Miocene–Pliocene stepwise intensification of the Benguela upwelling over the Walvis Ridge off Namibia

S. Hoetzel¹, L. M. Dupont¹, F. Marret², G. Jung¹, and G. Wefer¹

¹MARUM – Center for Marine Environmental Sciences, University of Bremen, Leobenerstr., Bremen, Germany
²School of Environmental Sciences, University of Liverpool, L69 7ZT, UK

Received: 8 April 2015 – Accepted: 30 April 2015 – Published: 20 May 2015
Correspondence to: L. M. Dupont (ldupont@marum.de)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

Upwelling is a significant part of the ocean circulation controlling largely the transport of cold waters to the surface and therefore influences ocean productivity and global climate. The Benguela Upwelling System (BUS) is one of the major upwelling areas in the world. Previous reconstructions of the BUS mainly focused on the onset and intensification in southern and central parts, but changes of the northern part have been rarely investigated in detail. Using the organic-walled dinoflagellate cyst record of ODP Site 1081 from the Late Miocene to the Pliocene we reconstruct and discuss the upwelling history on the Walvis Ridge with a special focus on the movement of the Angola–Benguela Front (ABF). We show that during the Late Miocene the Angola Current flowed southwards over the Walvis Ridge more frequently than today because the ABF was probably located further south as a result of a weaker meridional temperature gradient. A possible strengthening of the meridional gradient during the latest Miocene to early Pliocene in combination with uplift of south-western Africa intensified the upwelling along the coast and increased the upwelling’s filaments over the Walvis Ridge. An intermediate period from 6.2 to 5.5 Ma is shown by the dominance of Habibacysta tectata, cysts of a cool-tolerant dinoflagellate known from the northern Atlantic, indicating changing oceanic conditions contemporaneous with the Messinian Salinity Crisis. From 4.4 Ma on, the upwelling signal got stronger again and waters were well-mixed and nutrient-rich. Also effects of Cunene River discharge into the South Atlantic are recorded since 4.4 Ma. Our results show a northward migration of the ABF and the initial stepwise intensification of the BUS.

1 Introduction

The south-western coast of Africa is currently characterised by cold and nutrient-rich waters related to the occurrence of the Benguela Upwelling System (BUS), favouring high primary production. It is one of the major upwelling areas in the world. This system
is supposed to have initiated in the early Late Miocene (~10–15 Ma) (Siesser, 1980; Diester-Haass et al., 1990; Heinrich et al., 2011; Rommerskirchen et al., 2011) during a phase of global cooling. This cooling is part of the transition from a warm and humid variable climate to cooler and drier conditions of the late Neogene driven by changes of the Antarctic ice sheets (Wright et al., 1992; Zachos et al., 2001; Billups and Schrag, 2002). Later, the BUS probably played a decisive role in the climate development of the latest Neogene (Etourneau et al., 2012).

Following the mid Miocene climatic optimum, the re-establishment of major ice sheets in East Antarctica at around 10 Ma led to a globally steeper meridional temperature gradient which would have intensified pressure systems and ocean circulations (Flower and Kennett, 1994; Zachos et al., 2001); the South Atlantic Anticyclone (SAA) became stronger and with it the SE trade winds which led to increased upwelling and marine productivity especially at around 6.5 Ma (Diester-Haass et al., 2002). These authors hypothesized that the further growth of the Antarctic ice sheets led to a northward migration of the Antarctic Polar Front causing also a shift of the BUS and changing the composition of the water (Diester-Haass, 1988; Diester-Haass et al., 1990, 1992). However, recent modelling showed that the introduction of an ice-cap in Antarctica resulted in strong downwelling in the Weddell Sea which attracted warmer water from lower latitudes effectively reducing the meridional sea-surface temperature (SST) gradient in the Atlantic sector of the Southern Ocean. This resulted for the BUS region in slightly reduced Ekman pumping, less upwelling, and warmer subsurface temperatures (Goldner et al., 2013; Knorr and Lohmann, 2014; Jung et al., 2014). On the other hand, the ongoing uplift of Southern Africa during the late Miocene and Pliocene (Partridge, 1997; Roberts and White, 2010) would have strengthened the low-level winds along the southwest African coast (Benguela Jet) enhancing upwelling in the BUS, especially in the central part. A comparison of different model experiments estimates the effects of uplift of Southern Africa on the surface winds driving the BUS far greater than the effects of far field tectonic changes such as the closure of the Central American Seaway (CAS) or the narrowing of the Indonesian Seaway. However, a subsurface cooling increasing with depth was found in the case of CAS closure, which indicates the possibility of changing ocean surface conditions in the Benguela region even if upwelling remained constant (Jung et al., 2014).

More important to the conditions in the BUS would be the effect of the CAS closure on the deep water formation in the Atlantic. According to Billups (2002), the closure of the CAS had already influenced the ocean currents between 6.6 and 6 Ma by increasing the Atlantic overturning circulation (AMOC). The data sets show a cooling of Southern Ocean upper circumpolar and intermediate waters during the latest Miocene. Poore et al. (2006) calculated the proportion of North Atlantic Deepwater (Northern Component Water) and describe an increase of Northern Component Water formation as well as a stronger AMOC for the period between 6 and 2 Ma. The influence of the closing of the CAS on the AMOC is furthermore underlined by models such as the one used by Butzin et al. (2011) who concluded that the formation of North Atlantic Deepwater (NADW) began when the CAS had shoaled to a few hundred meters during the Late Miocene.

A number of paleostudies focused on the upwelling history of either in the southern and central parts of the BUS or on the ocean side of the Walvis Ridge (Siesser, 1980; Diester-Haass et al., 1992; Marlow et al., 2000; Berger et al., 2002b; Udeze and Obohikenobe, 2005; Heinrich et al., 2011; Rommerskirchen et al., 2011; Rosell-Melé et al., 2014), whereby only ODP Site 1085 in the southern BUS covers its history since the late Miocene (past 14 Ma). ODP Site 1084 in the central BUS area only covers the Pliocene down to ~5 Ma. ODP Site 1081, which sediments cover the past 9 Ma, sits at the northern end of the modern BUS. Therefore, the site is sensitive to changes at the northern boundary and to movements of the Angola—Benguela Front (ABF). Furthermore, the site is located on the Walvis Ridge (Wefer et al., 1998) which divides the Cape Basin and the Benguela Current from the Angola Basin and the warm waters of the Angola Current. We use a multi-proxy approach to constrain changes in sea-surface conditions between the late Miocene and Pliocene (9 to 2.7 Ma), with assemblages of organic-walled dinoflagellate cysts as primary proxies, and more particularly...
to describe changes on the northern edge of the BUS during times of global cooling as well as discuss forcing mechanisms. We complement our results on dinoflagellate cysts with total organic carbon measurements (new and shipboard data) and compare them with alkenone-derived SSTs (Hoetzel et al., 2013). Studies on recent distribution of dinoflagellate cysts along the West African coast (e.g. Dale et al., 2002; Marret and Zonneveld, 2003; Zonneveld et al., 2013) enable us to associate the oceanographic context (upwelling vs. oligotrophic conditions) with specific cyst assemblages.

2 The modern Benguela Upwelling System

The semi-permanent high pressure system, the SAA, over the South East Atlantic is the dominating atmospheric feature located at around 32° S 5° W (austral summer) and 27° S 10° W (austral winter) (Petterson and Stramma, 1991) (Fig. 1). The SAA is driving the Benguela Current (BC) which flows northwards along the south-western coast of Africa. The BC contains water from the eastward flowing cold Antarctic Circumpolar Current (ACC), which is linked to the polar front. It also takes up water from the warm Agulhas Current (AgC), which is flowing from the Indian Ocean around South Africa. At around 28° S the BC divides into two separate currents; one following the rotation of the SAA turning west crossing the Atlantic and the other flowing further northwards along the south-western African coast under the name of Benguela Coastal Current (BCC). Additionally, the BCC is linked to the south-easterly trade winds (Petterson and Stramma, 1991).

The coastal-parallel winds push the coastal surface waters via Ekman-transport offshore inducing the upwelling of cold and nutrient-rich subsurface waters (e.g. Lutjeharms and Meeuwis, 1987). The upwelled nutrients allow a vast production of phytoplankton in the photic zone. Eight upwelling cells have been identified, of which the one west of Lüderitz Bay is the strongest persisting all year long resulting in the coldest surface waters of the BUS (Lutjeharms and Meeuwis, 1987). Up to 600 km off shore cold upwelled waters from the coastal upwelling areas mix with surface waters and form nutrient-rich filaments (Lutjeharms and Meeuwis, 1987; Lutjeharms and Stockton, 1987; Summerhayes et al., 1995). Water of these filaments has clearly enhanced nutrient values, lower temperatures and increased primary production.

The BCC meets the southward-flowing warm and nutrient-poor Angola Current just north of the Walvis Ridge. Together they form the ABF which today is situated between 14 and 16° S (Meeuwis and Lutjeharms, 1990), dependent on the season. In detail, it is not a single front but a couple of fronts arranged in two frontal zones, a northern and a southern one, whereas the latter one has the larger influence on the overall ABF’s characteristics (Kostianoy and Lutjeharms, 1999). Like the coastal upwelling, the position of the front depends on the SAA; when the meridional pressure gradient is high, the southern front of the ABF is located further north and the ABF is narrower and sharper (Kostianoy and Lutjeharms, 1999). Under weakened SAA conditions and resulting weakened winds, the ABF can be located further to the south (Richter et al., 2010) so that warm nutrient-poor water of the Angola current can penetrate further southward as far as 24° S along the Namibian coast (Meeuwis and Lutjeharms, 1990).

As a result, the precipitation on the adjacent coast is enhanced (Hirst and Hastenrath, 1983; Nicholson and Entekhabi, 1987) and can be increased farther inland (Rouault, 2003). The phenomenon occurs on inter-annual timescales and is called Benguela Niño for its similarity to the El Niño Southern Oscillation (Shannon et al., 1986).

3 The material and methods

The sampled sediment core was retrieved at the Ocean Drilling Program Site 1081 (19°37′S 11°19′E) in 794 m water depth. The site is located on the Walvis Ridge 160 km off the Namibian coast and is today influenced by filaments of the BUS. The sediment is composed of olive-gray clayey nannofossil ooze and olive-gray to black clays (Wefer et al., 1998). Sedimentation rates were calculated between 2 and 5 cm ka⁻¹ using an age model based on biostratigraphy, magnetic reversals and magnetic susceptibility (Berger et al., 2002b).
Seventy-one samples were taken with ages between 9 and 2.7 Ma and prepared for palynological investigation. The volume of each sample was estimated by water displacement. For decalcification diluted cold HCl (~5%) was used and afterwards the material was set in cold HF (~20%) for two days to remove silicates. Prior to the HCl-treatment Lycopodium tablets were added. The residuals were sieved under ultrasonic treatment removing particles smaller than 10–15 µm. The cleaned residues were stored in water and mounted in glycerol for investigation under a light microscope using magnifications of 400×, 600× and 1000×. For each sample at least 300 dinoflagellate cysts were identified and counted.

Identification of dinoflagellate cysts was done after De Verteuil and Norris (1992), Marret and Zonneveld (2003), De Schepper and Head (2009) and Schreck et al. (2012). *Brigantedinium* spp. includes all round brown smooth dinoflagellate cysts. Because *Batiacasphaera micropapillata* has a strong morphological overlap with *B. minuta* and both occur in the samples we adopted the nomenclature of De Schepper and Head (2008) and Schreck et al. (2012) in treating both species as one complex.

Each species was ecologically sorted after its assumed metabolism mechanism (autotroph and heterotroph, Table 1) and a heterotroph/autotroph ratio (H/A) was calculated expressed as ln(H/A). Percentages were calculated on the total number of dinoflagellate cyst counted. For calculation of the 95% confidence intervals of the relative abundances the equation of Maher (1971) was used. Accumulation rates of dinoflagellate cysts were calculated by multiplying the sedimentation rates (Berger et al., 2002b) with the cyst concentrations per ml, which was calculated based on the known number of *Lycopodium* spores added in the form of tablets.

For 21 samples the total organic carbon (TOC) contents has been determined by decarbonating a sediment aliquot of ~25 mg using 6 N hydrochloric acid before combustion at 1050 °C in a Heraeus CHN-O-rapid elemental analyzer (see Rommerskirchen et al., 2011). This data set is complemented by TOC shipboard data published in Wefer et al. (1998) and shown in Fig. 4.

4 Results

A total of 36 dinoflagellate cyst taxa were identified whereof the *Brigantedinium* spp. group is the dominant one. In Figs. 2 and 3 the percentages and accumulation rates of the most abundant species are shown. In general, both relative and absolute trends show similarity for each species. The record has been visually divided into 5 zones.

Zone I runs from the start of the record at 9 to 7.8 Ma. This zone is mainly characterized by cysts of the *Batiacasphaera micropapillata* complex with values mostly around 20% reaching a maximum of 50%. *Impagidinium paradoxum* is well represented (generally over 10%) especially in the beginning with a peak over 20%. *Lingulodinium machaerophorum* is present in all samples of Zone I, with two exceptions, reaches values up to 20% at around 8.5 Ma, and decreases afterwards to a minor representation in the assemblages (Fig. 2). Cysts of *Nematosphaeropsis labyrinthus* reach up to maxima of 15%. *Impagidinium* sp. 2 (De Schepper and Head, 2009) cysts are also present and make up around 5% of the assemblage and have a maximum of 20% at around 8.3 Ma. *Selenopemphix quanta* is only marginally represented in Zone I. *Brigantedinium* spp. have generally low values (around 5%) that rise at the end of Zone I to around 15%. Almost completely lacking in this interval are *Opeculodinium centrocarpum* cysts.

Zone II (7.8–6.2 Ma) is marked by a decline of cysts abundance of the *B. micropapillata* complex to less than 10% (and less than 5% around 7 Ma). Additionally the absolute values are decreasing from around 3000 cysts cm⁻² ka⁻¹ to less than 1000. Values for *Brigantedinium* spp. and *S. quanta* cysts (Fig. 3) are increased in this zone but show decreasing trends towards the end of the Zone II at 6.5 Ma. Also *H. tectata* decreases from around 20% to marginal occurrence at 6.5 Ma. However, an increasing trend shows the representation of *B. hirsuta* from low values of less than 10% to more than 30%. As in Zone I, *L. machaerophorum* is mostly represented with less than 10% but peaks at ~7.5 Ma with 63% of the assemblage. Again *O. centrocarpum* is lacking.
Zone III (6.2–5.5 Ma) is characterized by *H. tectata* cysts dominating the samples until 5.8 Ma and reaching values between 40 and 50%. Additionally, the *S. quanta* curve increases again until 5 Ma. *Spiniferites* spp. and *B. hirsuta* values are also increasing between 6 and 5 Ma.

Zone IV (5.5–4.4 Ma) is characterized by *B. hirsuta* and *Brigantedinium* spp. *Brigantedinium* has low relative abundances until 5.2 but reaches 40 % later in Zone IV. Not represented is *L. machaerophorum*. The *B. micropapillata* complex is better represented in the period from 5.2 until 4.2 Ma with maxima around 25 % (Fig. 2). At around 4.8 Ma *Impagidinium* sp. 2 is well represented and peaks twice with values between 20 and 30 %.

Zone V (4.4–2.7 Ma) is defined by the representation of *O. centrocarpum* which is rising from a few percent at the start of the interval to 60 % at around 3.8 Ma. Towards the end *Brigantedinium* spp. and *Spiniferites* spp. cysts are increasing at the costs of *O. centrocarpum*.

In Fig. 4 the accumulation rates of summed dinoflagellate cysts are plotted against age. The accumulation rates of cysts range between 7000 and 93 000 cysts cm$^{-2}$ ka$^{-1}$. One period with lower accumulation rates occurred until 8 Ma and two periods with generally higher accumulation rates were found between 8 and 6.4 Ma and from 5.4 to 4.2 Ma.

5 Discussion

5.1 Dinoflagellates as proxies for environmental conditions

Off the 2377 modern motile species listed worldwide (Gómez, 2012) only between 10 and 20% of them produce cysts during their lifecycle that preserve well in the sediments (Head, 1996). The organic-walled cysts found in recent sediments around the world show a distribution that can be related to sea-surface gradients in temperature, salinity, nutrients and sea-ice cover (e.g. De Vernal et al., 1997; Dale et al., 2002; Marret and Zonneveld, 2003; Holzwarth et al., 2007; Zonneveld et al., 2001, 2013). Therefore, it has been possible to use them as a tool to reconstruct surface waters conditions, e.g. nutrients and temperature, enabling past upwelling intensity variations. The dissolution of cysts sensitive to oxidative degradation (Zonneveld et al., 2001) such as *Brigantedinium* cannot entirely be dismissed but the relative high abundance of sensitive cysts throughout the record, as well as the high total concentration values (Fig. 4) suggest a minor effect. Therefore, we are confident to use the heterotrophic vs. autotrophic ratio (H/A ratio). The H/A ratio indicates upwelling (Lewis et al., 1990) based on the fact that the autotrophic dinoflagellates are in strong competition to diatoms whereas the heterotrophic ones feed on diatoms. Hence, high H/A ratio values reflect higher production. In our record the ratio is in good concordance to the total dinoflagellate cyst accumulation. Our results indicate five successive regimes (discussed below); a weak upwelling regime with strong influence of the warm waters of the Angola Current (Zone I, 9–7.8 Ma), an increase of upwelling linked to the intensification of the meridional temperature gradient in combination with Mio- to Pliocene uplift of south-western Africa (Zone II, 7.8–6.2 Ma), a period with exceptional conditions of increasing TOC and warmer SST (Zone III, 6.2–5.5 Ma) during the early stages of the Messinian Salinity Crisis (5.96–5.33 Ma), a resumption of productivity and upwelling after the Messinian (Zone IV, 5.5–4.4 Ma) and further intensification of the upwelling together with the effect of the Cunene River discharge (Zone V, 4.4–2.7 Ma).

5.2 The Angola–Benguela Front

ODP Site 1081 is located close to the modern position of the ABF, which offers opportunities to record changes in its position since the Miocene. The composition of the dinoflagellate cyst assemblages shows affinity to upwelling conditions over the entire record through nutrient indicating cyst species such as *Brigantedinium* spp., *S. quanta*, *L. machaerophorum* which is in accordance to an onset of the BUS before 10 Ma (e.g., Siesser, 1980; Diester-Haass et al., 1990; Heinrich et al., 2011; Rommerskirchen et al., 2011). However, fluctuations in accumulation rates and relative abundances, such as
the presence or absence of *L. machaerophorum* and *O. centrocarpum*, indicate significant variability in the upwelling during the studied period. Open oceanic species, *Impagidinium paradoxum* (Dale et al., 2002; Zonneveld et al., 2013) and probably *Impagidinium* sp. 2 are stronger represented in Zones I and II (9–6.2 Ma) indicating warmer and less nutrient-rich environments. Before 7.8 Ma the *B. micropapillata* complex is well represented. Although the ecological background of the *B. micropapillata* complex is uncertain, studies from Zegarra and Helenes (2011) suggest this complex to be an indicator for warm nutrient-poor waters because it is often recorded together with other warm-water indicators. Hence, we consider *B. micropapillata* as an indicator of relative warm nutrient-poor conditions. The dinoflagellate cyst record corroborates the SST reconstruction of around 26 to 27 °C for Zone I (Hoetzel et al., 2013). During the early part of the record upwelling conditions were rather weak, which is also indicated by low TOC values (Fig. 4) (Weter et al., 1998) and the influence of warm waters from the AC was still strong compared to later periods.

Southward penetration of the AC is also suggested by the presence of *L. machaerophorum* which today is not present in the BUS but in the area of the AC (Holzwarth et al., 2007). *L. machaerophorum* is an indicator for stratified warm nutrient-rich waters, e.g. after upwelling relaxation (Marret and Zonneveld, 2003; Zonneveld et al., 2013, and references therein) suggesting that periods with stratified water conditions were more frequent and/or longer than today. *I. paradoxum* and *N. labyrinthus* which are more frequent in waters around the ABF (Dale et al., 2002; Zonneveld et al., 2013) also may indicate a southern position of the ABF at least 3° south than today. At present, the ABF shifts southwards on inter-annual timescales during Benguela Niños (Shannon et al., 1998). Under these special conditions, the waters over the Walvis Ridge receive a contribution of the Angola Current (Pettersson and Stramma, 1991; Florenchie et al., 2004; Mohrholz et al., 2004; Richter et al., 2010). It is possible that these Benguela Niño events were more common during Miocene times when the SAA and the trade winds were weaker.

5.3 Late Miocene upwelling intensification

Between 7.8 and 6.2 Ma (Zone II) dinoflagellate cyst accumulation rates are generally higher indicating higher productivity as the result of stronger upwelling (Fig. 4). Further support of the intensified upwelling is given by increased heterotrophic dinoflagellate cyst occurrences, such as *Selenopemphix* and *Brigantedinium* (Zonneveld et al., 2001), which is also shown in the increased H/A ratio (Fig. 4). Slightly higher TOC values as compared to the earlier period (Zone I; Fig. 4) underline increased upwelling conditions. In general, a gradual intensification of the BUS is suggested by other authors, e.g. Rommerskirchen et al. (2011) who showed for ODP Site 1085 a strong sea-surface cooling until 6 Ma. Early during the interval (prior to 7 Ma) periods of weaker upwelling and stronger influence of warmer waters may have occurred over the Walvis Ridge allowing the presence and even the dominance at 7.5 Ma of *L. machaerophorum*. However, while it is likely that the ABF was weaker and located further to the south and that the influence of the AC was stronger due to more frequently occurring Benguela Niño conditions, its influence seems to disappear towards the end of Zone II, after 7 Ma. This is indicated by the low occurrences of *L. machaerophorum* and the increase in relative cyst abundance of oceanic species such as *I. paradoxum* and the *B. micropapillata* complex. Our data record a northward shift and intensification of the ABF implying a restriction of the AC to latitudes north of 19°S as well as open ocean conditions over the site. This interpretation is corroborated by the SST record (Hoetzel et al., 2013) showing a cooling trend between 7.8 and 6.2 Ma and by the TOC record showing reduced values towards the end of the period between 6.7 and 6.5 Ma (Fig. 4).

5.4 Exceptional conditions during the Mediterranean Salinity Crisis

Zone III (6.2–5.5 Ma) coincides mostly with the Messinian Salinity Crisis (5.96–5.33 Ma; Krijgsman et al., 1999). Mediterranean deepwater formation was weakened since 7.2 Ma (Kouwenhoven and Van der Zwaan, 2006) although a connection between the Atlantic Ocean and the Mediterranean Sea remained until the later halite phase be-
between 5.61 and 5.55 Ma (Topper and Meijer, 2013). The Mediterranean begun to des-
iccate shortly before 6.2 Ma, creating salty and dense waters flowing into the Atlantic
and contributing to NADW formation until 6.0 Ma (Pérez-Asensio et al., 2012). Further
restriction of the Mediterranean Outflow Water between 6.0 and 5.5 Ma weakened the
AMOC, although the effects of the Mediterranean Outflow Water on the AMOC strongly
depend on the salinity of the Outflow Water (Ivanovic et al., 2014). An earlier salin-
ity crisis in the Mediterranean occurred during the Tortonian between 7.8 and 7.6 Ma
(Kouwenhoven et al., 2003).

Between 6.2 and 5.8 Ma the record shows dominance of H. tectata which is known
to be a cool-water tolerant species mostly of the Pliocene and Pleistocene of the North
Atlantic region (Head, 1994; Louwye et al., 2004; Versteegh, 1997) but also of the
Miocene (Head et al., 1989; Jimenez-Moreno et al., 2006). This maximum of H. tectata
is flanked by two maxima in the occurrence of B. hirsuta (6.8–6.4 and 5.6–5.2 Ma)
and an earlier max of H. tectata occurred between 7.8 and 7.6 Ma. Both, H. tectata
and B. hirsuta have not yet been described from the BUS area but they alternatively
dominate the assemblages from 6.8 to 5.2 Ma, representing unique conditions which
did not exist before or after that period.

De Schepper et al. (2011) showed that H. tectata exceeded 30% of the dinoflagel-
late cyst assemblages when the reconstructed Mg/Ca sea-surface temperatures were
between 10 and 15°C. Although H. tectata has not yet been described from the South
Atlantic, it probably represents strong surface water cooling. However, SST estimates
of ODP Site 1081 only show a moderate cooling (Hoetzel et al., 2013). According to
Vidal et al. (2002), the sedimentation rates at ODP Site 1085 increased between 6.1
and 5.8 Ma which they correlate to the occurrences of strong glacial events. S. quanta
is also increased during that period, indicating a higher nutrient supply suggesting in-
creased upwelling. On the other hand, other heterotrophic taxa (e.g. Brigantedinium
spp.) have low values and consequently the H/A ratio is lower than before although
some upwelling is suggested by relative high TOC (Fig. 4).

For the period from 6.5–5.0 Ma, Rommerskirchen et al. (2011) described TEX86
temperature estimates from ODP Site 1085 indicating warming of subsurface waters
around 6.3 Ma and between 5.6 and 5.2 Ma. They concluded that the subsurface wa-
ter warming resulted from a downward mixing of heat caused by a weakening of the
AMOC and reduced NADW formation related to reduced outflow of salty Mediterranean
water. The period of warm subsurface waters at Site 1085 coincides with the increased
representations of B. hirsuta suggesting that the downward mixing a-
ffected the quality
of upwelled waters at the ODP Site 1081 creating special and non-recurring conditions.
Berger et al. (2002a) argued that the quality of the coastal upwelling waters at the
BUS is linked to the deep water circulation and the strength of the NADW. Increasing
NADW formation brings, until a critical point, more silica from the Northern Ocean into
the Southern Ocean and eventually changes the chemistry of the upwelled waters at
the BUS (enabling the Matuyama Diatom Maximum). Changes of the silica content
might have affected dinoflagellates indirectly via ecological competition with algae or
other microorganisms or via changes in food supply and sources. The latter one is
important for the heterotrophic species since they feed on diatoms which are highly
depending on silica contents.

A further change of the quality of the upwelled waters could be caused by a poleward
undercurrent flowing south from the Angola dome along the African margin transport-
ing silica-rich, phosphate-rich and oxygen depleted waters (Berger et al., 1998) and
increasing the fertile thermocline. A strengthening of this undercurrent and a higher
silica content of the waters representing a mixing of the intermediate water and this
poleward undercurrent is indicated by a radiolarian peak from 5.8 until 5.25 Ma at ODP
Site 1085 (Diester-Haass et al., 2002) coinciding with the younger B. hirsuta maxi-
mum. The peak in radiolarian might explain lower H/A ratios since radiolarian might
have competed with heterotrophic dinoflagellates.
5.5 Resumption of upwelling

Around 5.6 Ma at ODP Site 1081 (Zone IV) and between 5.6 and 5.3 Ma at Site 1085 (Rommerskirchen et al., 2011), maxima in SST estimates are recorded after which SSTs fluctuated around a cooling trend during the rest of the Pliocene. Resumption of upwelling in the BUS area is also indicated by a sharp increase of *Brigantedinium* spp. around 5.3 Ma corresponding to increased sedimentation rates at ODP Site 1085 (Diester-Haass et al., 2002). Additionally, high H/A ratios and increasing TOC indicate increased primary production at Site 1081 (Fig. 4). After 5.33 Ma, the Gibraltar strait opened and again very salty and dense Mediterranean Outflow Water could re-intensify NADW formation and AMOC (Ivanovic et al., 2014). More important for the intensification of the BUS Upwelling however, might have been the uplift of south-western Africa during the Pliocene (Partridge, 1997; Roberts and White, 2010). Uplift would have strengthened the coastal low-level winds and increased Ekman pumping causing enhanced upwelling (Jung et al., 2014).

5.6 Upwelling intensification and river supply

The presence and dominance of *O. centrocarpum* since 4.4 Ma (Zone V) indicate nutrient-rich and well mixed waters representing conditions adjacent to strong upwelling and/or river outflow (Dale et al., 2002). Although *O. centrocarpum* is a cosmopolitan species, it occurs in the South East Atlantic in vicinity to the upwelling area (Dale et al., 2002; Marret and Zonneveld, 2003; Holzwarth et al., 2007; Zonneveld et al., 2013). It is, additionally, represented in turbulent and well mixed waters at the boundary of coastal and oceanic waters (Wall et al., 1977; Dale et al., 2002). *L. machaerophorum* is, however, completely absent, indicating that the partly warm stratified conditions of the Miocene have been completely replaced by stronger upwelling, better mixing, and cooler conditions. The increase of *Brigantedinium* spp. abundance and the high TOC concentration (between 4 and 5 WT%; Fig. 4) and further decreasing SSTs (Hoetzel et al., 2013) underline nutrient rich conditions of a strong upwelling.

5.7 Links to oceanic and global climate change

The intensification of the BUS and the steepening of the ABF imply strengthening of SE trade winds and the regional wind maximum (Benguela Jet) along the coast (Nicholson, 2010). It should be kept in mind that the period under discussion concerns the early stages of upwelling of the northern BUS and that upwelling further intensified during the Pleistocene (Berger et al., 2002a, b); in this region SSTs dropped by 10 °C during the past 2.5 Ma (Rosell-Melé et al., 2014).

Prior to 8 Ma, sub-Antarctic stable oxygen isotope values indicate slightly warmer temperatures and less intense glaciations in Antarctica (Billups, 2002). The polar front was probably weaker and situated more southwards and so was the SAA. Additionally, glaciations in the Northern Hemisphere were not yet extensive so that the meteorological equator might have been located further north than today creating a weak meridional temperature and pressure gradient in the Southern Hemisphere (Flohń, 1981). A weak meridional temperature gradient would shift the ABF southwards and allow the AC to penetrate southwards over the Walvis Ridge creating Benguela Niño like conditions (sensu Shannon et al., 1986). Conversely, increase of the meridional gradient (Billups, 2002) would have resulted in a northward shift of the ABF, northward migration of the BUS (Diester-Haass et al., 1992), stronger currents and vigorous trade winds. Additionally, Mio- to Pliocene uplift of Southern Africa intensified the near-
coastal low-level Benguela Jet and consequently increased upwelling of the BUS (Jung et al., 2014).

The strengthened winds in turn, especially the stronger Benguela Jet, led to aridification of the south-western coast of Africa since warm and humid air from the Atlantic would be hindered to reach large areas of Namibia. Moreover, a stronger Benguela Jet led to intensified upwelling and lower SSTs, which would also act to reduce rainfall. Dupont et al. (2013) discuss, based on pollen data and deuterium values of plant waxes from ODP Site 1085, that the aridification is caused by a decrease of precipitation derived from the Atlantic and that the main source area of precipitation changed to the Indian Ocean, as is the case today (Gimeno et al., 2010). Mio- to Pliocene mountain uplift would have helped to both strengthen the Benguela Jet as well as to block South Atlantic air from reaching far into the continent (Jung et al., 2014). The expansion of the grass savanna between 8 and 3 Ma and subsequent expansion of the desert, is linked to this aridification (Hoetzel et al., 2013).

The period from 6.8 until 5.2 Ma when the representations of *H. tectata* and *B. hirsuta* dominate forms an interlude in the development of upwelling. It is a period of global oceanic and climate changes contemporaneously to the initiation of the NADW formation (Billups, 2002), the desiccation of the Mediterranean Sea (Krijgsman et al., 1999) and the loss of contact between the deep waters of the Pacific and Atlantic Oceans by the decreasing sill depth of the CAS. Changes in the AMOC and the NADW formation would have resulted in changes of the subsurface waters and thus in the quality of upwelled waters (Berger et al., 2002a), which resulted in a unique flora of the BUS. From 4.4 Ma on, final closure of the CAS and the emergence of the Panama Isthmus (Steph et al., 2010) proceeded, leading to the intensification of the AMOC and deep water formation (Haug and Tiedemann, 1998) changing the intermediate waters of the BUS which again changed the dinoflagellate assemblages. Since 3.2 Ma the intensification of the Northern Hemisphere glaciations and the introduction to a bi-polar icehouse started the Inter-Tropical Convergence Zone shifted southwards to its average modern position (Billups et al., 1999). The southward shift probably caused an intensified meridional temperature gradient and a further intensification of the low-level winds driving upwelling, which is recorded by the dinoflagellate cyst assemblages.

6 Summary and conclusions

A record of organic-walled dinoflagellate cysts in association with total organic carbon data was used to reconstruct changes in upwelling conditions over the Walvis Ridge from the Late Miocene to the early Pliocene near its northern boundary, the Angola Benguela Front. Here we report about the early stages of upwelling. A weak pressure system and an ABF located further south resulted in more frequently occurring Benguela Niño-conditions, which effects were recorded for the period prior to 7.8 Ma. The meridional temperature gradient steepened afterwards inducing a northward migration of the ABF. The Benguela Niño-conditions were especially manifested by the occurrence of *L. machaerophorum*, a species blooming in warm stratified nutrient-rich waters after upwelling relaxation. The intensification of the upwelling is shown by decreases of warm water indicating taxa and increases in indicators of cold and nutrient-rich conditions. Production was high until around 7 Ma and the portion of heterotrophic species was enhanced.

Between 6.8 and 5.2 Ma, *B. hirsuta* and *H. tectata* were abundant during a period with exceptional oceanic conditions related to the Messinian Salinity Crisis. *B. hirsuta* occurred during times with relaxed North Atlantic Deepwater production and reduced Atlantic overturning circulation whereas *H. tectata* occurred during a time of increased NADW production directly before the desiccation of the Mediterranean Basin. The shoaling of the Central American Seaway and later the intensification of the Northern Hemisphere glaciations enhanced NADW production changing the quality of upwelled waters. Miocene to Pliocene uplift of Southern Africa further increased upwelling of the Benguela Upwelling System. Remote influence of fresh water after the start of Cunene River discharge into the South Atlantic is indicated by the first occurrence of *O. centrocarpum*.

1929

1930
Acknowledgements. This work was supported by the DFG Research Center/Cluster of Excellence “MARUM – The Ocean in the Earth System” and “GLOMAR – Bremen International Graduate School for Marine Sciences”. The authors thank Michael Schreck and Jens Matthiesen for helping to identify unknown dinoflagellates. Florian Rommerskirchen is thanked for the biogeochemical measurements and Marta Witek for laboratory support. Data can be found at Pangaea.de.

The article processing charges for this open-access publication were covered by the University of Bremen.

References

Lewis, J., Dodge, J. D., and Powell, A. J.: Quaternary dinoflagellate cysts from the upwelling system offshore Peru, Hole 686B, ODP Leg 112, in: Proceedings of the Ocean Drilling Pro-
gram, Scientific Results, 112, Ocean Drilling Program, College Station TX, USA, 323–328, 1990.

Louwye, S., Head, M. J., and De Schepper, S.: Dinoflagellate cyst stratigraphy and palaeo-

Lutjeharms, J. R. E. and Meeuwis, J. M.: The extent and variability of South-East Atlantic up-

Marret, F. and Zonneveld, K. A. F.: Atlas of modern organic-walled dinoflagellate cyst distribu-

Meeuwis, J. M. and Lutjeharms, J. R. E.: Surface thermal characteristics of the Angola–

Nicholson, S. E. and Entekhabi, D.: Rainfall variability in equatorial and southern Africa: re-

Table 1. Recognised species ordered after metabolism.

<table>
<thead>
<tr>
<th>Autotrophic species</th>
<th>Heterotrophic species</th>
<th>Unknown, further species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impagidinium sp. 2 (De Schepper and Head, 2009) aculeatum</td>
<td>Brigantedinium spp.</td>
<td>Sumatradinium soucouyanatae 1939</td>
</tr>
<tr>
<td>Impagidinium sphaerium</td>
<td>Selenopemphix spp.</td>
<td></td>
</tr>
<tr>
<td>Operculodinium spp. centrocarpum</td>
<td>Trinovantedinium glorianum papulum</td>
<td></td>
</tr>
<tr>
<td>Operculodinium sphaerium</td>
<td>Trinovantedinium glorianum papulum</td>
<td></td>
</tr>
<tr>
<td>Operculodinium sphaerium</td>
<td>Trinovantedinium glorianum papulum</td>
<td></td>
</tr>
<tr>
<td>Operculodinium sphaerium</td>
<td>Trinovatedinium glorianum papulum</td>
<td></td>
</tr>
</tbody>
</table>
| Operc...

Figure 1. (a) Map with location of ODP Site 1081 within the South East Atlantic showing the mean annual temperatures in colours (Ocean Data View, U.S. NODC World Ocean Atlas 2009), oceanic features in black (AC: Angola Current, ABF: Angola–Benguela Front, BC: Benguela Current, BCC: Benguela Coastal Current, ACC: Antarctic Circumpolar Current, AgC: Agulhas Current) and main atmospheric features in white (SAA: South Atlantic Anticyclone, 1020 mbar; L(low): 1006 mbar). Mean atmospheric sea level pressure cells of January after (Petterson and Stramma, 1991). (b) Effect of uplift of Southern Africa on Benguela Upwelling. Changes in surface wind in m s$^{-1}$ and sea surface temperature (SST) in °C according to a CCSM3 model run configurated with full uplift minus one without (Jung et al., 2014).
Figure 2. Relative and absolute abundances of selected dinoflagellate cysts within the zoning scheme (grey boxes) used in the text. The percentages are shown by lines (left Y axes), shadings represent 95% confidence intervals. Accumulation rates are shown by the filled-in graphs (right Y axes).

Figure 3. Relative and absolute abundances of selected dinoflagellate cysts within the zoning scheme (grey boxes) used in the text. The percentages (left Y axes) are shown by lines, shadings represent 95% confidence intervals. Accumulation rates are shown by the filled-in graph (right Y axes).
Figure 4. Sedimentation rates (after Berger et al., 2002b), total dinocyst accumulation rates (CAR cm$^{-2}$ ka$^{-1}$ on a log scale), ratio between heterotroph and autotroph dinoflagellate cysts (ln scale), total organic carbon (TOC in weight percentages after Wefer et al. (1998) complemented by unpublished data by Florian Rommerskirchen). Zoning follows Fig. 2. At the bottom timing of global events that would have influenced sea surface conditions in the Benguela region: shift of Angola Benguela Fron (ABF) northwards, increased uplift of Namibia since 30 Ma (Robets and White, 2010); timing of the Tortonian Salinity Crisis (TSC) and Messinian Salinity Crisis (MSC) in the Mediterranean (Kouwenhoven et al., 2003; Krijgsman et al., 1999); timing of the shoaling (Billups, 2002), respectively closing (Steph et al., 2010) of the Central American Seawayway (CAS).