Subsurface North Atlantic warming as a trigger of rapid cooling events: evidences from the Early Pleistocene (MIS 31-19)

I. Hernández-Almeida¹; F-J. Sierro²; I. Cacho³; J-A. Flores²

[1] {Institute of Geography and Oeschger Centre for Climate Change Research, University of Bern, Erlachstrasse 9a, CH-3012 Bern, Switzerland}
[2] {Department of Geology, University of Salamanca. Plaza de la Merced s/n, Salamanca 37008, Spain}
[3] {Department of Stratigraphy, Paleontology and Marine Geosciences, University of Barcelona, C/Martí i Franquès s/n, 08028 Barcelona, Spain}

Correspondence to: I. Hernández-Almeida (ivan.hernandez@giub.unibe.ch)

Abstract

Subsurface water column dynamics in the subpolar North Atlantic were reconstructed in order to improve the understanding of the cause of abrupt IRD events during cold periods of the Early Pleistocene. We used paired Mg/Ca-δ¹⁸O measurements on Neogloboquadrina pachyderma sinistral, a deep-dwelling () planktonic foraminifera, to estimate the subsurface temperatures and δ¹⁸O of seawater at Site U1314. Carbon isotopes on benthic and planktonic foraminifera from the same site provide information about the ventilation and water column nutrient gradient. Mg/Ca-based temperatures and δ¹⁸O of seawater suggest increased temperatures and salinities during ice-rafting, likely due to northward subsurface transport of subtropical waters during periods of weaker Atlantic Meridional Overturning Circulation (AMOC) reduction. Planktonic carbon isotopes support this suggestion, showing coincident increased subsurface ventilation during deposition of ice-rafted detritus (IRD). Subsurface accumulation of warm waters would result in basal warming and break-up of ice-shelves, leading to massive iceberg discharges in the North Atlantic. Release of heat and salt stored at subsurface would help to restart the AMOC. This mechanism is in agreement with modelling and proxy studies that observe a subsurface warming in the North Atlantic in response to AMOC slowdown during the Marine Isotope Stage (MIS) 3.
1 Introduction

Rapid climate events in marine and continental sediments, as well as ice-core records are a pervasive feature during the Last Glacial period (Dansgaard et al., 1993; Heinrich, 1988). Millennial-scale oscillations are characterized by abrupt shifts between warm/cold conditions, associated to ice-sheet oscillations, as evidenced by major ice-rafting events recorded in the North Atlantic sediments (Grousset et al., 2001; Heinrich, 1988). The mechanism responsible for these fluctuations is not fully understood. Most accepted hypotheses relate rapid oscillations in the Atlantic Meridional Overturning Circulation (AMOC) to insulating effect of extensive ice-shelves and sea-ice and/or through freshwater perturbations causing changes in the dynamics of the North Atlantic subpolar gyre that controls the meridional heat and salinity transport (Ganopolski and Rahmstorf, 2001; Clark et al., 2001; Hátún et al., 2005; Li et al., 2005).

More recently, a number of studies and climate models have proposed that increased iceberg discharge during cold stadial events may have resulted from the destabilization of marine ice-shelves by a basal melting caused, in turn, by enhanced subsurface oceanic warming (Alvarez-Solas et al., 2010; Shaffer et al., 2004; Rasmussen and Thomsen, 2004; Liu et al., 2009; Marcott et al., 2011; Mignot et al., 2007; Moros et al., 2002; Peck et al., 2008; Jonkers et al., 2010b; Ezat et al., 2014; Naafs et al., 2013). This mechanism involves the coupling of the AMOC with ice-sheet dynamics, by an increase of the heat and salt export from low latitudes, warming of subsurface waters that would act as a positive feedback in the ice-shelf collapse. General agreement between model and proxy evidences support this explanation for abrupt climate events such as Heinrich and Dansgaard-Oeschger (D-O) cycles.

Application of Mg/Ca paleothermometry to deep-dwelling planktonic foraminiferal species constitutes a potential recorder of subsurface conditions (Kozdon et al., 2009; Simstich et al., 2003; Volkman and Mensch, 2001) to test the feasibility of this hypothesis. Moreover, as foraminiferal δ¹⁸O is controlled by temperature and δ¹⁸O of seawater (Δ¹⁸Osw), combining foraminiferal Mg/Ca temperature reconstructions with δ¹⁸O from the same species and samples allow to reconstruct Δ¹⁸Osw as a proxy for salinity (Schmidt et al., 2004). However, only few paleoceanographic studies using these proxies have been produced (Jonkers et al., 2010b; Peck et al., 2008; Peck et al., 2006). Therefore, more studies with a similar approach...
are still required to understand subsurface temperature and circulation changes linked to AMOC reorganizations, especially for time periods out of the Marine Isotope Stage (MIS) 3.

Although the paleo-community has extensively studied climate disruptions during most recent time scales, relatively little attention has been devoted to high-frequency climate variability in earlier periods when large Northern Hemisphere (NH) ice-sheets were same size as in the Late Pleistocene. Part of the gap of the study of these rapid climate oscillations in older time scales was due to the absence of high-quality/resolution paleoclimate records. However, during the last years, several studies carried out in International Ocean Drilling Project (IODP) cores have found robust evidences of abrupt climate events, (Bolton et al., 2010; Ferretti et al., 2010; Kleiven et al., 2011; Hernández-Almeida et al., 2012; Bartoli et al., 2006), with similar structure transitions between cold (stadial) and warm (interstadial) phases of the D-O cycles as those found during the Last Glacial period.

To further evaluate the relationship between subsurface ocean temperature and ice-sheet instabilities during the Early Pleistocene, we present here a new millennial-scale reconstruction of the temperature and δ¹⁸Osw of the subsurface Atlantic inflow using paired Mg/Ca and δ¹⁸O measurements on the planktonic foraminifera Neogloboquadrina pachyderma sinistral (sin.) from IODP Site U1314. This is the first Mg/Ca temperature record produced in the subpolar North Atlantic for the Early Pleistocene. Previous paleo-sea surface temperatures (SST) records in the region are derived from planktonic foraminifera-based transfer functions (Hernández-Almeida et al., 2012) or alkenones (McClymont et al., 2008), but none of them give information about the thermocline conditions. The location of this core is at ideal latitude for monitoring changes in ice-sheet mass balance, and Mg/Ca values derived from N. pachyderma sin. allow to record changes in the subsurface temperatures (upper thermocline, ~200 meters depth) (Nürnberg, 1995) associated with oscillations in the AMOC. Our data suggest subsurface warming and salinity increases preceding and during the iceberg events, indicating clear evidence of coupling between basal melting and ice-sheet collapse as a mechanism controlling the millennial-scale events in the Early Pleistocene.

2 Study site and materials

Records were made using sediments from IODP Site U1314 (56.36°N, 27.88°W, 2820-m depth) from the southern Gardar Drift in the subpolar North Atlantic (Fig. 1A). Sedimentation
rates average 9.3 cm/kyr from 1069 to 779 ka, dated by tuning our benthic δ^{18}O curve to the benthic isotope stack of Lisiecki and Raymo (2005) (hereinafter referred to as LR04) by using AnalySeries software (Paillard and Yiou, 1996) (See Hernández-Almeida et al., 2012 for further details).

Site U1314 lies in the path of an extension of the North Atlantic Current (NAC), the Irminger Current (IC), which splits from the NAC and turns toward the Greenland coast. The core of this relatively warm and salty water mass is distinguishable by its properties vertically down to 700 m depth. As the IC travels westwards it mixes with the colder and fresher waters of the East Greenland Current (EGC), becoming less saline and colder (Malmberg, 1985).

Although today the limit of winter sea-ice (Arctic Front) lies north of Site U1314, it is known to have migrated southward during glacial periods of the Pleistocene bringing much cooler waters and potentially also sea-ice south of 60°N. (Ruddiman, 1977). Today, modern hydrographic conditions at Site U1314 are characterized by seasonal water temperatures ranging between 11.7 and 7.7 °C at 10 m depth and 8-7.4 °C at 200 m (Locarnini et al., 2013) with nearly constant salinity of 35.1-35.2 practical salinity units (p.s.u.) (Antonov et al., 2006) (Fig. 1B).

Winter convection of the cooled Atlantic surface waters in the Nordic Seas results in the formation of North Atlantic Deep Water (NADW), which flows southward as the Iceland-Scotland Overflow Water (ISOW) (Figure 1a). This water mass flows at Site U1314 depth (Bianchi and McCave, 2000).

Subsurface water column conditions were determined through Mg/Ca ratios and stable isotopes measured on deep dwelling planktonic foraminifera *N. pachyderma* sin. This species inhabits and calcifies its shell in the subpolar North Atlantic at the upper thermocline, at ~200 m depth, (Kohfeld et al., 1996; Simstich et al., 2003; Nürnberg, 1995; Volkmann and Mensch, 2001). Therefore we assume that δ^{13}C on deep dwelling foraminifera *N. pachyderma* sin., which inhabits and calcifies at the upper thermocline, provides information on the ventilation rates of the subsurface water mass (Hillaire-Marcel et al., 2011), while Mg/Ca measurements on the same species reflect water temperature changes and combined with δ^{18}O provides a record δ^{18}O of seawater (sw) of the subsurface ocean (Peck et al., 2006).

Around 50-60 well-preserved tests of planktonic foraminifera *N. pachyderma* sin. (>150 µm size fraction, non-encrusted tests) were analysed in 542 samples for Mg/Ca ratio following Pena et al. (2005) procedure which includes the reductive cleaning step. Dissolved samples
were analysed on a Perkin Elmer Elan 6000 Inductively Coupled Plasma Mass Spec-trometer (ICP-MS) at the Scientific and Technological Centers of the University of Barcelona (CCiT-UB). External reproducibility for Mg/Ca ratio is estimated at 1.8% (2σ) based in the analysis of high-purity gravimetrically prepared standard solution (1.629 mmol/mol) measured routinely every four samples. Elemental ratios of Mn/Ca and Al/Ca ratios were analysed in parallel as quality controls for clay and Mn-rich mineral content. The recorded low values (Mn/Ca<0.5 mmol/mol; Al/Ca<0.15 mmol/mol) and their low correlation with the Mg/Ca ratios (R²=0.2 and 0.004 respectively) indicate that the cleaning protocol satisfactorily removed most of the contaminant phases. Final Mg/Ca values were converted into temperatures values according to Elderfield and Ganssen (2000) equation.

Stable isotopes (carbon and oxygen) records from benthic and planktonic foraminifera correspond to Hernández-Almeida et al. (2013b;2012;2013a). Analyses were carried out on planktonic foraminifera N. pachyderma sin. and on benthic foraminifera Cibicidoides spp. (mainly Cibicidoides wuellerstorfi) and Melonis pompilioides when former was absent. An adjustment factor (-0.11‰ for δ¹⁸O and +0.6‰ for δ¹³C) calculated from replicates along the core was then applied to the M. pompilioides isotope values to produce a uniform isotope data set. Oxygen isotope values were then ice-volume corrected by scaling to the sea-level curve of LR04 using an LGM to late Holocene sea-level change of 120 m (Bintanja and van de Wal, 2008). Seawater δ¹⁸O was calculated introducing paired Mg/Ca based temperatures and calcite δ¹⁸O from N. pachyderma sin. in the paleotemperature equation of Shackleton (1974). It has been widely demonstrated that planktonic species do not always precipitate calcite in equilibrium. Based on the δ¹⁸O measurements on seawater and N. pachyderma sin. tests from the Icelandic continental shelf, Smith et al. (2005) observed a δ¹⁸O disequilibrium offset of 0.25‰. Others authors have also observed a disequilibrium offset in the oxygen isotope composition of N. pachyderma sin. of ~ 0.6‰ associated with post-gametogenic processes and thermal stratification of the water column in the Nordic Seas (Nyland et al., 2006). However, Jonkers et al. (2010a) did not find any offset in sediment trap samples from the Irminger Sea. Taking into account that samples used in this study are very close to Site U1314, we did not apply any correction factor to our calculated δ¹⁸Osw. Contradicting studies indicate that this issue is not well constrained, with a need for further studies. Due to the uncertainties in N. pachyderma sin. vital effect and low SST during the Mid-Pleistocene Transition that may overestimate the δ¹⁸Osw values, we suggest caution when interpreting in absolute terms.
3 Results

Mg/Ca ranges between 0.7-1.25 mmol*mol⁻¹ and Mg/Ca derived paleotemperatures range between 1.9 and 12.3°C (Fig. 2). The Mg/Ca and δ¹⁸O_sw records show different patterns after and before MIS 25. From MIS 31 to MIS 25, the amplitude of the glacial-to-interglacial (G-IG) changes is low; temperatures and δ¹⁸O_sw are stable, only punctuated by frequent millennial-scale oscillations, with temperature decreases of ~ 3°C and δ¹⁸O_sw increases up to 1‰. Since MIS 25, amplitude of hydrographic changes was larger, with δ¹⁸O_sw increased by ~1-0.5‰, and temperature reaching maxima up to 12°C during MIS 25 and 21. During this interval, there is also a pervasive suborbital variability, especially during glacial onset and during MIS 21. Ice-rafting episodes are characterised by relatively warm and saltier subsurface waters at the Gardar Drift. Rapid temperature and δ¹⁸O_sw increases are observed before the IRD deposition, e.g. at 1060, 995, 924, 880 ka, or shortly after the iceberg discharge started (Fig. 3). There are exceptions, and some events do not show this pattern, like at ~ 832 and 828 ka, subsurface warming is not observed, but there is increase in δ¹⁸O_sw (Table 1).

The most important feature of the difference between benthic and planktonic δ¹³C (Δδ¹³C) are the abrupt decreases of ~1‰ during IRD events, when values are around 0‰. During warmer periods, Δδ¹³C ranges between +1-1.4‰ (Fig. 4).

4 Discussion

Paleotemperature estimates based on Mg/Ca of N. pachyderma sin. at Site U1314 indicate that many of the IRD events were characterised by an abrupt subsurface warming (Fig. 2). The magnitude of this warming is not always the same across the studied interval, ranging between 2.5-8°C. The δ¹⁸O_sw shows repeatedly higher values, indicating saltier waters during IRD deposition. Although these changes in temperature and salinity were simultaneous to the IRD events, in some cases (e.g. at 995 ka), subsurface waters started to warm up and to become saltier even before the ice-rafting. The positive excursions of the δ¹³C signal from N. pachyderma sin. during these events were interpreted to indicate increasing subsurface ventilation in the North Atlantic (Hernández-Almeida et al., 2013b) (Fig. 2). Similar conditions of better ventilation at intermediate depths during IRD deposition are also evident.
from benthic δ^{13}C in Site 982 on the Rockall Plateau (Venz et al., 1999), which was suggested to be related to changes in the production of GNAIW (Fig. 2). Strong coupling between the Mg/Ca temperatures and δ^{18}O$_{sw}$ fluctuations and subsurface circulation may reflect a change in the AMOC.

The accumulation of subsurface warming during ice-rafting events would correspond with a rapid development of the thermocline that stabilizes the water column and via intense basal melting and thinning of marine ice-shelves provokes a large-scale instability of the ice-sheets and retreat of the grounding line. With destruction of ice-shelves, ice streams may surge, leading to increased iceberg production. The ice-sheets located in regions with relatively mild conditions and high precipitation rates, such as Scandinavia and Iceland, are indeed very sensitive to millennial climate variability, and then respond quickly to warmer conditions producing iceberg discharges (Marshall and Koutnik, 2006). The difference between benthic and planktonic δ^{13}C ($\Delta\delta^{13}$C), used to indicate the nutrient gradient between subsurface and bottom water (Charles et al., 2010), gives additional information about the ventilation of subsurface and deep waters. The short-term periods of low $\Delta\delta^{13}$C values (~0‰) during IRD discharges suggest water column vertical mixing and formation of Glacial North Atlantic Intermediate Water (GNAIW) south of the Arctic Front.

After iceberg calving decreased, sudden release of heat accumulated at subsurface, broke the upper stratification (Mignot et al., 2007). Inflowing warm and salty Atlantic waters are again in contact with the surface ocean, and there is an efficient release of heat to the atmosphere, resulting in an intensified AMOC characterized by deeper and stronger deep-water circulation (Schmidt et al., 2006; Liu et al., 2009). Onset of deep convection in the Nordic Seas and NADW production led to a shutdown of GNAIW production (Venz et al., 1999). The nutrient gradient profile shows rapid increases up to 1.4‰ reflecting the establishment of a strong nutricline between deep and subsurface waters (Fig. 4). The switch to deep convection and a strong AMOC overshooting caused a decrease in subsurface temperatures and δ^{18}O$_{sw}$, suggesting the return toward a ‘normal water column’ state.

Although the mechanism that characterizes the subsurface climate instabilities involves higher Mg/Ca temperatures, planktonic δ^{13}C and δ^{18}O$_{sw}$, some of the events are missing some of these features. At ~ 832 and 828 ka, IRD events are not accompanied clear by subsurface warming, while changes in δ^{13}C and δ^{18}O$_{sw}$ are evident (Table 1). This could imply that more active subsurface depth ventilation was due to by brine rejection during the wintertime sea-ice
production, as occurs in high-latitude seas (Aagaard and Carmack, 1989; Horikawa et al., 2010). However, this alternate mechanism to explain the eventual higher density of subsurface waters in absence of warmer waters is speculative, and more robust evidences of brine rejection during sea-ice formation are needed. We are still uncertain about the driving mechanism that drives northward transport of warm and salty subsurface waters during episodes of weak AMOC. We suggest that analogous mechanisms involving ice-shelf and sea-ice expansion in the NH that are invoked to explain D-O cycles during the Last Glacial period (Petersen et al., 2013), operated also during the Early Pleistocene. Growing ice-shelves in the subpolar North Atlantic during the onset of glaciations would change land surface albedos producing a reduction of air sea temperature (Broccoli and Manabe, 1987). This cooling would increase the extent and thickness of sea-ice, resulting in a higher insulation of the surface ocean (Li et al., 2005; Kaspi et al., 2004), causing convection shutdown in the high latitude North Atlantic and reduced NADW formation. A weakened subpolar gyre circulation would supply less cold and fresh water to the Atlantic inflow, making it saltier (Thornalley et al., 2009; Háttún et al., 2005). Warm and salty waters accumulating at the subsurface would be eventually transported poleward as there is still convection but at intermediate depths, and finally causes a temperature inversion and salt inflow in the North Atlantic (Shaffer et al., 2004). Alternatively, abrupt slowdown of the AMOC may respond to different mechanisms including internal oscillation regulated via atmospheric CO₂ concentration and Southern Ocean wind intensifications (Banderas et al., 2012; Alvarez-Solas et al., 2011).

Several modelling and paleoclimate studies also show intermediate or subsurface warming in the North Atlantic during IRD events as a response to AMOC reorganizations (Liu et al., 2009; Mignot et al., 2007; Brady and Otto-Bliesner, 2011), accompanied by a southward shift in the convection cell from the Nordic Seas to the subpolar North Atlantic (Brady and Otto-Bliesner, 2011; Venz et al., 1999; Voelker et al., 2010; Oppo and Lehman, 1993). This scenario characterized by a temperature inversion, would represent an analogous situation to modern conditions in Arctic Ocean. In this region, Atlantic waters flowing via the West Spitsbergen Current cause an Atlantic-derived temperature and salinity maximum at 200-500 m water depth, under the permanent sea-ice cover (Bauch et al., 1997).

Temperature sensitive proxies from other North Atlantic sites display similar features that are interpreted as subsurface warming conditions prior to ice-rafting events and deglaciations during the Last Glacial period and the Holocene. Risebrobakken et al. (2011) documented
intensified subsurface warming in the Nordic Seas using planktonic foraminifera faunas as a response to a reduced strength of the AMOC through the deglaciation and the early Holocene. Mg/Ca derived temperatures from *N. pachyderma* sin. in two cores from the Northeast Atlantic also support the inferred warming during Heinrich events. These records show upper ocean stratification and high subsurface temperatures initiated during ice-rafting events (Jonkers et al., 2010b; Peck et al., 2008). Jonkers et al. (2010b) explained the low planktonic δ¹³C values of *N. pachyderma* during these events as a result of reduced ventilation of subsurface waters due to the insulating effect of a meltwater lens and/or a sea-ice layer. Our high planktonic δ¹³C values during these rapid cooling events, however, indicate that more intense subsurface ventilation and/or nutrient depleted subtropical waters were exported to the subpolar North Atlantic, which is supported by the similarity with the intermediate water δ¹³C signal from Site 982 (Venz et al., 1999) (Fig.2). We argue that such disagreement between planktonic δ¹³C profiles could be explained by the southward shift of the Polar Front as far as 42°N during cold periods of the Late Pleistocene (Ruddiman and McIntyre, 1981a; Eynaud et al., 2009), limiting the fraction of nutrient depleted subtropical waters exported northward (Mix and Fairbanks, 1985) compared to the Early Pleistocene.

Similar warm conditions during Heinrich events and stadials are also evident from benthic faunas and Mg/Ca ratios in benthic foraminifera from the Nordic Seas, indicating that warming was probably extended to intermediate depths (below 1000 meters) by downward diffusion of subtropical ocean heat during times of slow North Atlantic overturning (Rasmussen and Thomsen, 2004; Marcott et al., 2011; Ezat et al., 2014). These results are in agreement with subsurface warming events at the subtropics during Heinrich 1 (Schmidt et al., 2012). All of these observations suggest that subsurface warming was a basin-wide phenomenon during periods of reduced AMOC in MIS3. To better evaluate this scenario for the Early Pleistocene, more subsurface marine records situated in key regions from the North Atlantic are required. The proposed scenario is in agreement with modelling studies that reveal basal melting of the ice-shelf and periodic pulses of iceberg discharge as a response to strong reduction of the AMOC (Mignot et al., 2007; Shaffer et al., 2004; Alvarez-Solas et al., 2010; Manabe and Stouffer, 1997).

Finally, from the similarity of the paleoclimatic records with the model simulations and modern observations, we argue that observed increased subsurface ocean warming could play
a leading role in the massive break-up of ice-shelves in the Antarctic Ocean (Vaughan and Doake, 1996; Rignot and Jacobs, 2002; MacAyeal et al., 2003).

5 Conclusions

The Mg/Ca derived paleotemperature and δ¹⁸Osw oscillations prior and during IRD discharges at Site U1314 across the Early Pleistocene (MIS 31-19) are related to changes in subsurface circulation. The mechanism operating during episodes of rapid-climate cooling consists in a reduction in the AMOC during periods of extensive ice-shelves and sea-ice in the subpolar North Atlantic. Deep water convection sites shifted south of the Polar Front and production of GNAIW would increase at the expenses of NADW. Poleward transport of warm and salty subsurface subtropical waters during these episodes would thin and destabilize ice-shelves creating pulses of ice-rafted debris. Salt and heat accumulated at the subsurface would be suddenly released when the ice-sheet collapsed, resulting in an intensified AMOC. Analogous mechanisms based on subsurface warming as a trigger for millennial-scale climate variability were proposed for Heinrich events or D-O cycles recorded during Late Glacial period (Alvarez-Solas et al., 2010; Shaffer et al., 2004), reflecting that rapid switches of the AMOC also occurred before the establishment of the 100-kyr climate cycles of the Late Pleistocene.

Acknowledgements

This work was funded by Ministerio de Ciencia e Innovación Project GRACCIE (CONSOLIDER-INGENIO CSD2007–00067) and CGL2011–26493. IC thanks the ICREA Academia funding form the Generalitat de Catalunya. We are grateful to Leopoldo Pena and Gemma Herrera for their assistance with laboratory work at the University of Barcelona, and to Martin Grosjean for his comments and suggestions on the manuscript. This research used samples from IODP Expedition 306.
References

Brady, E., and Otto-Bliesner, B.: The role of meltwater-induced subsurface ocean warming in regulating the Atlantic meridional overturning in glacial climate simulations, Climate Dynamics, 37, 1517-1532, 10.1007/s00382-010-0925-9, 2011.

1 Schmidt, M. W., Spero, H. J., and Lea, D. W.: Links between salinity variation in the
5 Schmidt, M. W., Chang, P., Hertzberg, J. E., Them, T. R., Ji, L., and Otto-Bliesner, B. L.: Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures,
7 Shackleton, N.: Attainment of isotopic equilibrium between ocean water and the benthonic
8 foraminifera genus Uvigerina: isotopic changes in the ocean during the last glacial. Colloques
10 Shaffer, G., Olsen, S. M., and Bjerrum, C. J.: Ocean subsurface warming as a mechanism for
11 coupling Dansgaard-Oeschger climate cycles and ice-rafting events, Geophys. Res. Lett., 31,
13 Simstich, J., Sarnthein, M., and Erlenkeuser, H.: Paired δ¹⁸O signals of Neogloboquadrina
14 pachyderma (s) and Turborotalita quinqueloba show thermal stratification structure in Nordic
16 Smith, L. M., Andrews, J. T., Castañeda, I. S., Kristjánsdóttir, G. B., Jennings, A. E., and
17 Sveinbjörnsdóttir, Á. E.: Temperature reconstructions for SW and N Iceland waters over the
18 last 10 cal ka based on δ¹⁸O records from planktic and benthic Foraminifera, Quat. Sci. Rev.,
19 24, 1723-1740, 2005.
20 Thornalley, D. J., Elderfield, H., and McCave, I. N.: Holocene oscillations in temperature and
22 Vaughan, D. G., and Doake, C. S. M.: Recent atmospheric warming and retreat of ice shelves
25 North Atlantic Intermediate Water Variability from ODP Site 982 in the Northeast Atlantic,
27 Voelker, A. H. L., Rodrigues, T., Billups, K., Oppo, D., McManus, J., Stein, R., Hefter, J.,
28 and Grimalt, J. O.: Variations in mid-latitude North Atlantic surface water properties during
the mid-Brunhes (MIS 9–14) and their implications for the thermohaline circulation, Climate
of the Past, 6, 531-552, 2010.
Volkmann, R., and Mensch, M.: Stable isotope composition (δ¹⁸O, δ¹³C) of living planktic
foraminifera in the outer Laptev Sea and the Fram Strait, Mar. Micropaleontol., 42, 163-188,

FIGURE CAPTIONS

Table 1. Summary of the changes in Mg/Ca, δ¹⁸O_sw and planktonic δ¹³C during the IRD
events.

Figure 1. (a) Location of IODP Site U1314. Modern surface (red), and deep circulation (blue)
in the North Atlantic: East Greenland Current (EGC), North Atlantic Current (NAC),
Irminger Current (IC), Iceland Scotland Overflow Water (ISOW), North Atlantic Deep Water
(NADW). (b) Plots of temperature (ºC) (red) and salinity (p.s.u.) (blue) versus depth obtained
from the World Ocean Atlas 2013 (Locarnini et al., 2013; Zweng et al., 2013). Map generated
with Ocean Data View v.3.4.3. software (Schlitzer, 2008).

Figure 2. Data for IODP Site U1314 spanning marine isotope stages (MIS) 31-19 vs. age.
From top to bottom: (a) benthic (Hernández-Almeida et al., 2013a) and (b) planktonic δ¹⁸O
(Hernández-Almeida et al., 2012); (c) benthic δ¹³C (Hernández-Almeida et al., 2013a); (d)
planktonic δ¹³C (red) (Hernández-Almeida et al., 2013b) vs. benthic δ¹³C from Site 982 (blue)
(Venz et al., 1999); (e) δ¹⁸O_sw reconstruction from paired Mg/Ca-δ¹⁸O measurements on the
planktonic foraminifera Neogloboquadrina pachyderma (sin.); (f) derived Mg/Ca-
paleotemperature calculated using exponential temperature equation of Elderfield and
Ganssen (2000). (g) IRD/g (Hernández-Almeida et al., 2012). Red vertical bars indicate IRD
discharge associated with subsurface warming.
Figure 3. Comparison between Mg/Ca-paleotemperature, δ¹⁸O_sw, planktonic δ¹³C and IRD/g for Site U1314 during specific intervals.

Figure 4. Data for IODP Site U1314 spanning marine isotope stages (MIS) 31-19 vs. age. (a) Δδ¹³C_b-p (b-benthic, p-planktonic) (i.e. C. wuellerstorfi/M. pompilioides-N. pachyderma sin.); (b) IRD/g (Hernández-Almeida et al., 2012).
<table>
<thead>
<tr>
<th>IRD Event</th>
<th>Warming Mg/Ca (°C)</th>
<th>Salinity $\delta^{18}O_{sw}$ (‰)</th>
<th>Ventilation $\delta^{13}C_{plank}$ (‰)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIS 30 (~1052 ka)</td>
<td>6.57</td>
<td>1.77</td>
<td>0.36</td>
</tr>
<tr>
<td>MIS 29 (~1033 ka)</td>
<td>3.3</td>
<td>0.35</td>
<td>0.42</td>
</tr>
<tr>
<td>MIS 29 (~1020 ka)</td>
<td>0.92</td>
<td>1.38</td>
<td>0.78</td>
</tr>
<tr>
<td>MIS 28 (~1012 ka)</td>
<td>1.8</td>
<td>0.68</td>
<td>0.36</td>
</tr>
<tr>
<td>MIS 28 (~1004 ka)</td>
<td>6.22</td>
<td>1.23</td>
<td>0.54</td>
</tr>
<tr>
<td>MIS 27 (~995 ka)</td>
<td>2.32</td>
<td>1.88</td>
<td>1.2</td>
</tr>
<tr>
<td>MIS 27 (~984 ka)</td>
<td>3.33</td>
<td>1.02</td>
<td>0.32</td>
</tr>
<tr>
<td>MIS 27 (~970 ka)</td>
<td>3.8</td>
<td>1.56</td>
<td>0.32</td>
</tr>
<tr>
<td>MIS 26 (~961 ka)</td>
<td>2.52</td>
<td>1.15</td>
<td>0.02</td>
</tr>
<tr>
<td>MIS 24 (~931 ka)</td>
<td>3.1</td>
<td>0.97</td>
<td>0.48</td>
</tr>
<tr>
<td>MIS 24 (~924 ka)</td>
<td>5.0</td>
<td>1.79</td>
<td>0.41</td>
</tr>
<tr>
<td>MIS 23 (~910 ka)</td>
<td>2.92</td>
<td>1.12</td>
<td>0.51</td>
</tr>
<tr>
<td>MIS 22 (~888 ka)</td>
<td>2.7</td>
<td>1.48</td>
<td>0.02</td>
</tr>
<tr>
<td>MIS 22 (~870 ka)</td>
<td>6.3</td>
<td>2.05</td>
<td>0.52</td>
</tr>
<tr>
<td>MIS 21 (~842 ka)</td>
<td>6.4</td>
<td>1.66</td>
<td>0.51</td>
</tr>
<tr>
<td>MIS 21 (~830 ka)</td>
<td>0.08</td>
<td>0.97</td>
<td>0.46</td>
</tr>
<tr>
<td>MIS 21 (~828 ka)</td>
<td>0.72</td>
<td>0.8</td>
<td>0.33</td>
</tr>
<tr>
<td>MIS 21 (~815 ka)</td>
<td>3</td>
<td>0.8</td>
<td>0.22</td>
</tr>
<tr>
<td>MIS 21 (~805 ka)</td>
<td>1.5</td>
<td>1.17</td>
<td>0.36</td>
</tr>
</tbody>
</table>