Dear Editor,
In the following, you can find a point-by-point replay to your additional comments on statistical analysis.

Dear authors,
sorry for the delay, but it took me some times to carefully check your statistical analysis. I was particularly worried by your fig 10. You mention that the PCA analysis allows to discriminate between three different faunal assemblages. You justify this result by the possibility of grouping the data points of fig 10 into three shaded areas. The problem I see is that these three shaded area have been drawn by hand, and do not seem to be delimited by statistical criteria. Using your dataset, I calculated the ellipse containing 95% of the data points. If you proceed like this, group 3 (PETM) is not clearly distinguishable from group 1. This similarity is sustained by further analyses (e.g., cluster) even if some of the traditional statistical tests attest their significant difference (variance test). The conclusion should then be that the faunal assemblages of group 1 and 3 are similar, although group 3 displays a greater variability. This point must be clarified. I suggest you to use discriminant analysis methods, like the LDA, or variance tests (such as MANOVA). This would really strengthen your conclusions.

In Figure 10, I described my samples as subdividable in three different floral assemblages (calcalkereous nannoplankton are algae) and I have never claimed these groups represent ellipses containing 95% of the data points. Anyway, this is a good point and I have added 95% ellipses for Paleocene and Eocene samples in Figure 10. As you wrote, the PETM samples are obviously widely dispersed and are not surrounded by any ellipse anymore.

What is still pretty clear from PCA is that Paleocene and post-PETM Eocene are statistical different. This is not obvious from what you can get from the literature available. In fact, statistical analyses performed (see for an instance Gibbs et al., 2006) are conceived to point out extinction and speciation rates during the event rather than changes in the relative abundance of the assemblages. Our approach is based on the fact that the changes in abundance of the major components of the assemblages are as much important as the extinction and speciation rates and give a different perspective to the variations observed in the PETM calcareous nannoplanton datasets.

Regarding the difference between group 1 and group 3, I do not totally agree when you wrote that “the floral assemblages of group 1 and 3 are similar, although group 3 displays a greater variability” because most of the samples representing the CORE CIE are in fact distinguishable using Component 2 in the PCA analysis. To support my view, I have followed your advice and I have applied a variance analysis (MANOVA) to my dataset. The result is that the three groups are easily distinguishable one from each other.

To address your comment, I have added an additional figure, Figure 10B, which is a scatter graph + biplot plot obtained applying the MANOVA technique. The text has been changed accordingly.

Also, it is not clear whether the "reworking" data should be included in the analysis, since you lost the stratigraphical signal.

As well explained in the available literature, during the late Paleocene and early Eocene hyperthermals, the weathering is enhanced (e.g., Zachos et al. 2006 and reference herein) and, as a consequence, reworked calcareous nanofossils are transported to the ocean and then display a remarkable increase in their relative abundance especially in marginal setting (e.g., Agnini et al. 2007; 2009). This group is thus considered a good proxy for increase weathering and used as a paleoceano graphic indicator.

In addition, I fully understand the reasons of log-transforming the raw dataset. However I question the validity of the replacing values at -0.698970004 as 0 is an informative value in your study. This must be clarified. I would finally suggest you to use abundance data, despite their numerous biases, in the calculation of diversity indices of similarity between the different groups. This should help to discuss about the faunal turnover through the PETM.

With regard to your comment, I think that we have fully answered to reviewer 1 and followed her/his suggestions about how to implement the raw data in order to 1) avoid the closed-sum effect and 2) decrease the sensitivity of PCA to zero values (see reviewer 1’s comment on this issue). This is essentially the reasons why we have modified our original statistical analysis and this has been done to follow your previous suggestion. Since you understand the reason why we accepted reviewer 1’s suggestion, you may
also understand the importance of possibly reducing the zero value effect. These changes do not substantially modify the results obtained with raw data but I would maintain these two math transformations because even if they decrease the values of PC1 and PC2, they guarantee for a better fit of the dataset to the statistical method applied in this study.

Regarding fig 6, what are the dashed lines representing?
Good point. Grey and black dash lines are linear trendlines for Paleocene and Eocene samples, respectively. This has been added to the caption of Figure 6.

Finally, the abbreviations used in the data tables are not described in the text and all cells must be filled.
I'm not sure to have understood to which figures you refer to. You may refer to supplementary figures since I do not see this problem in Table 1. In this table, all the abbreviations are explained in the text or as footnotes directly on the table caption.
Table S1. There are no abbreviations.
Table S2. There are no abbreviations. Explanation of the content of each excel sheet is provided in the readme file (READ ME_Supplementary tables.docx).
Table S3. There are no abbreviations. I have added the description of the first column (Sample CIC/07) that was previously missed.
Table S4. There are no abbreviations. I have added the description of the first column (Sample CIC/07) that was previously missed.

I hope to have answered to your extra comments satisfactorily. Looking to hearing from you soon for your final decision.

Best Regards,
Claudia Agnini
Stable isotope and calcareous nannofossil assemblage record of the late Paleocene and early Eocene (Cicogna section)

Claudia Agnini\(^1\)*, David J. A. Spofforth\(^3\), Gerald R. Dickens\(^4\)\(^5\), Domenico Rio\(^1\), Heiko Pälike\(^6\), Jan Backman\(^5\), Giovanni Muttoni\(^7\)\(^8\), Edoardo Dallanave\(^9\)

\(^1\) Dipartimento di Geoscienze, Università di Padova, Padova, Italy.
\(^2\) Istituto di Geoscienze e Georisorse- Padova, CNR, Padova, Italy
\(^3\) Robertson - CGG GeoSpec, Llandudno, United Kingdom
\(^4\) Department of Earth Sciences, Rice University, Houston, Texas, USA.
\(^5\) Department of Geological Sciences, Stockholm University, Stockholm, Sweden
\(^6\) MARUM, University of Bremen, Bremen, Germany
\(^7\) Dipartimento di Scienze della Terra “Ardito Desio”, Università Statale di Milano, Milano, Italy
\(^8\) ALP – Alpine Laboratory of Paleomagnetism, Peveragno (CN), Italy
\(^9\) Ludwig-Maximilians, Universität München, München, Germany

*Corresponding author: C. Agnini, Dipartimento di Geoscienze, Università di Padova, 35131 Italy.
(claudia.agnini@unipd.it)
Abstract. We present records of stable carbon and oxygen isotopes, CaCO$_3$ content, and changes in calcareous nannofossil assemblages across an 81 m thick section of upper Paleocene-lower Eocene marine sedimentary rocks now exposed along the Cicogna Stream in northeast Italy. The studied stratigraphic section represents sediment accumulation in a bathyal hemipelagic setting from approximately 57.5 to 52.2 Ma, a multi-million-year time interval characterized by perturbations in the global carbon cycle and changes in calcareous nannofossil assemblages. The bulk carbonate δ^{13}C profile for the Cicogna section, once placed on a common time scale, resembles that at several other locations across the world, and includes both a long-term drop in δ^{13}C, and multiple short-term carbon isotope excursions (CIEs). This precise correlation of widely separated δ^{13}C records in marine sequences results from temporal changes in the carbon composition of the exogenic carbon cycle. However, diagenesis has likely modified the δ^{13}C record at Cicogna, an interpretation supported by variations in bulk carbonate δ^{18}O, which do not conform to expectations for a primary signal. The record of CaCO$_3$ content reflects a combination of carbonate dilution and dissolution, as also inferred at other sites. Our detailed documentation and statistical analysis of calcareous nannofossil assemblages show major differences before, during and after the Paleocene Eocene Thermal Maximum. Other CIEs in our lower Paleogene section do not exhibit such a distinctive change; instead, these events are sometimes characterized by variations restricted to a limited number of taxa and transient shifts in the relative abundance of primary assemblage components. Both long-lasting and short-lived modifications to calcareous nannofossil assemblages preferentially affected nannoliths or holococcoliths such as *Discoaster*, *Fasciculithus*, *Rhomboaster/Tribrachiatus*, *Spenolithus* and *Zygrhablithus*, which underwent distinct variations in abundance as well as permanent evolutionary changes in terms of appearances and disappearances. By contrast, placoliths such as *Coccolithus* and *Toweius*, which represent the main component of the assemblages, were characterized by a gradual decline in abundance over time. Comparisons of...
detailed nannofossil assemblage records at the Cicogna section and at ODP Site 1262 support the idea that variations in the relative and absolute abundances, even some minor changes, were globally synchronous. An obvious link is through climate forcing and carbon cycling, although the linkages between variations in calcareous nannoplankton, changes in δ¹³C records and oceanography will need additional work.

INDEX TERMS
Paleocene, Eocene, calcareous nannofossils, stable isotopes, paleoclimate, Tethys

1 INTRODUCTION

A remarkable interval of global warming occurred from the middle Paleocene to the early Eocene, between approximately 59 and 51 million years ago (Ma). This inference comes from a variety of proxies (Huber and Caballero, 2011; Hollis et al., 2012), including the stable oxygen isotope (δ¹⁸O) composition of benthic foraminifera (Figure 1). The precise timing of the long-term temperature rise remains somewhat unconstrained, because absolute ages across the early Eocene remain unsolidified. Throughout this work, we assume that the Option-1 (WO-1) time scale presented by Westerhold et al. (2008) is correct (Table 1), but acknowledge that an offset of ca 400 kyr may occur within the time interval of interest (Vandenberghe et al., 2012). Debate also surrounds the magnitude and distribution of the temperature warming. Earth’s surface temperatures, at least at high latitudes and in the deep sea, seem to have risen by at least 6°C from ca. 59 to 51 Ma (Zachos et al., 2008; Bijl et al., 2009; Huber and Caballero, 2011; Hollis et al., 2012). Indeed, the latter date marks the acme of the Early Eocene Climatic Optimum (EECO), the warmest sustained time interval of the Cenozoic (Zachos et al., 2008; Cramer et al., 2009; Hollis et al., 2012). Such a rise in
temperature is not obvious at low latitudes with current data (Pearson et al., 2007; Huber et al., 2011).

Somehow related to long-term global warming were a series of major perturbations in the global carbon cycle, as clearly indicated by stable carbon isotope ($\delta^{13}C$) records in benthic foraminifera (Figure 1) and bulk carbonate in numerous marine sediment sequences (Shackleton, 1986; Corfield, 1994; Cramer et al., 2003; Zachos et al., 2008; 2010; Westerhold et al., 2011; Slotnick et al., 2012). An overall increase in $\delta^{13}C$ occurred through most of the Paleocene, which climaxed in a Cenozoic high at ca. 57.5 Ma (Westerhold et al., 2011), commonly referred to as the Paleocene carbon isotope maximum (PCIM). From this time, $\delta^{13}C$ generally decreased to ca. 52.5 Ma. However, when examined at higher temporal resolution, multiple $\delta^{13}C$ records show several short-term (<200 kyr) negative carbon isotope excursions (CIEs) (Cramer et al., 2003; Lourens et al., 2005; Nicolo et al., 2007; Agnini et al., 2009; Zachos et al., 2010; Slotnick et al., 2012). Some of these CIEs clearly coincided with rapid warming (above references). The most prominent and most widely documented example of these “hyperthermals” was the Paleocene-Eocene Thermal Maximum (PETM) at ca. 55.5 Ma, but other apparently similar events occurred at ca. 53.7 Ma (H1 or Eocene Thermal Maximum 2, ETM-2), and at ca. 52.5 Ma (K/X, sometimes called ETM-3).

The early Paleogene in general, and the hyperthermals in particular, have attracted considerable geoscience research. On one level, this is because these time intervals represent a range of possible past analogues for understanding the effects of global warming and massive carbon emissions (cf. Keeling and Whorf, 2004; Zachos et al., 2008). On another level, this is because the long-term and short-term temperature and carbon cycle perturbations provide new perspectives for how systems on Earth’s surface operate. The PCIM probably represents a tremendous storage of ^{13}C-depleted carbon somewhere on Earth’s shallow surface (Shackleton, 1986; Kurtz et al., 2003; Komar et al., 2013). In turn, the CIEs probably signify rapid and large inputs
of 13C-depleted carbon into the ocean and atmosphere (Dickens et al., 1997; Lourens et al., 2005; Zeebe et al., 2009). The middle Paleocene through early Eocene shows us that Earth’s climate and carbon reservoirs were extremely dynamic during past times of global warmth. However, the composition and whereabouts of large quantities of transferable 13C-depleted carbon (e.g., seafloor methane, peat, permafrost) remain uncertain (above references). Indeed, it is not clear if and how the long-term and short-term carbon cycle perturbations were related to one another, or to Earth surface temperatures.

The above context presents a series of basic questions to the geoscience community. Two of these are the focus of our study: (1) What is the correct template for understanding carbon cycling during the early Paleogene? Major changes in fluxes of 13C-depleted carbon to the ocean or atmosphere should give predictable and coherent signals in the δ^{13}C of carbon-bearing phases across Earth, as well as the distribution of carbonate dissolution on the seafloor. This is not yet established. For example, several recently published δ^{13}C records (Kirtland-Turner et al., 2014; Slotnick et al., 2015a; Payros et al., 2015) do not precisely correlate with those at other locations (Cramer et al., 2003; Zachos et al., 2010; Slotnick et al., 2012, 2015b), at least with available stratigraphy. (2) How did marine calcifying organisms respond to major early Paleogene perturbations in temperature and carbon cycling, both in terms of evolution and preservation? The prominent changes in temperature and carbon fluxes almost assuredly caused large variations in seawater pH and carbonate ion concentration (CO_3^{2-}) (Dickens et al., 1997; Zachos et al., 2005; Kump et al., 2009; Zeebe et al., 2009; Leon-Rodriguez and Dickens, 2010; Hönisch et al., 2012; Pälike et al., 2012), although the response should depend on location and carbon fluxes involved (Dickens, 2000; Zeebe and Westbroek, 2003; Komar et al., 2013). Such changes might also affect the ability of living organisms to calcify (Riebesell et al., 2000, 2008; Kleypas et al., 2006; Iglesias-Rodriguez et al.,
2008; Stillman and Paganini, 2015), which might impact the fossil record (Agnini et al., 2006; Raffi and De Bernardi, 2008; Erba et al., 2010; Hönisch et al., 2012).

In regards to both questions, calcareous nannoplankton are an obvious group of organisms to focus on. This is because they are a main component of open ocean primary production (Milliman, 1993; Winter et al., 1994; Rost and Riebesell, 2004), because they are the dominate the output of carbonate in the ocean (Ziveri et al., 1999; Hay, 2004), and because they exhibit marked changes in species composition from the middle Paleocene through the early Eocene (Romein, 1979; Aubry, 1998, Bown et al., 2004; Gibbs et al., 2012). While numerous studies have examined calcareous nannofossils across the PETM from different perspectives (e.g., BraJower, 2002; Stoll and Bains, 2003; Gibbs et al., 2006a; 2006b; Agnini et al., 2007a; Mutterlose et al. 2007; Bown and Pearson, 2009; Jiang and Wise, 2009, Self-Trail et al., 2012), the relationship between these organisms and carbon cycle perturbations before and after this short-lived warming episode remain poorly documented (Gibbs et al., 2012). It seems possible that the high rate of calcareous nannofossil taxonomic evolution (appearances and extinctions), as well as distinct changes in calcareous nannofossil abundance patterns may provide excellent stratigraphic control across the early Paleogene (Bukry, 1973; Perch-Nielsen, 1985; Backman, 1986, Agnini et al., 2014). Moreover, if the exact relationship between changes in nannofossil assemblages and global carbon cycle perturbations were known, key time intervals could be rapidly identified for more detailed work.

Finally, changes in calcareous nannofossils across the early Paleogene provide insights about the response of an important part of the sediment forming marine biota to changes in climate and carbon cycling.

Very few stratigraphic sections presently have detailed and coupled records of stable isotopes, carbonate content, and calcareous nannofossil abundances across the broad late Paleocene-early Eocene interval. The two notable exeptions are Ocean Drilling Program (ODP) Site 1262 (southeast
Atlantic) (Agnini et al., 2007b; Zachos et al., 2010) and Deep Sea Drilling Project (DSDP) Site 577 (northwest Pacific) (Shackleton, 1986; Dickens and Backman, 2013) (Figure 2). Here we present geochemical records (δ13C, δ18O and CaCO3 content) and calcareous nannofossil census data from the Cicogna section in northeast Italy (Figures 2, 3). These data are compared with similar information from Sites 1262 and 577. We show that the Cicogna section provides an important template for understanding potential relationships between climate, carbon cycling and the biotic evolution of calcareous nannoplankton.

2 THE CICOGNA SECTION

The Cicogna section crops out along the Cicogna Stream near the village of Tassei in the Belluno Province, northeast Italy (Figure 3). From a regional geological perspective, the sedimentary rocks of this section belong to the Belluno Basin. This basin represents part of a paleogeographic domain that formed when Jurassic rifting created a series of N–S oriented structural highs (platforms) and lows (basins), which persisted through much of the Paleogene (Bernoulli and Jenkyns, 1974; Bernoulli et al., 1979; Winterer and Bosellini, 1981). Importantly, from the Cretaceous to the middle-late Eocene, expanded deep sea sediment successions accumulated within the basins at nominally 30°N latitude (Stefani and Grandesso, 1991; Agnini et al., 2006; 2011; Zattin et al., 2006).

The Cicogna section consists of two lithostratigraphic units (Figure 3). The lower portion is a well-exposed upper Paleocene and lower Eocene unit referred to as Scaglia Rossa sensu lato (Figures 3, 4) (Giusberti et al., 2007; Dallanave et al., 2009). Based on benthic foraminiferal assemblages, the early Paleogene marls of this unit represent lithified pelagic and hemipelagic sediment that accumulated at middle to lower bathyal water depth, likely between 600 m and 1000 m and not deeper than 1500 m (Giusberti et al., 2007; 2015). The upper portion is a thick early to middle
Eocene unit called the Belluno Flysch (Figures 3, 4). This unit represents a synorogenic deposit on the flanks of the former Trento and Friuli platforms (Grandesso, 1976; Doglioni and Bosellini, 1987).

Once corrected for bed strike and dip (ca. 315°N; ca. 45°) and bends in the stream, the Scaglia Rossa at Cicogna measures 80 m in terms of stratigraphic height (Dallanave et al., 2009). The Belluno Flysch measures 1 m in the Cicogna section. Furthermore, the section of interest can be subdivided into several subunits (Figure 4). The lower 20 m is comprised of distinctive alternating beds of gray-greenish to purple marls and calcareous marls, the latter defined by carbonate contents higher than 60% (Figure 3c). This is overlain by approximately 9 m of pink-red marls with much less lithologic alternation. At 28.7 m, the sedimentary package is broken sharply by an approximately 3 m thick red to brownish-red interval of clayey marls with sporadic grey-green cm-scale spots and lenses (Figure 3f, g). This has been called the Clay Marl Unit (CMU), and records the core of the prominent negative δ13C excursion associated with the PETM at multiple outcrop sites within the Belluno Basin (Agnini et al., 2006; 2007a; Giusberti et al., 2007). Above the CMU, from 31.7 to 39.2 m, the section continues with deposition of rhythmic alternations of marls and calcareous marls (Figure 3g). Above this 8.5 m thick interval, at ca. 40.5 m, spatic calcite crystals occur. Generally, couplets of marl and calcareous marl couplets become less evident from 40.5 m until 54 m, where such couplets reoccur (Figure 3d). At 75.5 m, a thin calcarenitic bed is encountered, presaging the onset of the Belluno Flysch. This turbidite is followed by a temporary return to hemipelagic sedimentation that ends at 80.6 m. Above, sedimentation of the Belluno Flysch begins in earnest (Figures 3b, 4).

The basic stratigraphy of the Scaglia Rossa in the Cicogna section, including both polarity chron boundaries and key calcareous nannofossil biohorizons has been published (Giusberti et al., 2007; Dallanave et al., 2009). The combined biomagnetostratigraphy indicates that the 81 m of interest spans polarity Chron C25r to Chron 23r, and calcareous nannofossil biozones CP6 to CP10 (Okada and Bukry, 1980) or CNP10 to CNE4 (Agnini et al., 2014). Thus, the section represents a 5.3 million
(Myr) long time interval, from about 57.5 to 52.2 Ma on the W0-1 time scale. This also implies an average sedimentation rate (SR) of ca. 15 m/Myr. Although the deposition of hemipelagic sediment might suggest relatively constant SRs over time, the PETM and possibly other hyperthermal events in the Belluno Basin were characterized by higher SRs (Giusberti et al. 2007; Agnini et al., 2009; Tipple et al., 2011; Krishnan et al., 2015).

The Scaglia Rossa at Cicogna appears to record fairly continuous sediment accumulation at moderately high deposition rates. This is important because it affords longer time duration than most shallow ocean sites, greater time resolution than most deep ocean sites (Figure 2), and an overall different environmental setting. Many early Paleogene records, especially those from paleo-shelf environments, such as in Egypt (e.g. Aubry and Salem, 2012) and New Jersey (Mixon and Powars, 1994; Harris et al., 2010), or from early deep sea drilling expeditions, such as in the Indian Ocean (Slotnick et al., 2015b), are discontinuous, either because of hiatuses or core gaps. Much of the detailed work and current understanding of stable carbon isotope stratigraphy and calcareous nannofossil variations across the broad early Paleogene, therefore, has come from deep-sea drilling sites with multiple holes but slow sedimentation rates, although we note the work in Clarence Valley, New Zealand (Figure 2), another area that contains several paleo-slope sections with moderately high sedimentation rates (Nicolo et al., 2007; Slotnick et al., 2012, 2015b; Dallanave et al., 2015). For the Cicogna section, detailed stable isotope and CaCO₃ records are currently lacking, as well as detailed calcareous nannofossil assemblage information, which we present here.

3 MATERIAL AND METHODS

3.1 Samples
A total of 492 samples were chiseled from outcrops along the section. Samples were selected so as to be as fresh and unaltered as possible. This included chipping off weathered surfaces while in the field. Each sample was calibrated to height (Figure 4). Samples then were split, with one portion powdered in an agate ball mill, and subsequently freeze-dried.

3.2 Geochemistry

Each powdered samples was analyzed for bulk sediment stable isotope composition at the Stable Isotope Laboratory, University of Southampton, UK. A known mass (~80 μg) was placed into a headspace vial, dried overnight, and flushed with helium. 10 mL of 100% phosphoric acid was added to each sample and allowed to react. The liberated CO$_2$ gas was measured using an EUROPA Scientific GEO 20-20 mass spectrometer fitted with a microCAPS for carbonate analysis. Results are reported in standard delta notation relative to Vienna Pee Dee Belemnite (VPDB). An in-house standard of Carrara Marble, calibrated to NBS-19 Limestone, was measured multiple times to evaluate accuracy and precision. The external analytical precision (1σ), based on these replicate analyses, was 0.028 ‰ for δ13C and 0.057 ‰ for δ18O.

The amount of CaCO$_3$ in each sample was calculated from the beam height response during isotope mass spectrometer measurements (Spofforth et al., 2010). The liberated CO$_2$ gas, when squeezed up in the bellows, is measured and generates a current, the beam height. The pressure of CO$_2$ gas is directly proportional to the beam height and therefore the mass of carbonate in the sample. Over 100 samples of pure CaCO$_3$, with masses between 200 and 480 μg, were analyzed to establish a linear relationship between beam height and carbonate content (CaCO$_3$ = mx + b; R^2 = 0.94 - 0.99). Results were validated by analyzing 30 samples on a C-H-N-O elemental analyzer.
The un-powdered sample split was examined for calcareous nannofossils. Raw sediments were processed to prepare standard smear slides (Bown and Young, 1998). To assess the reproducibility of our counting methods in every single sample, a pivotal sample was prepared 10 times by two different operators. Repeated counts of the identical sample performed by different analysts gave similar results (sd <2-5 %). Particle density estimates (Baccelle and Bosellini, 1965) were not carried out because samples have a high range in the terrigenous content (22 to 90 %). An increase or decrease of the silicoclastic component is mainly related to the major or minor efficiency of the chemical and mechanical weathering on land (Agnini et al., 2009). In the studied sediments, the variation in the amount of the terrigenous content through time has modified the density of the allochmic particle component. Consequently, calcareous nannofossil absolute abundances could not be estimated correctly using a homogeneous/constant particle density or by weighing the same amount of sediment for each smear slide. However, the scope of semi-quantitative counts performed in this study is to recognize the precise position of biostratigraphic biohorizons rather than use these data as a proxy of the paleoproductivity of taxa. Essentially, the identification of the appearance or disappearance of any given taxon is not affected by its stratigraphic abundance pattern, which obviously reduces the negative effect of the variable abundance of the silicoclastic component throughout the section. Samples were examined under a Zeiss light microscope at 1250× magnification. Calcareous nannofossils were determined using taxonomy proposed by Aubry (1984, 1988, 1989, 1990, 1999), Perch-Nielsen (1985) and Bown (2005).

A total of 200 samples were examined, providing an average time resolution of ca. 25 kyr. A preliminary qualitative estimate of the abundance and preservation state of calcareous nannofossil assemblages was performed for all samples. An initial large batch (185) was analyzed primarily to...
provide biostratigraphic control for the Cicogna section, and the basic results have been presented by Dallanave et al. (2009). We re-checked and refined the positions of some biohorizons by examining 15 additional samples, primarily across some of the CIEs, such as B1/B2, PETM, H1 and H2, and K/X (Cramer et al., 2003). The calcareous nannofossil biostratigraphic schemes used by Dallanave et al. (2009) were those of Martini (1971) and Okada and Bukry (1980). The new zonal scheme of Agnini et al. (2014) is also used here. Biohorizon nomenclature follows that given by Agnini et al. (2014): Base (B), Base common (Bc), Top (T) and Top common (Tc).

Calcareous nannofossil biostratigraphic results are based on semi-quantitative analyses, which is based on counts of the number of specimens of selected taxa present in a prefixed area, 1 mm2 or 3 long traverses (modified after Backman and Shackleton, 1983). Calcareous nannofossil paleoecological results are instead based on relative abundances of calcareous nannofossil taxa (percent of the total assemblage), calculated from counts of at least 300 specimens.

To capture changes in calcareous nannofossil assemblages we also use a statistical approach. Principal Component Analysis (PCA) was preferred to other methods, as for instance non-metric dimensional scaling (MDS) procedure for which a small number of axes are chosen prior to the analysis and the data are fitted to these dimensions (Hammer et al., 2001). However, non-metric MDS results were performed and are available as supplementary data (Figure S2). Multivariate Analysis Of Variance (MANOVA) was carried out on our dataset to determine if significative differences are present among the three groups of samples recognized with PCA analysis.

Principal component analysis (PCA) and MANOVA were performed on the percentages of 15 subgroups using the statistical software package, PAST ver. 2.17c (Hammer et al., 2001). Such the former analysis is often used for examining paleontological data (e.g., Buccianti et al., 2006; Kucera and Malmgren, 1998; Watkins and Self-Trail, 1992; Thibault and Gardin, 2010; Marino et al., 2012; Bordiga et al., 2015), as it can point out hypothetical variables (components) that explain much of
the variance in a multidimensional data set. The first principal component accounts for the most variability in any dataset examined. Each succeeding component has the highest variance possible relative to the preceding components (Hammer et al., 2001). This method also increases the symmetry, homoscedasticity and linearity of the data set (Aitchison, 1986). The chosen subgroups were: Chiasmolithus, Coccolithus, Ellipsolithus, Discoaster, Ericsonia, Fasciculithus, Girgisia, Octolithus, Prinsius, Sphenolithus, Toweius, Rhomboaster/Tribrachiatus, Zyghrablithus, reworked forms, and “others”.

4 RESULTS

4.1 Carbon isotopes

The bulk δ¹³C record for the Cicogna section can be described, in a general sense, as a long-term decrease of approximately 3‰, punctuated by a series of negative CIEs (Figure 4). The most prominent low in δ¹³C coincides with the CMU. Previously established polarity chron boundaries and key calcareous nanofossil biohorizons at the Cicogna section (Dallanave et al., 2009) provide very good stratigraphic framework. Once placed onto a common time scale, in this case WO-1 (Westerhold et al., 2008), the δ¹³C record at Cicogna is fairly similar to those generated using upper Paleocene and lower Eocene marine carbonate at other locations (Cramer et al., 2003; Zachos et al., 2010; Slotnick et al., 2012). This includes, for example, bulk carbonate δ¹³C records at ODP Site 1262, and DSDP Site 577 (Figure 5). The relatively high δ¹³C values near the base of the Cicogna section document the late stages of the PCIM, which was centered within C25r (Figure 1). The overall drop in δ¹³C across the section marks the long-term global decrease in δ¹³C that lasted through Chron C24n (Figure 1). The record contains multiple negative shifts in δ¹³C. There is, however, an intriguing difference: across the Cicogna section, the
long-term 3‰ shift in bulk carbonate δ^{13}C values is generally offset from that in bulk carbonate δ^{13}C records at Sites 1262 and 577 by approximately -1‰.

The superimposed CIEs are considered to correspond to CIEs found in δ^{13}C records from elsewhere, some of which represent known or inferred hyperthermal events (Cramer et al., 2003; Lourens et al., 2005; Nicolo et al., 2007; Zachos et al., 2010; Slotnick et al., 2012). There are three pairs of CIEs below the CMU (Figure 4), and during the initial upper Paleocene long-term decline in δ^{13}C. These correspond with the B1/B2, C1/C2 and D1/D2 CIEs documented by others (Cramer et al., 2003; Zachos et al., 2010). Notably, at Site 1262, the B1/B2 CIEs occur during middle C25n, and the C1/C2 CIEs occur at the start of C24r (Figure 5). The same is true at Cicogna. Interestingly, at Cicogna, the B2 and C2 CIEs show greater magnitudes than the B1 and C1 CIEs, and these paired excursions are more pronounced than at all other locations examined to date. An additional paired CIE occurs in the uppermost Paleocene (Figure 4). This may correlate to a fourth set of late Paleocene CIEs documented at Site 1262 (Zachos et al., 2010).

The lower Eocene portion of the δ^{13}C record at Cicogna (Figure 4) begins at the CMU, which marks the PETM (Giusberti et al., 2007; Dallanave et al., 2009). As at many locations, the PETM is characterized by a prominent negative CIE. The shift in δ^{13}C at Cicogna is approximately -2.5‰, a decrease that begins abruptly at 28.7 m and returns more gradually to near pre-excursion values by about 33 m. From approximately 33 to 54 m, the δ^{13}C curve shows a relatively smooth trend. At 54 m, a pair of CIEs begin, with the first pair having a magnitude of about 1.0‰. These are the H1/H2 events (Cramer et al., 2003), which occurred in the upper part of Chron C24r (Lourens et al, 2005; Zachos et al., 2010; Dickens and Backman, 2013; Dallanave et al., 2015). Above the H1/H2 CIEs, and within Chron C24n, are a series of smaller (0.4 to 0.6‰) CIEs. Those at approximately 60, 65 and 72 m, are correlated with the I1/I2, J and K/X events, respectively. In summary, the δ^{13}C record at Cicogna correlates with that at ODP Site 1262 (Zachos et al., 2010) and DSDP Site 577 (Dickens and...
Backman, 2013 (Figure 5), as well as at several other locations (Cramer et al., 2003; Slotnick et al., 2012; 2015b). This is important because it enables comparison and discussion between widely separated sedimentary records within a firm temporal framework.

4.2 Oxygen isotopes

The δ¹⁸O values range from -1.08 to -3.64 ‰ with a mean value of -1.96 ‰ and a standard deviation (1σ) of 0.50 ‰ (Figure 4). However, at the broad scale, δ¹⁸O increases upsection, with Paleocene samples averaging -2.10 ‰ and Eocene samples averaging -1.89 ‰. This trend is noteworthy because δ¹⁸O values should decrease upsection, if the composition of the CaCO₃ was principally reflecting rising global temperatures through the early Eocene. The 1σ of δ¹⁸O values also increases upsection, being 0.33 ‰ across Paleocene samples and 0.56 ‰ across Eocene samples.

There is virtually no correlation (r² = 0.014; r=0.12) between δ¹⁸O and δ¹³C values across all samples (Figure 6). However, most "short-term" CIEs do display decreases in δ¹⁸O (Figure 4). An interval of anomalously low δ¹⁸O values occurs from 39.9 m to 40.9 m, where the spatic calcite was observed.

4.3 Carbonate content

The CaCO₃ content varies between 9.4 and 77.7 % across the sample suite, with a mean value of 54.3 % and a 1σ of 8.2 % (Figure 4). Two important findings emerge from the CaCO₃ content record. First, from 39 m to 54 m, where we find limited variance in the δ¹³C curve, CaCO₃ content averages 52.1 % with a 1σ of 4.9 %. Thus, while the average is similar to that calculated for the entire section, the standard deviation is much less. At Site 1262, the corresponding time interval is also
characterized by limited variance in δ^{13}C values and carbonate contents, the latter inferred from the
abundance of Fe counts in XRF scans (Zachos et al., 2010). Second, across all samples, the CaCO_3
content co-varies somewhat (r=0.29) with δ^{13}C (Figure 6). This is because several lows in CaCO_3
content coincide with minima in δ^{13}C, as is obvious for the B1/B2, PETM and H1/H2 events (Figure
4).

4.4 Calcareous nanofossils

Calcareous nanofossils are generally abundant, diverse, and moderately well preserved. The sole
exception is across a 10 cm interval from 28.75 to 28.85 m, which corresponds to the onset of the
CIE that marks the PETM. The three samples from this interval are virtually barren of calcareous
nanofossils.

Secondary overgrowth of calcite can partially or wholly blur species-specific morphological
features. Such diagenetic alteration, however, only marginally influences the relative, semi-
quantitative and absolute abundance of calcareous nanofossil taxa (Toffanin et al., 2013). Calcite
dissolution, on the other hand, can significantly affect the relative abundances of various calcareous
nanofossils within a given volume of sediment. This is because the removal of more dissolution
susceptible taxa, such as Toweius and holococcoliths, necessarily increases the abundance of less
dissolution susceptible taxa, such as discoasters (Roth and Thierstein, 1972; Adelseck et al., 1973;
Roth, 1983; Bornemann and Mutterlose, 2008; Toffanin et al., 2013). In general, moderate to strong
calcite dissolution also decreases the total abundance of calcareous nanofossils within a given
volume of sediment (Adelseck et al., 1973; Toffanin et al., 2011). In the Cicogna section, calcite
overgrowth on discoasters is the prevalent process affecting calcareous nanofossil assemblages
(Plate 1). Most assemblages display high abundances (>1000 specimens/mm^2) and a high diversity,
which include more fragile taxa. It follows that dissolution has not severely altered most assemblages in samples from the Cicogna section. Rather, the calcareous nannofossil record is considered to represent a genuine paleoecological signal.

Nannofossil assemblages from the Cicogna section display several general trends (Figures 7-9). At the most basic level, there is a decrease in the total number of nannofossils (N/mm²) with decreasing age. Paleocene samples average approximately 2600 specimens/mm², whereas Eocene samples above the H1/H2 events average approximately 1200 specimens/mm². This decrease in abundance broadly corresponds to a change in calcareous nannofossil composition, as supported through a series of additional observations at the Cicogna section (Figures 7-9):

- Coccolithus and Toweius constitute nearly half of the assemblages considering the entire section. However, these genera show a clear decrease in abundance upsection, with a mean value of 60% in Paleocene samples and 35% in Eocene samples;

- Zygolabolithus bijugatus shows a low mean value of approximately 4% in the Paleocene, followed by a sharp increase in the basal part of the Eocene, and a mean value of approximately 25% upsection in the Eocene. Hence, the abundance of this taxon expands on behalf of Coccolithus and Toweius;

- Sphenolithus decreases progressively during the Paleocene, suddenly disappears at the onset of the PETM, before returning to and exceeding pre-PETM values in the lower Eocene. Thus, the abundance of sphenoliths also expands on behalf of Coccolithus and Toweius;

- Fasciculithus shows a severe decline in abundance and species diversity at the onset of the PETM (28.70 m), leading up to their extinction at 34.73 m;

- Octolithus is rare throughout most of the studied section, but displays high abundances from approximately 14.7 m to 27.5 m in the upper Paleocene;
• *Discoaster* does not show any distinct change in abundance except for a single peak at the onset of the PETM;

• Several Cretaceous and early Paleocene species constitute minor reworked components throughout the section. Notably, the intervals marked by the PETM, H1/H2 and, to a lesser extent, B1/B2 CIEs are characterized by higher abundances of these reworked components;

• Representatives of placolith genera, such as *Prinsius, Ericsonia, Chiasmolithus* and *Girgisia*, are minor components of most samples. *Prinsius* displays a marked permanent decrease in abundance from a mean value of approximately 6% to 2.5% across the Paleocene/Eocene boundary. By contrast, *Ericsonia* does not show a prominent difference in abundance between Paleocene and Eocene assemblages, but increases in abundance during known and suspected hyperthermal events;

• The Calcareous Nannofossil Excursion Taxa (CNET), which include *Discoaster araneus* and the genus *Rhomboaster* are present during the CIE of the PETM. The evolution of the *Rhomboaster/Tribrachiatus* plexus started at the onset of the PETM, when *Rhomboaster* and *T. bramlettei* first appeared, and continued into the lower Eocene with the successive appearances of *T. contortus* and *T. orthostylys* (Raffi et al., 2005; Agnini et al., 2006; 2007b).

Beyond the above variations, evolutionary appearances and extinctions occur during the studied time interval (Figures 7-9). Most of these species belong to *Discoaster, Sphenolithus* and the *Rhomboaster/Tribrachiatus* lineage, and include *D. multiradiatus, D. diastypus, D. lodoensis, S. radians, S. anarrhopus, T. bramlettei, T. contortus* and *T. orthostylys*. The biohorizons defined using these species are exceptionally useful for biostratigraphy and, interestingly, often occur close to changes in δ^{13}C.

All assemblage data were used for PCA analysis. This indicates that PC1 (41.3%) and PC2 (14.7%) together account for 56% of the variance in the dataset. The PCA graph (Figure 10A; Figure S1...
supporting material) shows that samples can be easily subdivided into three subgroups. The first two populations of samples are distinguished because of their different positions along the x-axis (PC1). The third population is much more dispersed but a possible discrimination can be separated from the other two seems to be because hypothesized because of its different position along the y-axis (PC2). The use of a different statistical procedure, as for instance MDS, does not substantially change these results (Figure S2). To further support the subdivision of the study samples in three subgroup, we applied the MANOVA analysis to our data set (Figure 10B). The result clearly confirmed that that Paleocene, PETM and Eocene samples are in fact isolated one from each other.

5 DISCUSSION

5.1 Integrated stratigraphy and a carbon isotope template

Polarity chron boundaries and calcareous nannofossil biohorizons (Table 1; Figure 4) provide a solid stratigraphic framework for the Cicogna section. Calcareous nannofossil biohorizons, including additional ones defined here, align in same stratigraphic order when compared to other locations, such as ODP Site 1262 and DSDP Site 577 (Table 1; Figure 11). The Cicogna section represents sediment accumulation between 57.5 and 52.2 Ma on the WO-1 time scale (Dallanave et al., 2009). The average SR was ca.15.2 m/Myr, although this must have varied (Figures 3, 11). The CMU, which marks the “core” of the PETM and ca. 80-100 kyr, showing a higher sedimentation rate than much of the remaining record (Dallanave et al., 2009; Krishnan et al., 2015). Once placed into the above stratigraphic framework, the bulk carbonate δ¹³C profile documented at Cicogna correlates well to that generated at ODP Site 1262 (Figure 5). In fact, it is similar to δ¹³C profiles generated at multiple locations (Figure 2, Figure S4), as long as records have
been properly calibrated in both the depth and time domains. This includes accounting for core stretching and core gaps at scientific drilling sites, such as at DSDP Site 577 (Dickens and Backman, 2013), and accounting for changes in strike and dip along land sections, such as done at Cicogna (Figure 3). During late Paleocene and early Eocene times, the Cicogna section records the long-term decrease in δ13C. Superimposed on this drop were multiple, often paired, negative CIEs. The PETM definitively represents the most prominent CIE, but several other CIEs occurred before and after. Importantly, the relative positions of polarity chron boundaries, key calcareous nannofossil biohorizons and CIEs at Cicogna align well with those found at other locations (Table 1; Figures 5, 11).

A clearly recognizable δ13C pattern spans the late Paleocene through the early Eocene at several locations (Cramer et al., 2003; Nicolo et al., 2007; Galeotti et al., 2010; Zachos et al., 2010; Slotnick et al., 2012, 2015b), although the total number of CIEs remains uncertain. At Cicogna, the problem lies in the interval surrounding the K/X event, which broadly corresponds to the start of the EECO (see discussion in Slotnick et al., 2012). We cannot confirm with our sample resolution whether a series of short-term, small amplitude CIEs mark this time, an idea suggested from δ13C records of the Clarence Valley sections (Slotnick et al., 2012; 2015b). However, as at other locations, such as Site 1262, no significant CIEs occurred within the 1.6 Myrs between the PETM and the H-1/ETM-2 event (Figure 5).

The time-correlative δ13C template implies changes in the mean ocean δ13C of dissolved inorganic carbon (DIC). In turn, these compositional changes very likely represent variations in fluxes of highly 13C-depleted carbon to and from the ocean or atmosphere, such as changes in the release and storage of organic carbon (Shackleton, 1986; Dickens et al., 1997; Kurtz et al., 2003; Deconto et al., 2010; Komar et al., 2013). The δ13C record at Cicogna offers no direct insight on the location of this carbon (e.g., seafloor methane, permafrost, peat). However, it does support an important
concept: the magnitudes of given CIEs appear somewhat related to one another and to the long-
term $\delta^{13}C$ record. In particular, the PETM occurred about halfway between the long-term high and
low in $\delta^{13}C$, and heralded a relatively long time interval lacking CIEs. A generic explanation is that a
very large mass of ^{13}C-depleted carbon was injected from some organic reservoir into the ocean or
atmosphere during the PETM, and that the reservoir needed to recharge for considerable time
before the next injection (H-1/ETM-2) could occur (Dickens et al., 2003; Kurtz et al., 2003; Lunt et
al., 2011; Komar et al., 2013).

The overall -1‰ offset of the $\delta^{13}C$ curve between the records at Cicogna and at Sites 577 and
1262 (Figure 5) warrants brief discussion. It probably does not reflect wholesale diagenesis and
resetting of the primary signal at any of these sections. Otherwise, a recognizable correlative $\delta^{13}C$
record and well-preserved nannofossils (Plate I) would not be found at all three locations. In fact, it
is difficult to modify the original $\delta^{13}C$ composition of carbonate over appreciable distance (> than
several meters) in marine sedimentary sequences dominated by fine grained calcite, even those
now exposed on land as lithified rock, such as at Cicogna or in the Clarence Valley. This is because
the carbon water/rock ratio remains low, because almost all carbon exists in carbonate, and because
temperature minimally influences carbon isotope fractionation (Matter et al., 1977; Scholle and
Arthur, 1980; Frank et al., 1999). Instead, the offset in the $\delta^{13}C$ curves probably relates to differences
in the composition of the original carbonate, a concept that we return to later.

However, local dissolution and re-precipitation of carbonate definitely has occurred in the
Cicogna section. This can be observed in the overgrowths of secondary calcite on discoasters and
Rhomboaster/Tribachiatus (Plate I). This process should dampen the original CIEs, because on the
meter-scale, dissolution and re-precipitation of carbonate would involve $\delta^{13}C$ gradients in the DIC
of surrounding pore water (Matter et al., 1977; Scholle and Arthur, 1980). This may explain, in part,
why the magnitude of early Paleogene CIEs in bulk carbonate records are often muted relative to those found in other carbon-bearing phases (Slotnick et al., 2015b).

5.2 Oxygen isotopes and a problem recording past temperatures

The δ^{18}O record at Cicogna is intriguing because many of the CIEs are characterized by negative excursions but absolute values of δ^{18}O generally and unexpectedly increase upsection (Figure 4). Similar results have been documented in bulk carbonate stable isotope records at other locations, such as ODP Site 1215 (Leon-Rodriguez and Dickens, 2010) and Mead Stream (Slotnick et al., 2012). Even the δ^{18}O record of bulk carbonate at Site 1262 shows minimal long-term change from the late Paleocene to the early Eocene (Zachos et al., 2010), the time when high-latitude surface temperatures and deep ocean temperatures presumably increased by 5-6 °C, and one might expect a >1 ‰ decrease in the δ^{18}O of marine carbonate. Like previous workers, we cannot discount the notion that temperatures at low and high latitudes responded differently across the early Paleogene (Pearson et al., 2007; Huber and Caballero, 2011). Unlike for carbon isotopes, however, local dissolution and re-precipitation of carbonate should significantly impact the δ^{18}O of marine carbonate. This is because the oxygen water/rock ratio would be high before lithification, and because temperature strongly influences oxygen isotope fractionation (Matter et al., 1975; Scholle and Arthur, 1980; Frank et al., 1999). In general, as calcite-rich sediments and surrounding pore water are buried to higher temperatures along a geothermal gradient, local dissolution and re-precipitation of carbonate shifts carbonate δ^{18}O to lower values (above references; Schrag et al., 1995). It is likely that, during sediment burial, the bulk carbonate δ^{18}O records in many lower Paleogene sections, including at Cicogna, have been modified. We suggest that a signal of surface ocean temperature changes remains in the Cicogna
section, which gives rise to short-term $\delta^{18}O$ excursions that coincide with CIEs and several known or suspected hyperthermal events. However, the entire $\delta^{18}O$ record at this location likely has shifted to more negative values preferentially with increasing burial depth and age. This partly explains the observed relationship between bulk carbonate $\delta^{13}C$ and $\delta^{18}O$, which lies along a trajectory expected for diagenesis (Figure 6). A potential test of this idea would be to show that the overgrowths on nanofossils (Plate I) have a significantly lower $\delta^{18}O$ than the primary core carbonate of nanofossil tests.

5.3 Calcareous nanofossil assemblages within the context of correlative stable isotope records

A detailed stable carbon isotope curve provides a powerful tool to place past changes in calcareous nanofossil assemblages into a highly resolved framework. This is because, as implied above, truly global changes in the $\delta^{13}C$ composition of the ocean should occur within the cycling time of carbon through ocean, which is $<$2000 years at present-day and presumably for the entire Cenozoic (Broecker and Peng, 1982; Shackleton, 1986; Dickens et al., 1997).

Across the study interval at Cicogna, several calcareous nanofossil taxa appear or disappear (Table 1). Moreover, their abundances also change between these horizons (Figures 7-9). One might hypothesize that these changes in nanofossil assemblages were related to the established (e.g., the PETM, H1/ETM-2 and K/X) and potential (e.g., the B1/B2, I1/I2) hyperthermal events that occurred during the late Paleocene and early Eocene (Figures 1, 5). However, the timing between recorded evolutionary appearances and extinctions of calcareous nanofossils and perturbations in $\delta^{13}C$ are variable (Figures 7-9). For instance, several significant calcareous nanofossil changes observed close to H1/H2 hyperthermals (e.g., B T. ohostylus, B S. radians, B S. villae, Tc D. multiradiatus, T T. contortus) predate these events. By contrast, several biotic changes observed
close to the B1/B2 CIEs (e.g., B. delicatus, Tc S. anarrhopus, B. multiradiatus, T. Ericsonia robusta) happened at the end of these events. The PETM seems to provide the only case when a negative CIE precisely corresponds to major changes in calcareous nanofossil assemblages.

Profound changes in calcareous nanofossil assemblages occurred across the PETM in several locations (Figure 2), both in terms of relative abundances and increases in origination and extinction rates (Aubry, 1998; Bown et al., 2004; Raffi et al., 2005; Gibbs et al., 2006a; Agnini et al., 2007a; Self-Trail et al., 2012). At Cicogna, the assemblages show remarkable, though mostly transient, relative abundance variations across the PETM, including an increase in Coccolithus, a decrease in Zygrhablithus, Sphenolithus, Toweius and Prinsius, and an extinction of most fasciculith species (Figure 8). Not surprisingly, these changes are very similar to those in the Forada section, which is also located in the Belluno Basin (Agnini et al., 2007a).

Although these changes in relative abundance of taxa alone represent a notable difference with respect to background conditions, most of the changes are transient and/or local when compared with other datasets (Bralower, 2002; Gibbs et al., 2006b; Agnini et al., 2007b; Angori et al., 2007; Mutterlose et al., 2007). For instance, an increase in abundance of Discoaster and Fasciculithus was reported for some of the PETM section studied (e.g., Bralower, 2002; Tremolada and Bralower, 2004; Raffi et al. 2009), but these assemblage variations were not observed in other sections (e.g., Gibbs et al. 2006; Agnini et al., 2007a; Self-Trail et al., 2012). The only global calcareous nanofossil assemblage features of the PETM are represented by the evolutionary appearance of Rhomboaster/Tribichiatius lineage, the presence during the CIE of short-lived species such as Discoaster areneus, and the disappearance of several species of fasciculiths (Raffi et al., 2005; Agnini et al., 2007a).

While changes in calcareous nannoplankton assemblages during the PETM have been investigated at high resolution at different locations (e.g., Bralower, 2002; Gibbs et al., 2006b; Agnini et al., 2007a),
et al. 2007a), the longer-term perspective in which such changes occurred during the early Paleogene has remained uncertain (Gibbs et al., 2012). The record at Cicogna provides this opportunity.

The PCA analysis of calcareous nannofossil census data (%) indicates that two principal components (PC1 and PC2) account for most (56.0 %) of the variability in our 15 selected subgroups. Such analysis also permits the studied samples to be subdivided into three populations and a possible widely dispersed group (Figure 10A). The first two populations are distinguished because of a major difference along the -x-axis representing PC1, whereas the third population seems to stand out because of a significant difference along the y-axis representing PC2. Importantly, each of these three populations constitutes a homogeneous group in the time domain: Group 1 includes all upper Paleocene samples (Paleocene samples and B1/B2 events); Group 2 consists of almost all lower Eocene samples (Eocene samples, H1/H2 events and K event); Group 3 comprises samples that span the PETM (both core and recovery), and two samples that come from sediment deposited during the core of the H1 and B2 events (Figure 10). These results indicate that late Paleocene calcareous nannofossil assemblages are statistically different in their composition from those of early Eocene samples. Moreover, the calcareous nannofossil assemblages across the PETM, and the climax of the B2 and H1 events, are statistically different from those of either the late Paleocene or the early Eocene. We performed a MANOVA analysis, which pointed out that ellipses containing 95%-of the data points for each group (late Paleocene, early Eocene and PETM) are virtually not overlapping one to each other suggesting that three statistically different populations are recognized across the PETM, the late Paleocene and the early Eocene background assemblies, and the PETM fossil associations.
The general shift in the relative abundance of placoliths (i.e., \textit{Coccolithus}, \textit{Toweius} and \textit{Prinsius}), the major component of the late Paleocene assemblages, to nannoliths/holococcoliths (i.e., \textit{Sphenolithus} and \textit{Zygrhablithus}), the major component of the early Eocene assemblages, largely explains the PC1 component or Axis 1 (Figure 10). By contrast, the dramatic shift toward negative values in the PC2 component or Axis 2 during the PETM happens because of the increase of \textit{Ericsonia} and reworking and the presence of \textit{Rhomboaster-Tribachiat}us plexus. Presumably, this relates to peculiar paleoenvironmental conditions that developed during the event. One can hypothesize that this may have been a major difference in the physicochemical parameters of sea surface waters, such as higher temperatures, higher nutrient concentration or reduced carbonate saturation state.

Statistical analysis of our data from Cicogna does not highlight any prominent short-term changes in calcareous nannofossil assemblages, other than across the PETM and perhaps the B2 and H1 events. However, several biohorizons occur around the B1/B2 events. Specifically, these are the Bc \textit{Z. bijugatus}, the brief high abundance of \textit{Octolithus} spp., the evolutionary onset of the \textit{D. delicatus}/\textit{D. multiradiatus} lineage, the presence of the short-ranged \textit{E. robusta}, the final radiation of late Paleocene fasciculiths (i.e., \textit{F. richardii} group, \textit{F. hayi}, \textit{F. lilianae}, \textit{F. alanii}), and the Tc of \textit{S. anarrhopus}. All these happened at Cicogna and at Site 1262 within Chron C25n (Agnini et al., 2007b; Dallanave et al., 2009; Figure 11), which spanned only 0.54 Myr (Westerhold et al., 2008). These near-synchronous events are intriguing because while the various nannofossils represent only minor components of late Paleogene assemblages, they were destined to become either an abundant constituent of Eocene populations (e.g., \textit{Z. bijugatus} and the \textit{D. delicatus}/\textit{D. multiradiatus} lineage), or extinct after having been a distinctive element of Paleocene assemblages (e.g. \textit{Fasciculithus} spp. and \textit{S. anarrhopus}). Following the PCIM, the long-term increase in temperature and decrease in δ^{13}C (Figure 1) coincided with a series of minor changes in nannofossil assemblages, which subsequently became important, presumably for evolutionary reasons.
Similar to the late Paleocene, calcareous nanofossil assemblages after the PETM do not show major rearrangements of common taxa during the early Eocene. Instead, minor components of these assemblages exhibit a sequence of closely spaced biohorizons. The sequence of these biohorizons is: T Fasciculithus, B D. diastypus, B T. contortus, T T. bramlettei, Tc D. multiradiatus, T T. contortus, B T. orthostylus, B S. radians, T D. multiradiatus, B D. lodoensis, B G. gammation and Bc D. lodoensis (Table 1). Within the resolution of available paleomagnetic and δ13C data, all these biohorizons are virtually synchronous between the Cicogna section and ODP Site 1262 (Figure 1). They also almost all occurred in near synchrony at Site 577 (Dickens and Backman, 2013), although the precise correlation remains uncertain, given problems with coring disturbance and subtleties in age models at this location.

Importantly, for stratigraphic purposes, the B and Bc of D. lodoensis are approximately coeval at all three locations and spaced apart by about 750 kyr. Unless one examines samples in detail, these two biohorizons can be confused and result in an erroneous assignment of early Eocene ages. The evolutionary appearances and extinctions amongst early Eocene nanofossil assemblages may suggest the presence of uneven communities living in an extreme climate in which alterations of environmental conditions, even minor, might trigger evolutionary changes or prominent variations in abundances of a limited number of taxa that typically do not represent the dominant component of assemblages. Explained possible explanation is a generally higher tolerance of cosmopolitan taxa to variations in environmental conditions (Boucot, 1975; Winter et al., 1994). In contrast, highly specialized taxa that are adapted to a particular ecological niche, may display greater sensitivity to modifications in the photic zone environment (MacArthur and Wilson, 1967; Pianka, 1970; Baumann et al., 2005).

In summary, several genera of calcareous nanofossils, such as Rhomboaster, Tribrachiatus, Sphenolithus, Discoaster and Zygryabolithus were, at least to some extent, affected during the late
Paleocene-early Eocene transition, because they show an increased rate of taxonomic evolution (Figure 1). However these genera are all minor groups in terms of overall abundance, at least in most lower Paleogene sediment sequences, and they all belong to nannoliths and holococcoliths. It appears that these organisms were more sensitive to environmental changes than heterococcoliths, for example the cosmopolitan genera *Coccolithus* and *Toweius*.

5.4 Early Paleogene calcareous nannofossil evolution

Any comprehensive paleoenvironmental interpretation involving early Paleogene calcareous nannofossils remains tentative because many taxa, such as *Rhomboaster/Tribrachiatus*, *Discoaster*, *Sphenolithus* and *Zygosphrhabilitus*, are extinct. Still, some single species or species groups are considered to be useful for reconstructions of paleoenvironmental conditions (Geisen et al., 2004). With that viewpoint, and with an understanding of modern holococcolith/nannolith ecology and classical biogeographical model, we provide a scenario regarding late Paleocene-early Eocene calcareous nannofossil evolution.

Modern holococcolithophores have numerous tiny rhombohedral calcite crystallites, and are considered as haploid stages of certain heterococcolithophores, which can live in just about any marine photic zone environment, although higher abundances and diversity are typical in oligotrophic settings (Billard and Inouye, 2004). The most common Paleogene holococcolith was *Zygosphrhabilitus bijugatus*. This taxon has been interpreted as a K-specialist more adapted to stable environments and oligotrophic conditions (Aubry, 1998; Bralower, 2002; Tremolada and Bralower, 2004; Agnini et al., 2007a; Self-Trail et al., 2012). Nannolith is a term used to describe peculiar morphotypes usually observed in association with coccoliths, but lacking the typical features of heterococcoliths or holococcoliths. *Ceratolithus cristatus*, a modern nannolith, has been observed...
on the same cell together with *Neosphaera coccolithomorpha* (Alcolber and Jordan, 1997), suggesting that the nannolith stage (*C. cristatus*) corresponds to the holococcolith stage in other taxa (Young et al., 2005). Paleogene nannoliths include taxa with peculiar morphologies such as *Discoaster*, *Fasciculithus* and *Sphenolithus*. These genera often have been associated with warm waters and oligotrophic environments and are almost unanimously interpreted as K-specialists (Haq and Lohmann, 1976; Backman, 1986; Wei and Wise, 1990; Bralower, 2002; Gibbs et al., 2004; 2006a; 2006b; Agnini et al., 2007a). K specialists fluctuate at or near the carrying capacity (K) of the environment in which they thrive (MacArthur and Wilson, 1967), and are usually characterized by long individual life-cycles and low reproductive potential. The K-specialist strategy is advantageous in highly stable, typically oligotrophic environments, which allows the evolution of stenotopy and where organisms compete by specialization and habitat partitioning (Hallock, 1987; Premoli Silva and Sliter, 1999). The narrow range of adaptability to changes in habitat or ecological conditions stimulates a rapid speciation.

At present, it is commonly accepted that modern holococcoliths and nannoliths are not produced by autonomous organisms; rather, they are stages in the life cycle of coccolithophores., Moreover, the passage between the two stages may be triggered by environmental factors (Billard and Inouye, 2004).

Hence, though Paleogene holococcoliths/nannoliths have no direct descendants in present-day oceans, they may very well have shared similar physiological features and life cycles with modern taxa. Assuming this is the case, the increase in the relative abundance of holococcoliths and nannoliths at the expense of heterococcoliths as well as the higher rates of evolution shown by holococcoliths and nannoliths may suggest conditions in which highly specialized taxa could flourish and rapidly evolve. This scenario is consistent with the idea, based on laboratory and modern ocean data, that the calcareous nanoplankton response to environmental change is species or group
specific rather than homogeneous across the entire assemblage (Riebesell et al., 2000; Langer et al., 2006; Iglesias-Rodriguez et al., 2008; Lohbeck et al., 2012). Variations in the thermal and chemical structure of photic zone waters may thus account for the observed changes in the early Paleogene calcareous nannofossil assemblages.

5.5 Carbon isotope of surface waters during the early Paleogene

Like at Cicogna, well-preserved calcareous nannofossils dominate bulk sediment carbonate contents of early Paleogene strata at Sites 577 and 1262 (Backman, 1986; Zachos et al., 2004; Dickens and Backman, 2013). Given that the nannofossil assemblages are fairly similar (Figure 1), a really basic question returns: why is the overall early Paleogene bulk carbonate δ13C record at Cicogna less by approximately 1 ‰?

A variety of explanations for the δ13C offset can be offered. For example, sediments at Cicogna had greater amounts of organic matter, and during burial diagenesis, a fraction of this carbon was consistently added so as to decrease the δ13C of pore water DIC. We note, though, that Corg contents (wt %) at the proximal Forada section generally have values less than 0.1 wt % (Giusberti et al., 2007). Similar Corg contents are found at ODP Site 1262, where values range from 0.0 to 0.3 wt % (Zachos et al., 2004).

A cursory examination of early Paleogene bulk carbonate δ13C records from other sites of the North Atlantic/western Tethys region (e.g., Sites 550 and 1051; Figure 2) shows a commonality: these locations also display negative 0.5 to 1 ‰ offsets relative to correlative records at Sites 577 and 1262 (Cramer et al., 2003). The δ13C of DIC in modern surface waters (<100 m) ranges by about 2 ‰, because of the differences in temperature, primary productivity and water mass mixing (Kroopnick, 1985; Tagliabue and Bopp, 2008). Notably, however, gradients in δ13C of surface water
DIC are gradual, such that large regions have fairly similar values. It is possible that bulk carbonate
$\delta^{13}C$ values in early Paleogene North Atlantic sections record lower values than locations near the
Equator or in southern latitudes because of past ocean circulation.

6 SUMMARY AND CONCLUSIONS

We generate records of bulk carbonate $\delta^{13}C$ and $\delta^{18}O$, CaCO$_3$ content and calcareous nannofossil
assemblages from the Cicogna section, a marine sedimentary succession that now crops out along
a stream in the Southern Alps of northeast Italy. The combined geochemical and calcareous
nannofossil results allow us to generate a detailed stratigraphy for the section, as well as to explore
relationships between stable isotope variations and nannofossil assemblages. Most lower
Paleogene sections examined to date lack such coupled data sets.

The $\delta^{13}C$ record and calcareous nannofossil assemblages show that the section spans \sim5.3 Myr
of the late Paleocene and early Eocene interval, from 57.5 to 52.2 Ma on the WO-1 timescale. This
is consistent with previous paleomagnetic information and preliminary calcareous nannofossil
biostratigraphy (Dallanave et al., 2009), but provides a more detailed stratigraphic framework, one
appropriate for correlations to other locations around the world. In particular, the fairly well
resolved $\delta^{13}C$ record shows long-term and short variations that correspond to those found in several
other sections, including an established series of negative CIEs. The most prominent CIE marks the
PETM, while other less pronounced CIEs represent the H-1, K/X and other “events” documented
elsewhere. The $\delta^{13}C$ variations observed at Cicogna clearly reflect global changes in the fluxes of
carbon to and from the ocean and atmosphere.

PCA analysis of calcareous nannofossil assemblages shows three distinct sample clusters. Late
Paleocene and early Eocene assemblages were distinctly different from each other and from that of
Indeed, the PETM, the most intense hyperthermal during the late Paleocene - early Eocene, was characterized by a unique calcareous nannofossil assemblage composition. This suggests that the brief episode of extreme warming permanently modified the composition of calcareous nannoplankton through an increase in the rate of taxonomic evolution (Gibbs et al., 2006a). Less prominent hyperthermal events do not show significant variations in the main components of assemblages, but rather were characterized by a series of changes affecting a limited number of rare taxa. These taxa may have been less tolerant to environmental changes in their habitats.

More common taxa, essentially consisting of placoliths, such as the cosmopolitan Coccolithus and Toweius, display a progressive long-term decrease interrupted by transient changes in their relative abundance but virtually no extinction or origination events occur in these groups during the pertinent time interval. Species belonging to nannoliths and holococcoliths (Discoaster, Fasciculithus, Rhomboaster/Tribrachiatus, Sphenolithus and Zygrhablithus), generally show a higher rate of evolution and a higher concentration of biohorizons close to δ^{13}C perturbations. In conclusion, calcareous nannoplankton show a different response of the various components of the assemblages, this is consistent with a species or taxonomic unit sensitivity of calcareous phytoplankton to paleoenvironmetal perturbations. This evolutionary climate-forced model is supported by data from ODP Site 1262, which demonstrate that these changes are global and synchronous between middle latitudes in the western Tethys region and the South Atlantic.

7 ACKNOWLEDGMENTS

CA would like to thank Carlotta Betto for preparing smear slides for calcareous nannofossil analyses. We also acknowledge valuable comments from the referees two anonymous reviewers. Funding for this work came from several sources. Primary support came from a MIUR grant to CA,
JD acknowledges support from the Swedish Research Council. GRD received funding from a National Science Foundation (NSF) grant (NSF-FESD-OCE-1338842).
Figure 1. Middle Paleocene to middle Eocene (64 to 48 Ma) stable isotope (δ^{13}C and δ^{18}O) records of benthic foraminifera from multiple locations (Zachos et al., 2008) placed on the Option 1 (W01) time scale of Westerhold et al. (2008). Also shown are positions of polarity chrons and calcareous nannofossil biozones for this time interval, both from the CP Biozone scheme (Okada and Bukry, 1980) and the CN Biozone scheme (Agnini et al., 2014). Various “events” are noted within this chronostratigraphic framework, including the Paleocene carbon isotope maximum (PCIM), the Paleocene-Eocene thermal maximum (PETM), the H-1/ETM-2 event, the K/X event, and the Early Eocene Climatic Optimum (EECO). To the right is the general lithologic column and magnetostratigraphy of the Cicogna section (Dallanave et al., 2009).

Figure 2. Paleogeographic map indicating approximate locations at 55 Ma for several key sites with detailed stable isotope records across the late Paleocene and early Eocene. These include (marked with black dots and star) the Cicogna section (NE Italy, this study), DSDP Site 577 (Shatsky Rise, Dickens and Backman, 2013), ODP Sites 1051 (Blake Nose, Ogg and Bardot, 2001), 1215 (central Pacific, Raffi et al., 2005), and 1262 (Walvis Ridge, Westerhold et al., 2008), and the Clarence Valley (CV) sections (New Zealand, Slotnick et al., 2015b). The grey areas represent plate fragments, while the black lines show present-day shorelines. Boxes next to site locations show average sedimentation rates from the base of Chron C25n to the base of Chron C23r (57.20 - 52.36 Ma). The base map is from http://www.odsn.de/odsn/services/paleomap/paleomap.html. Red triangles are locations where a decrease in diversity of Fasciculithus spp. has been documented near the PETM. Locations include the Clarence Valley sections, central Pacific (ODP Sites 1215, 1220, 1221), western Pacific (DSDP Site 577 and ODP Site 865), South Atlantic (Walvis Ridge, DSDP Site 527, ODP Sites 1262,1263-1267; Maud Rise, ODP Site 690), equatorial Atlantic (Ceara Rise, ODP Site 929, Demerara
Rise, ODP Sites 1259, 1260, northwestern Atlantic (New Jersey Margin land sections, ODP Site 1051, IODP Site U1403, U1409), northeastern Atlantic (Bay of Biscay DSDP Sites 401, 549 and 550, Zumaya land section), Indian Ocean (DSDP Site 213; ODP 672; Kerguelen Plateau, ODP Site 1135) (Backman, 1986; Aubry, 1999; Bralower, 2002; Dupuis et al., 2003; Tremolada and Bralower, 2004; Bralower and Mutterlose, 1995; Monechi et al., 2000; Gibbs et al., 2004; Raffi et al., 2005; Agnini et al., 2007; Angori et al., 2007, Mutterlose et al., 2007; Jiang and Wise, 2009; Shamrock, 2010; Norris et al, 2014; Dallanave et al., 2015).

Figure 3. The location and representative photographs of the Cicogna section in northeast Italy. (a) Geographic map showing the main Late Cretaceous–early Paleogene paleogeographic domains of the Italian Southern Alps (modified after Cati et al., 1989); (b) Geological map of the local area (modified after Costa et al, 1996 indicating also the location of the Cicogna section (red asterisk); (c) Alternating beds of Paleocene gray-green marls and calcareous marls (0-20 m); (d) The Scaglia Rossa sensu latu overlain by the Belluno Flysch; (e) Marl/calcareous marl couplets in the lower Eocene portion of the section (approximately 40.0-70.0 m); (f) The base of the Clay Marl Unit, which denotes the onset of the PETM (approximately 28.7-29.3 m); (g) The brownish-red interval of clayey marls with sporadic grey-green cm-scale spots and lenses, the CMU, overlain by prominent rhythmic alternations of marls and calcareous marls (approximately 28.7-33.0 m).

Figure 4. The Cicogna section with records of bulk carbonate δ¹³C and δ¹⁸O data, and CaCO₃ content. Calcareous nanofossil biostratigraphy (CP and NP biozones) and magnetostratigraphy are after Dallanave et al. (2009), CN biozones are also reported. Orange and yellow bands mark major δ¹³C excursions. Dashed lines indicate minor CIEs that have been labeled elsewhere (e.g., E1/E2, F and
whereas dotted lines indicate minor changes in δ¹³C that appear to occur also at ODP Site 1262 (see also Figure 5).

Figure 5. Stratigraphic correlation between upper Paleocene and lower Eocene sections at Cicogna, ODP Site 1262 (Zachos et al., 2010), and DSDP Site 577 (Cramer et al., 2003; Dickens and Backman, 2013). All three sites have independently derived nannofossil biohorizons, polarity chron and δ¹³C records, which account for subtle temporal offsets. Color bands and symbols are the same as in Figure 4. Note the missing record at Site 577 that corresponds with known core gaps.

Figure 6. Plots of (a) bulk carbonate δ¹³C versus bulk oxygen δ¹⁸O, and (b) bulk carbonate δ¹³C versus CaCO₃ content for samples from the Cicogna section. The black arrow shows the expected effect of burial diagenesis. Grey and black dash lines are linear trendlines for Paleocene and Eocene samples, respectively. Note the clear distinction in δ¹³C for Paleocene and Eocene samples, which relates to a long-term decrease in δ¹³C (Figure 5).

Figure 7. Relative (%) and semi-quantitative (N/mm²) abundances of selected calcareous nannofossil genera across the Cicogna section. Also shown are the lithostratigraphy, magnetostratigraphy, biostratigraphy and carbon isotope (δ¹³C) stratigraphy at the Cicogna section (Figure 4). Color bands and symbols are the same as in previous figures.

Figure 8. Relative (%) and semi-quantitative (N/mm²) abundances of selected, mainly late Paleocene, calcareous nannofossil taxa across the Cicogna section. Also shown are the lithostratigraphy, magnetostratigraphy, biostratigraphy and carbon isotope (δ¹³C) stratigraphy at the Cicogna section (Figure 4). Color bands and symbols are the same as in previous figures.
Figure 9. Relative (%) and semi-quantitative (N/mm²) abundances of selected, mainly early Eocene, calcareous nannofossil taxa across the Cicogna section. Also shown are the lithostratigraphy, magnetostratigraphy, biostratigraphy and carbon isotope (δ¹³C) stratigraphy at the Cicogna section (Figure 4). Color bands and symbols are the same as in previous figures.

Figure 10. Statistical Analyses of calcareous nannofossil percentage data of the Cicogna section. Calcareous nannofossils are subdivided into 15 subgroups (Chiasmolithus, Coccolithus, Ellipsolithus, Discoaster, Ericsonia, Fasciculithus, Girgisia, Octolithus, Prinsius, Sphenolithus, Toweius, Rhomboaster/Tribrachiatus, Zyghrablithus, reworking, others). A) Principal Component Analysis (PCA) of calcareous nannofossil percentage data of the Cicogna section. Calcareous nannofossils are subdivided into 15 subgroups (Chiasmolithus, Coccolithus, Ellipsolithus, Discoaster, Ericsonia, Fasciculithus, Girgisia, Octolithus, Prinsius, Sphenolithus, Toweius, Rhomboaster/Tribrachiatus, Zyghrablithus, reworking, others). Scatter plot of percentage data of calcareous nannofossil taxa of samples from the Cicogna section in terms of the first and second component. Each sample is represented by a circle and labelled. Different colors serve to separate sub-sets of samples having the same age. Green and blue shaded areas are the ellipses containing 95% of the data points of Paleocene Group and Eocene group, respectively; B) Multivariate ANalysis Of VAriance (MANOVA). Scatter graph and biplot. Each sample is represented by a black symbol (quadrangle and diamond) and labelled. Green, red and blue shaded areas are the ellipses containing 95% of the data points of Paleocene Group, PETM group and Eocene group, respectively.

Figure 11. Comparison of δ¹³C profiles and semi-quantitative abundance patterns of selected calcareous nannofossil taxa from the Cicogna section and ODP Site 1262. Calcareous nannofossil
biohorizons from DSDP Site 577 are reported in the right part of the figure. Orange and yellow bands mark CIEs shown in previous figures. Color bands and symbols are the same as in previous figures.

Plate I. Images of selected calcareous nannofossil taxa from samples of the Cicogna section. Scale bar 10μm.

24. *Ericsonia

Table 1. Stratigraphic heights and ages of polarity chron boundaries, key calcareous nannofossil datums, and CIEs at the Cicogna Section and ODP Site 1262.

9. SUPPLEMENTARY INFORMATION

S12. Additional information on statistical analysis

Nannofossil data from the Cicogna section (NE Italy) were subjected to statistical analysis using the program PAST.

For PCA analysis, we additionally provide the biplot and the loading graphs of Component 1 and Component 2 (Figure S1).

For non-metric multidimensional scaling (MDS) analysis, the species counts were combined to produce a matrix of 15 genera. A square root transformation, used to standardize the matrix, was chosen to minimize the influence of dominant taxa on the ordination (Schneider et al., 2011). Non-metric multidimensional scaling (MDS), using the Bray–Curtis distance metric (Figure S2) was applied in order to avoid assumptions as much as possible and guarantee the preservation of the relative differences between the samples (McCune and Grace, 2002).

References

S2. Further explanation regarding biostratigraphic calcareous nannofossil counts

The high abundance, widespread distribution and rapid evolution of calcareous nannofossils make them one of the most powerful tools to date Cenozoic marine sediments. The use of semi-quantitative counting and the gathering of high resolved datasets greatly enhance their correlation potential (Backman et al., 2012; Agnini et al., 2014).

The methodology used in this study for samples of ODP Site 1262 is that proposed by Backman and Shackleton (1983), which consists in counting the number of calcareous nannofossils belonging to a specific taxon present in a prefixed area (1 mm2). Because of significant dilution by terrigenous material in samples from the Cicogna section, we extended the study area to 9 mm2. To further appreciate the importance of semi-quantitative estimates and high-resolution sampling, we compare the Top *D. multiradiatus* and Base *D. lodoensis* as recorded from the Cicogna section, ODP Site 1262 and DSDP Site 550 (Figure S3). At Cicogna and ODP Site 1262, we provide detailed abundance patterns of these two taxa. *Discoaster multiradiatus* shows a first decrease in abundance preceding the H1 event and a definitive disappearance just before the onset of the I1 event. *Discoaster lodoensis* displays a first presence in the I1 event, which is followed by an interval of absence that eventually leads to its continuous and common presence close to the onset of the X event (Figure S3). Datasets from the Cicogna section and ODP Site 1262 allow a very detailed characterization of these two biohorizons and the recognition of peculiar features that are not present in the low-resolution qualitative biostratigraphic data available for DSDP Site 550. As a consequence, the stratigraphic position of Top *D. multiradiatus* and Base *D. lodoensis* at DSDP Site 550 are inaccurate. We hope that this simple exercise could serve to emphasize the crucial importance of producing high-resolution semi-quantitative data to obtain the most reliable biostratigraphic results.
References

S3. Looking through "frosty glass": Comparison to records at ODP Site 690

We have presented fairly detailed records of bulk carbonate δ13C and quantified calcareous nannofossil assemblages for the lower Paleogene section at Cicogna, and compared these records with those at the only two locations with similar information. From this comparison, we suggest that a very detailed template exists for the alignment of δ13C records and calcareous nannofossil assemblage counts across the early Paleogene (Figure 11), one with much higher resolution than given in most previous work, and one most likely related to changes in past global carbon cycling, oceanography, and calcareous nannoplankton evolution.

Significant variations in calcareous nannofossil abundances definitely happened at multiple locations during the PETM (Bralower, 2002, and references noted in main text). However, it is by no
means clear whether such changes extended across the broader early Paleogene, nor how such changes might compare to those across the PETM. One can certainly speculate that variations in calcareous nannofossil abundance records and bulk carbonate δ¹³C records might correlate in fine temporal detail across widely distributed sites throughout the early Paleogene, given well-established calcareous nannofossil biozone schemes (Martini, 1971; Okada and Bukry, 1980; Agnini et al., 2014), and a growing appreciation of a very dynamic carbon cycle over this time interval. Nonetheless, the generation of detailed and coupled multi-million year records for quantified calcareous nannofossil abundances and bulk carbonate δ¹³C perplexed one of the referees for this paper, who insisted that we needed to make comparisons with existing work at ODP Site 690 and to explain discrepancies.

The lower Paleogene record at Site 690 provides a very good example in which to highlight the basic background and importance of our work. Three holes were drilled and cored at ODP Site 690 on Maud Rise (South Atlantic; Figure 1) in 1987 using the advanced piston corer (APC) (Barker et al., 1988). Sediment recovery within each core was nearly 100%, although some cores were shorter than the full 9.7 m. However, most of the lower Paleogene sequence was retrieved in only one of the holes, 690B (Barker et al., 1988). This is important, because m-scale gaps generally occur between successive cores during APC operations (Ruddiman et al., 1987; Lisiecki and Herbert, 2007). The early Paleogene section at Site 690 is, almost assuredly, incomplete, with “missing” portions at each core break.

Sediment from Core 690B-19H has been the focus of numerous papers, as it contains the PETM (Kennett and Stott, 1991; Bains et al., 1999; Bra]lower, 2002). However, correlating this core to the surrounding sedimentary record at Site 690, and the latter to early Paleogene records at other locations is problematic, at least with any detail. For example, using Hole 690B records, Cramer et al. (2003) estimated that 1.4 Myr occurred between the PETM and the H-1 event. This is incorrect,
as the duration is close to 1.8 Myr (Westerhold et al., 2008). Beyond the aforementioned core gaps, there are major issues with the paleomagnetic record of early Paleogene sediments in Hole 690B (Ali et al., 2000). Indeed, Ali et al. (2000) recommend using calcareous nannofossil records for correlation purposes of this interval.

Records of bulk carbonate δ^{13}C (Cramer et al., 2003) and calcareous nannofossil relative abundances (Pospichal and Wise, 1990) have been generated using sediment at Hole 690B. When coupled together (Figure S4), these records show similarities to those at Cicogna (Figure 11). There is the long-term late Paleocene-early Eocene drop in δ^{13}C and several superimposed short-term negative CIEs. There are also closely coeval changes in calcareous nannofossil abundances, such as the peak in D. multiradiatus across the C event, the subsequent peak in Fasciculithus spp., and the cross-over of T. contortus and T. orthostylus just before the H-1 event. One can also see the problem with examining nannofossils at low depth/time resolution and qualitatively. We suggest here a “frosty glass” hypothesis, where details of Earth system change in the distant past are blurred presently by poorly resolved stratigraphy. This includes basic problems with aligning sections in depth and time, as well as interpretable quantification of data at high spatial resolution. Despite the need for additional work at Site 690, we suggest that available records at this location support the template offered in the main text.

References

Supplementary figure captions

Figure S1. PCA plots of calcareous nannofossil data from the Cicogna section (Italy). A) Loading plot of Component 1; B) Loading plot of Component 2; C) Biplot.

Figure S2. Non-metric multidimensional scaling (NMS) plot of calcareous nannofossil data from the Cicogna section (Italy). Grey dots = barren to virtually barren samples.

Figure S3. Abundance patterns of D. multiradiatus and D. lodoensis from the Cicogna section, ODP Site 1262 and DSDP Site 550. For these three successions paleomagnetic (Ali and Hailwood, 1998; Dallanave et al., 2009; Westerhold et al., 2008), carbon isotope (Cramer et al., 2003; Zachos et al., 2004; this study) and calcareous nannofossil data (Müller, 1985; Agnini et al., 2007, this study) are available. Top D. multiradiatus and Base D. lodoensis are clearly recognizable at Cicogna and ODP Site 1262, where quantitative counts have been performed. By contrast, qualitative data from DSDP Site 550 do not provide reliable biostratigraphic data. P= present; R=rare; F=few; C=common; A=abundant; V=very abundant.
Figure S4. Carbon isotope data from ODP Site 690 (Cramer et al., 2003) plotted against qualitative abundance estimates of selected calcareous nanofossil taxa (Pospichal and Wei, 1990). Top

Fasciculithus spp. (Aubry et al., 1996)

Table S1. Bulk carbonate stable isotopes and carbonate content of samples from the Cicogna section.

Table S2. Calcareous nanofossil assemblage counts for samples from the Cicogna section.

Table S3. Dataset used to perform the principal component analysis for calcareous nanofossil assemblages from the Cicogna section. Calcareous nanofossils are subdivided in 15 subgroups (Chiasmolithus, Coccolithus, Ellipsolithus, Discoaster, Ericsonia, Fasciculithus, Girgisia, Octolithus, Prinsius, Sphenolithus, Toweius, Rhomboaster/Tribrachiatus, Zyghrablithus, reworking, others). In order to avoid the closed-sum effect that derives from the use of percentage data, we apply a log transformation of raw data.

Table S4. Dataset used to perform the non-metric multidimensional scaling (MDS) for calcareous nanofossil assemblages from the Cicogna section. Calcareous nanofossils are subdivided in 15 subgroups (Chiasmolithus, Coccolithus, Ellipsolithus, Discoaster, Ericsonia, Fasciculithus, Girgisia, Octolithus, Prinsius, Sphenolithus, Toweius, Rhomboaster/Tribrachiatus, Zyghrablithus, reworking, others). A square root transformation was used to minimize the influence of dominant taxa on the ordination.

Harris, A.D., Miller, K.G., Browning, J. V., Sugarman, P.J., Olsson, R.K., Cramer, B.S. and Wright, J.D.: Integrated stratigraphic studies of Paleocene- lowermost Eocene sequences, New Jersey

Roth, P.H.: Jurassic and Lower Cretaceous calcareous nannofossils in the western North Atlantic [Site 534]: biostatigraphy, preservation, and some observations on biogeography and paleoceanography, DSDP Init. Repts., 76, 587-621, 1983.

Tipple, B. J., Pagan, M., Krishnan, S., Dirghangi, S. S., Galeotti, S., Agnini, C., Giusberti, L., and Rio, D.: Coupled high-resolution marine and terrestrial records of carbon and hydrologic cycles...

