A high-resolution δ¹⁸O record and Mediterranean climate variability

C. Taricco¹,², G. Vivaldo¹, S. Alessio¹,², S. Rubinetti³, and S. Mancuso²

¹Dipartimento di Fisica dell’Università di Torino, Italy
²Osservatorio Astrofisico di Torino (INAF), Pino Torinese, Italy
³Istituto Nazionale di Fisica Nucleare (INFN), Torino, Italy

Received: 1 July 2014 – Accepted: 22 August 2014 – Published: 16 October 2014

Correspondence to: C. Taricco (carla.taricco@unito.it)

Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

A high-resolution, well-dated foraminiferal $\delta^{18}O$ record from a shallow-water core drilled from the Gallipoli Terrace in the Gulf of Taranto (Ionian Sea), previously measured over the last two millennia, has been extended to cover 707 BC–1979 AD. Spectral analysis of this series, performed by Singular Spectrum Analysis (SSA) and other classical and advanced methods, strengthens the results obtained analysing the shorter $\delta^{18}O$ profile, detecting the same highly significant oscillations of about 600 yr, 380 yr, 170 yr, 130 yr, and 11 yr, respectively explaining about 12 %, 7 %, 5 %, 2 % and 2 % of the time series total variance, plus a millennial trend (18 % of the variance). The comparison with the results of Multi-channel Singular Spectrum Analysis (MSSA) applied to a data set of 26 Northern Hemisphere (NH) temperature-proxy records shows that NH temperature anomalies share with our local record a long-term trend and a bicentennial cycle. These two variability modes, previously identified as temperature-driven, are the most powerful modes in the NH temperature data set. Both the long-term trends and the bicentennial oscillations, when reconstructed locally and hemispherically, show coherent phases. Also the corresponding local and hemispheric amplitudes are comparable, if changes in the precipitation-evaporation balance of the Ionian sea, presumably associated with temperature changes, are taken into account.

1 Introduction

The key to gaining information on climate analogs and periodicities, on decadal to multi-centennial and millennial time scales, is the measurement of proxy records over the recent millennia, with multi-annual resolution and matching accuracy in dating.

Among the different time-scales of natural climatic variability, the centennial scale is particularly interesting being comparable to the scale of human life and to the modern variation related to anthropogenic forcing (Jones and Briffa, 1996; Jones et al., 1999, 2012).
The instrumental observations, covering only a couple of centuries (Ghil and Vautard, 1991; Martinson et al., 1995; Plaut et al., 1995; Jones et al., 1999, 2012, 2013; Folland and Karl, 2001; National Research Council of the National Academies, 1996), are influenced by human activity (Barnett et al., 1999) and are also too short to study centennial variability. In order to overcome this problem, several large-scale temperature reconstructions have been proposed, from both single-proxy (tree rings, corals, varved sediments, cave deposits, ice cores, boreholes, glaciers, ocean and lake sediments), and multi-proxy records (Jones et al., 1998; Mann and Jones, 2003; Mann et al., 1999, 2008; Crowley, 2000; Moberg et al., 2005) deriving from different geographical locations: ice cores (Jones, 1996) for high latitudes, tree rings (Luckman et al., 1999; Esper et al., 2002) for mid-latitudes, and corals (Crowley, 2000; Boiseau et al., 1999) for low latitudes. However, paleoclimatic reconstructions depend on multiple, often uncontrolled, factors, e.g. multi-proxy weighting and proxy calibration. These factors may lead to non-robust reconstructions (Lehner et al., 2012).

Marine cores with very high sedimentation rates allow to investigate climate variations on scales of decades to millennia. In order to avoid possible artefacts produced by the composition of different proxies, we measured the oxygen isotopic ratio δ^{18}O in the shells of the surface-dwelling planktonic foraminifera Globigerinoides ruber, in a high-resolution, well-dated Central Mediterranean core. The isotopic composition of the shell, deposited on the sea bottom after the death of the organism, reflects the chemical and physical properties of marine surface waters, and therefore can give information about the environmental conditions in which the shell grew.

2 Experimental Procedure

Since the Nineties, the Torino cosmogeophysics group has been studying shallow-water Ionian Sea sediment cores, drilled from the Gallipoli Terrace in the Gulf of Taranto, and has carried out their absolute dating. The Gallipoli terrace is a particu-
larly favourable site for high resolution climatic studies, due to a high sedimentation rate and to the possibility of accurate dating, offered by the presence along the cores of volcanic markers related to eruptive events occurred in Campanian area, a region for which documentation of the major eruptions is available. Historical documents are quite detailed for the last 350 years (a complete catalogue of eruptive events, starting from 1638, is given by Arnó et al., 1987), while they are rather sparse before that date.

The markers of the eruptions were identified along the cores as peaks of the number density of clinopyroxene crystals, carried by the prevailing westerly winds from the volcano to the Ionian Sea, and deposited there as part of marine sediments. The time-depth relation for the cores retrieved from the Gallipoli Terrace (Bonino et al., 1993; Cini Castagnoli et al., 1990, 1992, 1999, 2002a; Vivaldo et al., 2009) was obtained by tephroanalysis, that confirmed, improved and extended to the deeper part of the core the dating obtained in the upper 20 cm by the radiometric 210Pb method (Krishnaswamy et al., 1971; Bonino et al., 1993). Taricco et al. (2008) further confirmed this dating by applying advanced statistical procedures (Guo et al., 1999; Naveau et al., 2003).

The cores were sampled every 2.5 mm and the number density of clinopyroxenes of clear volcanic origin, characterized by skeletal morphology and sector zoning, was determined for the last two millennia. 22 sharp pyroxene peaks, corresponding to historical eruptions of the Campanian area, starting from the Pompei event in 79 AD and ending with the last Vesuvius eruption in 1944 AD, were found. The depth h in cm at which a volcanic peak is found turned out to be related to the historical date of the corresponding eruption, expressed in years counted backward from 1979 AD (hence years-before-top, y_{BT}), by $h = (0.0645 \pm 0.0002)y_{BT}$, with a very high correlation coefficient ($r = 0.99$). The linearity of this relationship demonstrates that the sedimentation rate has remained constant over the last two millennia to a very good approximation. Moreover, the measurements performed in different cores retrieved from the same area showed that this rate is also uniform across the whole Gallipoli Terrace (Cini Castagnoli et al., 1990, 1992, 2002a, b). The very sharp pyroxene peaks indicate that bioturbation by bottom-dwelling organisms is quite limited; we thus were able to conclude that the
climatic information obtained from these cores is not significantly affected by sediment mixing.

The series presented here was measured in the GT90/3 core (39°45’53” N, 17°53’33” E). In order to obtain the δ¹⁸O value of each sample, we soaked 5 g of sediment in 5% calgon solution overnight, then treated it in 10% H₂O₂ to remove any residual organic material, and subsequently washed it with a distilled-water jet through a sieve with a 150 µm mesh. The fraction > 150 µm was kept and oven-dried at 50°C. The planktonic foraminifera Globigerinoides ruber were picked out of the samples under the microscope. For each sample, 20 to 30 specimens were selected from the fraction comprised between 150 and 300 µm. The use of a relatively large number of specimens for each sample removes the isotopic variability of the individual organisms, giving a more representative δ¹⁸O value. The stable isotope measurements were performed using a VGPRISM mass spectrometer fitted with an automated ISOCARB preparation device. Analytical precision based on internal standards is better than 0.1 ‰. Calibration of the mass spectrometer to VPDB scale was done using NBS19 and NBS18 carbonate standards.

3 Results and discussion

In a previous paper (Taricco et al., 2009) we presented the δ¹⁸O measurements performed in the upper 173 cm of the GT90/3 core (560 samples). The δ¹⁸O series has now been extended, obtaining a continuous record of 694 points covering the last 2700 years (707 BC–1979 AD), shown in Fig. 1 (gray line). The high sampling rate (Δt = 3.87 yr) makes this paleoclimatic record suitable for the study of both long- and short-term variability components.

In Fig. 1, δ¹⁸O is plotted “upside down”, to agree in tendency with temperature. At a first sight we can notice some features of the profile, strictly related to particular climatic periods:
– the low $\delta^{18}O$ values around 1000 AD, corresponding to the Medieval Warm Period (MWP);
– the high $\delta^{18}O$ values during the 18th century, corresponding to the Little Ice Age (LIA);
– the sudden decrease of $\delta^{18}O$ values starting from the 19th century, related to the temperature increase during the Industrial Era (IE);
– the high $\delta^{18}O$ values at the beginning of the Christian Era, suggesting a local decrease in temperature. A detailed discussion of this period is given in Taricco et al. (2009).

Since $\delta^{18}O$ reflects changes both in Sea Surface Temperature (SST) and sea water isotopic composition, it is however necessary to reliably extract independent components of variability and identify the temperature-driven ones.

Thus, several classical and advanced spectral methods were applied to the $\delta^{18}O$ time series, as classical Fourier analysis, Maximum Entropy Method (MEM), Singular Spectrum Analysis (SSA) and Multi-Taper Method (MTM). Two review papers (Ghil and Taricco, 1997; Ghil et al., 2002) and references therein cover these methodologies. The application of more than one spectral method assures that reliable information is extracted from the $\delta^{18}O$ record, in spite of its low signal-to-noise ratio. Here we focus on the SSA results that were obtained using an embedding dimension $M = 150$, equivalent to a time window $M\Delta t \approx 600$yr, but we will also show that these results are stable to varying M over a wide range of values.

The SSA spectrum is shown in the main panel of Fig. 2, where the 150 eigenvalues are plotted in decreasing order of power. At a first sight, we can notice a break between the initial steep slope (first 12 eigenvalues) and an almost flat floor. However, to reliably extract signal from noise, a Monte-Carlo SSA test (MC-SSA; Allen and Robertson, 1996; Allen and Smith, 1996) was applied, showing that the first 12 eigenvalues are
statistically significant at the 99% confidence level (c.l.) and explain about 46% of the $\delta^{18}O$ total variance.

The inset in Fig. 2 shows the results of the MC-SSA test. The error bars bracket 99% of the eigenvalues obtained by the SSA of 5000 surrogate series, all of them generated by a null-hypothesis model that superposes EOFs 1–12 onto a red-noise process, i.e. an auto-regressive process of order 1, or AR(1). We can notice that only the eigenvalues associated with EOFs 1–12, the ones included in the null hypothesis and represented by empty squares, lay outside the 99% error bars. This confirms that the model AR(1) + EOFs 1–12 captures the $\delta^{18}O$ variability at the 99% c.l.; we drew this conclusion after rejecting, at the same confidence level, several null hypotheses, including different combinations of EOFs. Moreover, we chose red noise to accommodate the usual background assumption in geophysical applications, where the intrinsic inertia of the system leads to greater power at lower frequencies.

The significant components are a trend (EOF 1) explaining 17.7% of total variance, and five oscillatory components of about 600 yr (EOFs 2–3), 380 yr (EOFs 4–5), 170 yr (EOFs 6–8), 130 yr (EOFs 9-12), and 11 yr (EOFs 10–11), respectively explaining 12.0%, 6.7%, 4.6%, 2.3% and 2.4% of the total variance. The periods associated to each oscillation were evaluated by MEM. Figure 3 displays the reconstructions (Ghil and Vautard, 1991; Ghil and Taricco, 1997; Ghil et al., 2002) of the trend and the individual significant oscillations. In the same figure, these components (colored lines) are compared with those obtained by the SSA of the shorter ($N = 560$) $\delta^{18}O$ time series, represented by black lines (Taricco et al., 2009). The agreement between the old and new reconstructed components is good; moreover, the small differences balance out if we consider the total reconstruction (RCs 1–12) of both the shorter and extended $\delta^{18}O$ time series (Fig. 1, black and blue smooth curves, respectively): the match between the two total reconstructions is excellent over their common time span, with a correlation coefficient $r = 0.99$. Only around the first century BC the shorter series shows a small border effect.
Thus, the SSA analysis of the longer $\delta^{18}O$ time series strengthens the results presented in our previous paper (Taricco et al., 2009), both detecting the same significant oscillations and, as a consequence, leading to the same signal reconstruction. In order to test the robustness of these results, we repeated the analysis letting M vary over a wide range of values (100–250). Figure 4 shows the reconstructions of the 600 yr, 380 yr and 11 yr oscillations for 3 values of M (150, 200, and 230). We notice that there is a good agreement between the reconstructions corresponding to different values of M, so that the robustness of our analysis with respect to changes of the window is assured.

The long-term variability features characterizing the $\delta^{18}O$ time series are captured by the trend (upper panel of Fig. 3), showing the pronounced maximum near 0 AD, the minimum during the MWP (900–1100 AD) and the increase from the MWP toward the LIA. The 170-yr oscillation, shown in the same figure, exhibits relative maxima around 1500, 1700 and 1900 AD, possibly associated with the Spörer (1460–1550 AD), Maunder (1645–1715 AD) and Modern minima of solar activity.

In order to compare the variability detected in the $\delta^{18}O$ profile with that characterizing Northern Hemisphere (NH) temperature, we constructed and analyzed a data set of 26 temperature-proxy records, extending back at least to 1000 AD and having decadal or better resolution (Taricco et al., 2014). In order to ensure careful temperature calibration of the proxy data (Tingley et al., 2012) our data set contains only series satisfying the requirement that the temperature calibration of each proxy record be provided by the authors who published the record itself. The properties of the 26 records are listed in Table 1.

This data set was analyzed by Multi-channel Singular Spectrum Analysis (MSSA; see Keppenne and Ghil, 1993; Plaut and Vautard, 1994), a multivariate extension of SSA, with each channel corresponding to one of the time series of interest.

Application of SSA requires uniformly spaced time series; therefore, all the time series were interpolated to a common annual resolution. We then applied MSSA over the
largest-possible common interval, spanning 1000 AD to 1935 AD (936 yr; \(N = 936\)). We used a window length of 300 yr, i.e. \(M = 300 \leq N/3\).

High variance was found in the NH data set at both multi-decadal and centennial time scales, relative to what would be expected under the red-noise hypothesis. The significant reconstructed components are RCs 1–2 (trend), 6–8 (170 yr), 9–10 (110 yr), 12–13 (80 yr), 16–17 (45 yr) and 18–19 (60 yr) (Taricco et al., 2014).

In our previous paper (Taricco et al., 2009), thanks to an alkenone-derived SST time series measured in cores extracted from the Gallipoli terrace (Versteegh et al., 2007), we suggested that the long-term trend and the 200-y oscillation in the \(\delta^{18}O\) record are temperature-driven. Here we notice that these two components dominate the spectrum of the NH temperature data set, what not only confirms that they are temperature-related but also that they characterize the dominant variability of the whole NH. These two modes also give the most important contributions to the net modern NH temperature rise.

Also a centennial-scale periodicity is in common between our local proxy record and NH temperature anomalies. However, spectral analysis of the 700 yr-long local alkenone-based temperature record does not detect a centennial component (figure not shown) and therefore we can deduce that this climatic variability mode is not present locally. Its presence in the \(\delta^{18}O\) record should thus derive from changes in the isotopic composition of sea water.

Focusing on the two dominant modes of NH temperature, we show in Figs. 5 and 6 their time behavior reconstructed at each site, plotted in the upper panels of the figures in order of increasing latitude. In the lower panels we show the corresponding RC pairs averaged over two different latitude bands (30–60° N and 60–90° N), as well as over the whole NH.

The trend (RCs 1–2) marks the MWP and the LIA climatic features and it is present in both latitude belts. The cooler temperatures associated with the LIA appear first in mid-latitudes and propagate on to higher latitudes. The bicentennial oscillation (RCs 6–
8), when averaged over the two different latitude belts, exhibits comparable amplitudes and a good phase agreement, as shown especially by the lower panel of Fig. 6.

Figure 7a compares the δ^{18}O and NH temperature trends. The two oscillations are in fair phase agreement: they exhibit nearly contemporary MWP features, while the LIA temperature minimum (δ^{18}O maximum) seems to have occurred slightly later at Gallipoli in respect to the whole NH. The average NH temperature decrease between the MWP and the LIA is of about 0.4 °C (black curve; also visible in the lower panel of Fig. 5). At mid-latitudes (30–60° N; orange curve in the lower panel of Fig. 5), the MWP–LIA temperature difference appears to be of the same order. The individual series of the NH data set show, however, a certain difference in trend amplitudes (see the upper panel of Fig. 5). If we focus on the Central Europe record (Büntgen et al., 2011), that is representative of a relatively large European area extending latitudinally from the Alps to Northern Germany, we find a MWP–LIA decrease of the order of 0.3 °C. The alkenone-derived SST measurements from the Gallipoli terrace (Versteegh et al., 2007), covering 1306–1979 AD, show a local temperature decrease from ~1300 to ~1700 AD of about 0.5 °C, in agreement with NH temperature, as it may be expected for a long-term, global, variation. On the other hand, the MWP–LIA increase in the trend component of δ^{18}O (Fig. 7a, dark-red curve) is about 0.025 ‰: according to Shackleton equation (Shackleton and Kennet, 1975), assuming a nearly constant oxygen isotopic ratio of sea water during the considered time interval, this variation would correspond to a cooling of ~0.1 °C only. Thus at the Ionian Sea scale, δ^{18}O indicates a MWP–LIA temperature difference that is smaller than that found locally in the alkenone series, as well as hemispherically in the NH dataset. This could be due to a contemporary change in the hydrological balance of the Ionian basin: a decrease in evaporation, accompanying the temperature decrease, would imply a reduction of the δ^{18}O of sea water and therefore a salinity increase (Pierre, 1999). Therefore the Ionian temperature MWP–LIA decrease, calculated from Shackleton equation, would be greater than the one calculated assuming the δ^{18}O of sea water to be constant. Using the alkenone-based MWP–LIA temperature variation of 0.5 °C, from Shackleton equation we get that the
+0.025‰ variation observed in the calcite $\delta^{18}O$ of foraminifera shells would be justified if the $\delta^{18}O$ of Ionian Sea water had varied, over the same time interval, by $-0.1‰$. This change would correspond, according to Pierre (1999), to a salinity decrease of about 0.4 PSU, a value that is of the order of the salinity variability range measured at Gallipoli during the last 60 years (Rixen et al., 2005). We thus can state that the trend component of $\delta^{18}O$ reflects the long-term variations of NH temperature, provided that plausible changes in the hydrological balance of the Ionian basin are taken into account.

Turning now to the bicentennial component, we compare the $\delta^{18}O$ and NH temperature 170 yr oscillations in Fig. 7b (green and black curves, respectively). The average amplitude for NH temperature is about 0.06°C but, as shown by the upper panel of Fig. 5, the amplitude of this component varies considerably from record to record in the NH data set. Among the individual local records we actually notice larger amplitudes, as in the case of Central Europe, for which the 170-y oscillation amplitude is as large as 0.2°C. This is not surprising, considering the shorter time scale considered here. The $\delta^{18}O$ amplitude is of the order of 0.4–0.5‰, that according to Shackleton equation and in the absence of salinity variations would correspond to 0.2°C, in agreement with Central Europe. On the other hand, the Ionian alkenone-derived SST record has a bicentennial variation amplitude of about 1°C (Taricco et al., 2009), what would imply a local amplification effect in respect to European variability at this scale. This suggests that also at this scale, it may be necessary to invoke salinity variations to explain the observed $\delta^{18}O$ variations.

4 Conclusions

A 2700 yr-long, high-resolution record of foraminiferal $\delta^{18}O$ (Fig. 1) measured in a sediment core drilled in the Gulf of Taranto (Ionian Sea) was analysed by advanced spectral methods. Singular Spectrum Analysis (SSA) of the series (Fig. 2) allowed detecting the presence of a long-term trend and of highly significant oscillatory components with
periods of roughly 600, 380, 170, 130 and 11 yr, thus confirming the results found by Taricco et al. (2009), who analysed the previously published time series covering 188 BC–1979 AD (Fig. 1, 3, and 4).

The construction of a data set of 26 temperature-proxy records, extending back at least to 1000 AD with at least decadal resolution and selected requiring that the temperature calibration of each proxy record be provided by the authors who published the record itself, allowed to compare the variability detected in the δ^{18}O profile with that present in reliable Northern Hemisphere (NH) temperature series published by other authors. The analysis of this data set, performed by Multi-channel Singular Spectrum Analysis (MSSA), showed as dominant modes a millennial trend and an oscillation of \sim170 yr (Figs. 5 and 6). Thus NH temperature anomalies share with our local record a long-term variation and a bicentennial cycle. The comparison of the corresponding reconstructed oscillations (Fig. 7) proved that these two components, previously identified as temperature-driven (Taricco et al., 2009) and representing the most powerful variability modes in the NH temperature data set, have coherent local and hemispheric phases. Moreover, the corresponding amplitudes are comparable, if we allow for changes in the precipitation-evaporation balance of the Ionian Sea presumably associated with temperature changes.

Acknowledgements. The authors thank S. M. Bernasconi (Geological Institute, ETH, Zürich, Switzerland) for the mass spectrometer measurements of δ^{18}O; P. Colombetti and A. Romero for their dedicated technical assistance; Sara Rubinetti acknowledges funding support from INFN-Torino.

References

National Research Council of the National Academies: Surface temperature reconstructions for the last 2000 years, National Academy Press, Washington DC, USA, 145 pp., 2006. 4059

A high-resolution δ¹⁸O record

C. Taricco et al.

Table 1. Characteristics of the 26 temperature time series in the NH data set. The columns in the table give: a two-letter acronym; a full name based on the location; longitude and latitude; archive from which the series was extracted and proxy type; season which a given temperature series is referred to; the time span; the sampling interval Δt; the number of points N; and the published reference. The identification of the archives uses the following abbreviations: LS = lake sediments, IC = ice core, TR = tree rings, MS = marine sediments, MP = multi-proxy composite, ST = speleothemes, DO = documentary.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Name</th>
<th>Long.</th>
<th>Lat.</th>
<th>Archive</th>
<th>Proxy type</th>
<th>Time span (y)</th>
<th>Δt (y)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ML</td>
<td>Lower Murray Lake</td>
<td>69.32</td>
<td>81.21</td>
<td>LS</td>
<td>Mass accumul. rate</td>
<td>3236 BC–1969 AD</td>
<td>1</td>
<td>Cook et al. (2009)</td>
</tr>
<tr>
<td>G2</td>
<td>GISP2</td>
<td>−38.5</td>
<td>72.6</td>
<td>IC</td>
<td>δ^{15}N and δ^{40}Ar</td>
<td>2000 BC–1993 AD</td>
<td>1</td>
<td>Kobashi et al. (2011)</td>
</tr>
<tr>
<td>FE</td>
<td>Fennoscandia (Lsanlia)</td>
<td>68.5</td>
<td>25</td>
<td>TR</td>
<td>Height increment</td>
<td>745 AD–2007 AD</td>
<td>1</td>
<td>Lindholm et al. (2011)</td>
</tr>
<tr>
<td>TR</td>
<td>Tornekrask</td>
<td>19.80</td>
<td>68.31</td>
<td>TR</td>
<td>Density</td>
<td>500 AD–2004 AD</td>
<td>1</td>
<td>Grudd (2008)</td>
</tr>
<tr>
<td>DL</td>
<td>Donard Lake</td>
<td>−61.35</td>
<td>66.66</td>
<td>LS</td>
<td>Varve thickness</td>
<td>752 AD–1992 AD</td>
<td>1</td>
<td>Moore et al. (2001)</td>
</tr>
<tr>
<td>NI</td>
<td>North Icelandic Shelf (MD99-2275)</td>
<td>−19.3</td>
<td>66.3</td>
<td>MS</td>
<td>U^{37}Alkenone</td>
<td>2549 BC–1997 AD</td>
<td>irregular</td>
<td>Sicre et al. (2011)</td>
</tr>
<tr>
<td>IL</td>
<td>Iceberg Lake</td>
<td>−142.95</td>
<td>60.78</td>
<td>LS</td>
<td>Varve thickness</td>
<td>442 AD–1998 AD</td>
<td>1</td>
<td>Loso (2009)</td>
</tr>
<tr>
<td>GA</td>
<td>Gulf of Alaska</td>
<td>−145</td>
<td>60</td>
<td>TR</td>
<td>Ring width</td>
<td>724 AD–2002 AD</td>
<td>1</td>
<td>Wilson et al. (2007)</td>
</tr>
<tr>
<td>GD</td>
<td>Gardar Drift (RAP/I21-3K)</td>
<td>−27.91</td>
<td>57.45</td>
<td>MS</td>
<td>U^{37}Alkenone</td>
<td>5 BC–1959 AD</td>
<td>irregular</td>
<td>Sicre et al. (2011)</td>
</tr>
<tr>
<td>HL</td>
<td>Hallet Lake</td>
<td>−146.2</td>
<td>61.5</td>
<td>LS</td>
<td>Biogenic silica</td>
<td>116 AD–2000 AD</td>
<td>irregular</td>
<td>McKay et al. (2008)</td>
</tr>
<tr>
<td>TL</td>
<td>Teletskoe Lake</td>
<td>87.61</td>
<td>51.76</td>
<td>LS</td>
<td>Biogenic silica</td>
<td>1018 BC–2002 AD</td>
<td>1</td>
<td>Kalugin et al. (2009)</td>
</tr>
</tbody>
</table>
Table 1. Continued.

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Name</th>
<th>Long.</th>
<th>Lat.</th>
<th>Archive</th>
<th>Proxy type</th>
<th>Time span (y)</th>
<th>Δt (y)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>Central Europe (Alpine arc)</td>
<td>8</td>
<td>46</td>
<td>TR</td>
<td>Ring width</td>
<td>499 BC–2003 AD</td>
<td>1</td>
<td>Büntgen et al. (2011)</td>
</tr>
<tr>
<td>SC</td>
<td>Spannagel Cave</td>
<td>11.40</td>
<td>47.05</td>
<td>ST</td>
<td>δ¹⁸O</td>
<td>90 BC–1932 AD</td>
<td>irregular</td>
<td>Mangini et al. (2005)</td>
</tr>
<tr>
<td>AL</td>
<td>The Alps (Lötschen-tal)</td>
<td>8.0</td>
<td>46.3</td>
<td>TR</td>
<td>Density</td>
<td>499 BC–2003 AD</td>
<td>1</td>
<td>Büntgen et al. (2006)</td>
</tr>
<tr>
<td>FA</td>
<td>French Alps</td>
<td>9</td>
<td>46</td>
<td>TR</td>
<td>Ring width</td>
<td>751 AD–2008 AD</td>
<td>1</td>
<td>Corona et al. (2011)</td>
</tr>
<tr>
<td>NS</td>
<td>Northern Spain</td>
<td>–3.5</td>
<td>42.9</td>
<td>ST</td>
<td>δ¹³C</td>
<td>1949 BC–1998 AD</td>
<td>irregular</td>
<td>Martin-Chivelet et al. (2011)</td>
</tr>
<tr>
<td>SH</td>
<td>ShiHua Cave</td>
<td>115.56</td>
<td>39.47</td>
<td>ST</td>
<td>Layer thickness</td>
<td>665 BC–1985 AD</td>
<td>1</td>
<td>Tan et al. (2003)</td>
</tr>
<tr>
<td>SS</td>
<td>Southern Sierra Nevada</td>
<td>–118.9</td>
<td>36.9</td>
<td>TR</td>
<td>Ring width</td>
<td>800 AD–1988 AD</td>
<td>1</td>
<td>Graumlich (1993)</td>
</tr>
<tr>
<td>TI</td>
<td>Tibet</td>
<td>98.5</td>
<td>36.5</td>
<td>TR</td>
<td>Ring width</td>
<td>1000 AD–2000 AD</td>
<td>1</td>
<td>Liu et al. (2009)</td>
</tr>
<tr>
<td>SP</td>
<td>Southern Colorado Plateau</td>
<td>–111.4</td>
<td>35.2</td>
<td>TR</td>
<td>Ring width</td>
<td>250 BC–1996 AD</td>
<td>1</td>
<td>Salzer and Kipfueller (2005)</td>
</tr>
<tr>
<td>CS</td>
<td>China Stack</td>
<td>100</td>
<td>35</td>
<td>MP</td>
<td>–</td>
<td>0 AD–1990 AD</td>
<td>10</td>
<td>Yang et al. (2002)</td>
</tr>
</tbody>
</table>
Figure 1. δ^{18}O profile (707 BC–1979 AD) measured in the Ionian GT90/3 core (gray line). In order to agree in tendency with temperatures, the isotopic ratio is plotted “upside-down”. The sampling interval is $\Delta t = 3.87$ y, the raw data mean is $x_m = 0.47\%$ and their standard deviation is $\sigma = 0.23\%$. δ^{18}O signal reconstruction obtained by summing up its first 12 significant components extracted by SSA (blue line). The signal reconstruction obtained from the SSA analysis of the shorter, previously published, δ^{18}O time series (Taricco et al., 2009) is shown as a black line. Except for a negligible border effect, the agreement between the two smooth curves is excellent over their common section ($r = 0.99$).
Figure 2. Eigenvalue spectrum from the SSA of the δ^{18}O record (window length $M = 150$). Each eigenvalue describes the fraction of total variance in the direction specified by the corresponding eigenvector (Empirical Orthogonal Function – EOF). Inset: Monte-Carlo SSA test using EOFs 1–12+AR(1) as the null-hypothesis model. The Monte-Carlo ensemble size is 5000. The empty squares highlight the eigenvalues corresponding to the EOFs included in the null hypothesis, while the blue squares represent the eigenvalues corresponding to the remaining EOFs. No excursions occur outside the 99 % limits, indicating that the series is well explained by this model.
Figure 3. Significant components extracted by SSA from the $\delta^{18}O$ record: RC1 (trend), RC 2–3 (600 yr), RC 4–5 (380 yr), RCs 6–8 (170 yr), RCs 9–12 (130 yr), and RCs 10–11 (11 yr). The black curves represent the reconstructions of the same oscillations provided by the analysis of the shorter, previously published, $\delta^{18}O$ time series (Taricco et al., 2009).
Figure 4. Reconstructed components from the SSA of the $\delta^{18}O$ time series, obtained adopting different values for the window length M.
Figure 5. Reconstructed components RCs 1–2 of the NH temperature data set, representing the long-term trend; color bar for amplitude from −0.20 to 0.20 °C. Upper-half panel: RC pair of temperature anomalies from MSSA analysis as a function of increasing latitude; lower-half panel: the same RC pair averaged over two latitude bands, namely, 30–60° N (orange) and 60–90° N (green), as well as over the entire NH (black). The red curve represents the trend of the Central Europe series.
Figure 6. Reconstructed components RCs 6–8 of the NH temperature data set, representing a bicentennial oscillation; color bar for amplitude from −0.20 to 0.20 °C. Upper-half panel: RC pair of temperature anomalies from MSSA analysis as a function of increasing latitude; lower-half panel: the same RC pair averaged over two latitude bands, namely, 30–60° N (orange) and 60–90° N (green), as well as over the entire NH (black). The red curve represents the bicentennial oscillation of the Central Europe series.
Figure 7. Comparison between the reconstructed components extracted by SSA from the δ^{18}O profile and the corresponding oscillations extracted by MSSA from the NH temperature data set. (a) Long-term trend: δ^{18}O RC 1 (dark-red line) and NH temperature RCs 1–2 (black line); (b) 170 yr oscillation: δ^{18}O RCs 6–8 (green line) and NH temperature RCs 6–8 (black line).