turbulent heat flux (QT) anomalies for KK10 minus Control for the late pre-industrial period (1850 CE) for the North America/Eurasia land surface.
Authors' Response

Response to Anonymous Reviewer #1

Thank you very much for taking the time and trouble to review our manuscript and for your helpful comments and suggested references. Our responses to your comments/queries are as follows:

COMMENT: Abstract Maybe the authors already can add some numbers how large global and regional changes are in degrees centigrade – it’s trivial to achieve a statistically significant result when the number of samples is high enough. The physical significance might however be irrelevant then.

RESPONSE: Global mean temperature changes and maximum regional change (Europe) for 7ka BP, 2ka BP and PI have been added to the abstract. The comment on statistical significance is addressed below in response to the comments on section 2.1.

COMMENT: 1 Introduction The introduction lacks a general presentation of forcings potentially influencing Holocene climate such as orbital, solar, volcanic and GHG (for an overview refer e.g. Schmidt et al. 2011) – in the present form the reader who is not too familiar with the topic might get the impression that only changes in land use were the main driver of Holocene climatic changes.

RESPONSE: A brief description of the natural forcings has been added to the introduction.

COMMENT: 2.1 Model description: The authors state the model does not include an interactive carbon module – which effect might the change in land use have on the carbon cycle? In their introduction they note that besides the biogeophysical effects there are also biogeochemical effects in terms of changes in CO2 that might offset parts of the albedo changes induced by land use changes.

RESPONSE: Anthropogenic land use changes normally involve deforestation thus reducing the vegetation carbon sink and releasing carbon to the atmosphere particularly if slash and burn agriculture is practised resulting in little carbon being stored in the soil. Kaplan et al (2010) estimated that by AD 1850 cumulative carbon emissions due to land use changes were 325–357 Pg. Some of this excess CO2 will be absorbed by the oceans but much will remain in the atmosphere and, as a greenhouse gas, it will contribute to an increase in global
temperatures. The lack of an interactive carbon module in our model means that these atmospheric CO2 changes and resultant warming are not included in our results.

COMMENT: In the last paragraph of the section authors state that changes in land use are very small and localized and therefore one needs to integrate very long times to find a small albeit statistically significant result – I find this strategy a bit unfavorable because a priori this will most likely result in a statistically significant difference independent to the physical significance of the signal (see also von Storch and Zwiers, 1999).

RESPONSE: As climate data demonstrates variability on a range of timescales it was felt that a longer averaging period would encompass as many modes of variability as possible and thus give a more robust result. There is the potential to get the wrong results if short averaging periods are used. There were effectively 500 samples in our statistical analysis which, for temperature, gives an effect size of about 0.1°C, the minimum contour level used in our plots. Whilst a small difference, its inclusion does add value to the contour plots as it helps visualise the patterns of anomalies in the contour plots and thus to understand the dynamics of the climatic changes. It is worth noting that when the test is run with 50 samples (Figure 1) the results over the major land masses were still found to be statistically significant.

Figure 1: JJA Temperature Anomalies (°C) for KK10 minus Control for the late pre-industrial period (1850 CE) averaged over a 50 year period. The stippling indicates grid boxes where the anomalies are significant at the 95% level using Wilcoxon ranksum statistical analysis.

COMMENT: 3 Results Given the effect of changes in RF due to changes in land use, especially in the earlier periods, temperature changes seem to be quite large – According to Fig. 2, the change amounts to 2-3 K in the pre-industrial period over parts of Europe and North America. The temperature increase over these regions is approximately 1-1.5 K in the last 150 years (cf. Supplement of PAGES2k reconstructions). Given this strong impact of land use changes, the temperatures should even decrease over these regions due to the presence of the land use changes. Earlier modelling studies with constant land cover also show
temperature evolutions that are comparable to proxy reconstructions using only changes in
solar, volcanic and GHG concentrations – how do the authors explain such large impact of
land use change?

RESPONSE: The cooling effect of the biogeophysical impacts of ALCC is countered by the
biogeochemical effects (increased methane and CO2 production) which increase
temperatures. On a global average scale and in most individual regions the overall effect of
ALCC when both physical and chemical effects are taken into account the net result will be a
warming. As previously mentioned the lack of an interactive carbon module in our model
means that we are unable to quantify these atmospheric CO2 changes. However, in a similar
study that also included the biogeochemical changes, He et al, 2014 estimated that by 1850
CE the biogeophysical feedbacks of Holocene ALCC caused a global cooling of 0.17°C,
while biogeochemical feedbacks caused a 0.90° global warming i.e. the biogeochemical
effects of land use were a factor of 5 more important than the biogeophysical effects on the
global scale and the physical effects are only dominant in the regions of greatest ALCC such
as Europe, N.E. America & E. Asia. In addition during the last 150 years there has been a big
increase in greenhouse gas emissions from industrial sources. The cumulative CO2 &
methane emissions from industrial sources between 1750 and 2010 have been about 4 times
the magnitude of those from land use (IPCC, AR5, SPM, 2014). These industrial emissions
would further serve to counter the cooling due to the biogeophysical impacts of land use
change. Other considerations are uncertainties in the land use reconstructions. Using the
HYDE 3.1 data resulted in smaller anomalies although we feel that the KK10 data is probably
more realistic for the reasons outlined in Section 5 (Discussion) of the manuscript. Also, as
mentioned later, the equilibrium response could be different to the response achieved when
using a transient simulation. The inclusion of ALCC improved the data-model comparison for
HadCM3. For a discussion of the relative merits of HadCM3 please see the following
response and the response to comments on Section 4.

COMMENT: Another important point relates to the treatment of convection, soil moisture
and hence cloud cover – the drying of soils would eventually lead to less convection and less
cloud cover leading to increase in shortwave radiation counteracting the increase in albedo
due to land cover change. How well does HadCM3 address these processes that would be
important to assess the full range and implications of land use changes, especially on the local
scale?
RESPONSE: Soil moisture and the exchange of moisture between the surface and the atmosphere is calculated by MOSES II (Met Office Surface Exchange Scheme) which is coupled to HadCM3. In MOSES soil moisture is represented on four subsurface layers. The soil moisture is treated as homogeneous across a grid box. Bare-soil evaporation is drawn from the surface soil layer only. Harris et al (2004) found that MOSES/HadCM3 was able to simulate the observed fluxes of heat, moisture and carbon in Amazonia with reasonable accuracy. HadCM3 uses the penetrative convective scheme (Gregory and Rowntree 1990) modified to include an explicit downdraught and the direct impact of convection on momentum (Gregory et al. 1997). The large-scale precipitation and cloud scheme is formulated in terms of an explicit cloud water variable (Smith, 1990). Johns et al (2003) found that generally HadCM3 is effective at capturing the patterns of mean seasonal precipitation for DJF and JJA when judged against the CMAP (CPC Merged Analysis of Precipitation) climatology (Xie and Arkin 1997). The agreement over land, where the climatology is more reliable, was particularly good, giving confidence in the model physics. HadCM3 does however overestimate the precipitation in the eastern tropical Atlantic and the Gulf of Guinea. In general, HadCM3 ranked highly in CMIP 2 & 3 over a range of climate variables compared to other models (Reichler and Kim (2008) compared an aggregate score for 14 climate variables) and it was one of the major models used in the IPCC Third and Fourth Assessments and contributed to the Fifth Assessment.

COMMENT: How do results quantitatively compare to other studies (e.g. Pongratz et al. 2010 and Betts et al. 2007, Brovkin et al. 2004) suggesting considerable less impact of changes in land use change on regional and global temperatures. Might therefore part of the results be a specific model-dependent issue?

RESPONSE: In the discussion (Section 5) we compare our results to those from He et al, 2014 and Pongratz et al 2010. We found similarities in the distribution of the temperature anomalies with those found by He et al (2014) for 1850 CE and Pongratz et al (2010) for the 20th century although the temperature changes found in this study were greater e.g. a pre-industrial global annual mean temperature anomaly of -0.23°C as opposed to the -0.17°C estimated by He et al (2014). Not all the other studies use comparable time slices and so a direct quantitative comparison is not always possible.

COMMENT: Please also consult the study of Boisier et al. 2012 for a more thorough discussion of potential effects of changes in other properties related to changes in land use.
and the dependence on specific model and model configuration. An example for a time slice, preferably the PI vs present day concerning a separation into different components (albedo, latent and turbulent heat fluxes) as carried out in the study of Boisier et al. 2012 would also help to assess the model-specific response on land use changes.

RESPONSE: Figure 16 has been added which shows the KK10 - Control albedo, latent and turbulent heat flux changes for PI.

COMMENT: 3.1.2 Remote impacts of land use I wonder why the authors did not carry out in parallel a transient simulation with continuous changes in land use including changes in orbital parameters – The reason it that the equilibrium response could be different to the response one achieves when using a transient simulation – although this kind of simulation would lie outside the scope of the present manuscript at least some words addressing potential implications would be helpful to put results obtained with the multi-centennial long-time slice experiments into perspective.

RESPONSE: We agree that it would be very interesting to run a transient simulation but it was not practical to do so within the already wide scope of this manuscript. We are building on snap-shot simulations that are previously published for the last glacial cycle (Singarayer and Valdes, 2010; Singarayer et al., 2011) and these land-use time slices expand our work using this methodology. In addition, with the speed of the model and HPC queuing times it would have taken more than two years to complete a Holocene transient simulation and so was not possible within this particular project time frame, although we would very much like to be able to do this in future. We had mentioned the advantages of running a transient simulation within the discussion but have added more emphasis to that statement.

COMMENT: 3.2 Atmospheric dynamics How can low-level surface winds advect changes into remote regions? I would rather expect a mid-to-high altitude mechanism driving low levels wind. Also the still coarse resolution of the global climate model will not properly simulate a realistic pattern of low-level winds, especially over regions characterized by a complex land-sea mask and regions with complex topography.

RESPONSE: As suggested below the order of the sections has been changed and the renumbered section 3.2.3 has been rephrased to state that the surface winds will advect changes into adjacent (rather than remote) regions. We agree that in most regions there won’t be a recognisable or predictable pattern of advection but where there is a prevailing wind direction advection of temperature anomalies can be seen.
COMMENT: 3.2.2 Mean sea level pressure I suggest to change the order of the sections starting with upper tropospheric dynamics, to mslp and eventually low-level dynamics. Changes in mslp will change the surface wind pattern. In general, I have some reservations with the purely thermal explanations of wind changes in the extratropics excluding dynamical reasoning for instance related to changes in baroclinicity due to changes in the overall meridional temperature gradient also affecting the uppertropospheric circulation.

RESPONSE: The order of the sections has been changed and the renumbered section 3.2.1 includes dynamical reasoning as suggested.

COMMENT: 3.3 Hydroclimate Analyzing hydroclimate changes from GCM output is afflicted with high uncertainties – this should be noted somewhere because results based on only one model can lead to false or not robust conclusions given the high degree of uncertainty even the current generation of GCM/ESM shows for the hydrological cycle.

RESPONSE: We agree that there are uncertainties in hydroclimate analysis by GCMs. This has now been noted in section 3.3 and the discussion. Some aspects such as the movement of the ITCZ away from a cooling hemisphere are reasonably robust and are seen in other studies (e.g. Kang et al, 2008).

COMMENT: 4 Temporal evolution of Holocene climate Can you explain why especially the NH temperatures show such a strong temperature increase – the summer insolation decreases and winter insolation north of 30°N has not a pronounced effect. Most reconstructions and simulations point to a decrease in NH temperatures during the Holocene (cf. also Wanner et al. 2008).

RESPONSE: We have previously done sensitivity experiments where the model has been forced solely with orbital configuration changes, then with greenhouse gas (GHG) variations in addition, and then with ice-sheet and sea level changes (e.g. Singarayer et al., 2011). In HadCM3, the simulations with orbit-only variations produce a slight temperature decrease through the Holocene for the northern hemisphere (30-90N). The cooling from mid-Holocene to pre-industrial is largest over the Arctic region. The impact of including increasing greenhouse gases on temperature outweighs the orbital influence and results in an overall warming over 30-90N. There are still regions over the Arctic and north Atlantic where the cooling remains, however. Seasonally, we find that cooling through the Holocene still occurs in northern hemisphere summer, when forced with orbit and GHG variations, but is not as pronounced as when only forced by orbital variations. In winter, when HadCM3 is forced...
with orbit-only variation there is little change in temperature, but when GHG increases are included this becomes a warming through the Holocene, which then outweighs the reduced summer cooling. While the annual mean warming signal is in apparent disagreement with some of the palaeodata records, including the recent Marcott et al (2013) record, it is within the range of other climate model responses when compared with the PMIP3 (Paleoclimate Model Intercomparison Project) model mid-Holocene to pre-industrial temperature anomalies. Figure 2 is a plot of the available PMIP3 model global annual mean temperature anomalies for mid-Holocene with our HadCM3 time slices for the Holocene. 11 of 13 PMIP3 models demonstrate little change or warming from 6ka to 0ka, rather than cooling. HadCM3 has a relatively large warming, although not the largest of all the models. The warming in our version of HadCM3 is amplified by the coupled vegetation scheme (which the majority of the PMIP3 models still do not include). The increase in modelled forest cover through the Holocene, facilitated by CO2 increase in terms of favourable climate as well as CO2 fertilization, decreases albedo and increases temperatures further.

![Figure 2](image)

When the multi-model mean temperature anomaly map is plotted (Figure 3; taken from the PMIP3 website for expediency), the same pattern as for HadCM3 is observed in that the mid-Holocene is warmer than pre-industrial over the Arctic, with little change or cooler temperatures over mid- and low latitude land, similar to the HadCM3 spatial pattern.
Palaeodata syntheses such as Bartlein et al (2013), as shown in our paper Figure 13, display regionally variable mid-Holocene temperature anomalies. There are a number of points over Eurasia, central N America, and the Mediterranean where their data suggest a regionally cooler mid-Holocene, while Scandinavia, eastern N America, and some Arctic regions are inferred to have a warmer mid-Holocene. This is similar to the discussion section of Wanner et al. (2008, section 6.1), and their figure 18, where the cooling is most evident over the N Atlantic and higher latitude northern hemisphere, and in some cases is thought to be mainly in summer. In summary, in HadCM3 the temperature response to increasing Holocene GHGs is larger than the seasonal decrease in temperatures resulting from decline in summer insolation. This overall response is not unusual when compared to other PMIP models. There are regional variations in the response of models with a tendency for cooling at high latitudes but warming at lower latitudes. While palaeodata syntheses may suggest a cooling of northern hemisphere temperatures, there also appear to be regional and seasonal variations in the data. The temperature anomalies are fairly small in both models and data and in addition, with a lack of data in some areas (particularly outside Europe), there is perhaps significant uncertainty in both models and data as to what the average northern hemisphere annual mean temperature response is. We will add a small discussion to the text about why we get a strong temperature increase in the model and discuss our comparison with data and other models in section 4.
COMMENT: Discussion In general I liked the discussion section as useful to put results into perspective – However, I don’t know if it’s wise to criticize studies addressing results for regional climate change based on a regional climate model, when the GCM of the present study shows potential shortcomings, i.e. the overall temperature change between MHPI is at odds with many other studies, the biogeochemical effect and the overall coarse resolution of the HadCM3 model neglecting specific regional details.

RESPONSE: We did not intend our text to read as a criticism of regional models and accept that no model including HadCM3 is without shortcomings. We have tried to stress that our results are the results from only one model. For the land use change scenario however we did feel that it was necessary to point out that an additional issue for regional models would be that the remote atmospheric changes would not be included. Although the advantages of regional models might outweigh this disadvantage we believe that this knowledge of these remote influences could be helpful for others planning model studies in the future. We have however make the comment more general and also mentioned the advantages of regional models such as higher resolution.

COMMENT: p 4603, l 12. Why is the abbreviation anthropogenic land use change “ALCC” rather than “ALUC”?

RESPONSE: Anthropogenic land use change has been changed to anthropogenic land cover change.

COMMENT: Section 2.2.: I suggest including a table where the experimental setup is summarized with according abbreviations.

RESPONSE: Table 1 has been added.

COMMENT: p 4612 l 24: the weblinks should be replaced by citations from the peer-reviewed literature

RESPONSE: This has been done.

COMMENT: In Figure 2 and 3 it would be helpful to include the global average of the temperature change and also reproduce changes in the annual mean

RESPONSE: Figure 4 has been added which reproduces the annual mean anomalies and includes the global average temperature change.

REFERENCES:

Response to Anonymous Reviewer #2
Thank you very much for taking the time and trouble to review our manuscript and for your helpful comments.

COMMENT: Page 4619, Line 20-25. The authors acknowledge that there is a lot of uncertainty in global land use reconstructions (e.g. HYDE 3.1 is much lower than KK10). Strangely, ‘The decision was taken to proceed with the KK10 data due to its assumptions of a larger per capita land use earlier in the Holocene.’ (page 4620, line 1-5). Why is that? Is more land use per capita better? Better than what? Would the results be different with HYDE? Please explain.

RESPONSE: Early agriculture was much less efficient than agriculture today with tracts of land left fallow for years. It is estimated that per capita land use for agriculture during the industrial age is about 0.2-0.3 ha per person (Williams (1990), Grubler (1994)) but was more like 3ha per person in Neolithic times (e.g. Gregg, 1988). There have been many technological advances since the advent of agriculture from selective breeding of crops and animals to fertilisers and more efficient tools. KK10 makes some allowance for these technological changes and therefore allocates more agricultural land to feed each head of population earlier in the Holocene than it does in the early industrial period. This we believe is probably more realistic than constant per capita land use although of course there are still uncertainties in the data. With the Hyde data the land use changes are less than with KK10 particularly in the earlier time slices. The same pattern of climate change is seen but later and on a reduced scale.

The comment in the discussion has been expanded to make it clearer.

RESPONSE: References have added to the abstract.

List of Major Changes

Note:

- Page/line numbers refer to change tracked version.
- Figure numbers have been updated throughout.
<table>
<thead>
<tr>
<th>Page/s</th>
<th>Line/s</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
<td>Included references.</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Added emphasis that the results are just from our simulations.</td>
</tr>
<tr>
<td>2</td>
<td>7-10</td>
<td>Added values for global and European mean temperature anomalies</td>
</tr>
<tr>
<td>2</td>
<td>26</td>
<td>Altered "land use" to "land cover".</td>
</tr>
<tr>
<td>3</td>
<td>15-21</td>
<td>Included a description of natural forcings.</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>Added a reference to the new experimental set-up table.</td>
</tr>
<tr>
<td>9-12</td>
<td></td>
<td>Sections 3.2.1 and 3.2.3 have swapped positions.</td>
</tr>
<tr>
<td>9</td>
<td>31</td>
<td>Corrected reference</td>
</tr>
<tr>
<td>10</td>
<td>12-15</td>
<td>Included a mention of dynamics.</td>
</tr>
<tr>
<td>11</td>
<td>13-14</td>
<td>Corrected reference.</td>
</tr>
<tr>
<td>11</td>
<td>16</td>
<td>Changed "remote" to "adjacent" and rephrased.</td>
</tr>
<tr>
<td>13</td>
<td>18-23</td>
<td>Added a note on hydroclimate uncertainties</td>
</tr>
<tr>
<td>14</td>
<td>28-30</td>
<td>Moved paragraph.</td>
</tr>
<tr>
<td>15</td>
<td>5-21</td>
<td>Added more information on the temperature response of HadCM3 and on the comparison between HadCM3 and other models and palaeodata.</td>
</tr>
<tr>
<td>16</td>
<td>4-5</td>
<td>Added comparison with PMIP anomalies.</td>
</tr>
<tr>
<td>17</td>
<td>7-10</td>
<td>Stressed the advantages of regional models.</td>
</tr>
<tr>
<td>17</td>
<td>18-19</td>
<td>Added mention of climate uncertainties</td>
</tr>
<tr>
<td>17</td>
<td>25-31</td>
<td>Added comparison between HadCM3 and LUCID for albedo and heat flux responses.</td>
</tr>
<tr>
<td>17/18</td>
<td>33-4</td>
<td>Expanded comment on transient simulations.</td>
</tr>
<tr>
<td>19</td>
<td>17</td>
<td>Clarified statement on KK10 land use.</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
<td>Updated value.</td>
</tr>
<tr>
<td>22-28</td>
<td></td>
<td>Updated references.</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>Included new Table 1: Experimental set-up</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>Included new Figure 4 (annual temperature anomalies)</td>
</tr>
</tbody>
</table>
Added new Figure 16 (albedo and heat fluxes)