Constraining the Last Glacial Maximum climate by data-model (iLOVECLIM) comparison using oxygen stable isotopes

T. Caley¹, D. M. Roche¹,², C. Waelbroeck², and E. Michel²

¹Earth and Climate Cluster, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
²Laboratoire des Sciences du Climat et de l'Environnement (LSCE), CEA/CNRS-INSU/UVSQ, Gif-sur-Yvette Cedex, France

Received: 29 October 2013 – Accepted: 6 December 2013 – Published: 10 January 2014
Correspondence to: T. Caley (t.caley@vu.nl)
Published by Copernicus Publications on behalf of the European Geosciences Union.
Abstract

We use the fully coupled atmosphere-ocean three-dimensional model of intermediate complexity iLOVECLIM to simulate the climate and oxygen stable isotopic signal during the Last Glacial Maximum (LGM, 21 000 yr). By using a model that is able to explicitly simulate the sensor (δ¹⁸O), results can be directly compared with data from climatic archives in the different realms.

Our results indicate that iLOVECLIM reproduces well the main feature of the LGM climate in the atmospheric and oceanic components. The annual mean δ¹⁸O in precipitation shows more depleted values in the northern and southern high latitudes during the LGM. The model reproduces very well the spatial gradient observed in ice core records over the Greenland ice-sheet. We observe a general pattern toward more enriched values for continental calcite δ¹⁸O in the model at the LGM, in agreement with speleothem data. This can be explained by both a general atmospheric cooling in the tropical and subtropical regions and a reduction in precipitation as confirmed by reconstruction derived from pollens and plant macrofossils.

Data-model comparison for sea surface temperature indicates that iLOVECLIM is capable to satisfyingly simulate the change in oceanic surface conditions between the LGM and present. Our data-model comparison for calcite δ¹⁸O allows investigating the large discrepancies with respect to glacial temperatures recorded by different microfossil proxies in the North Atlantic region. The results argue for a strong mean annual cooling between the LGM and present (> 6°C), supporting the foraminifera transfer function reconstruction but in disagreement with alkenones and dinocyst reconstructions. The data-model comparison also reveals that large positive calcite δ¹⁸O anomaly in the Southern Ocean may be explained by an important cooling, although the driver of this pattern is unclear. We deduce a large positive δ¹⁸Osw anomaly for the north Indian Ocean that contrasts with a large negative δ¹⁸Osw anomaly in the China Sea between the LGM and present. This pattern may be linked to changes in the hydrological cycle over these regions.
Our simulation of the deep ocean suggests that changes in δ^{18}Osw between the LGM and present are not spatially homogenous. This is supported by reconstructions derived from pore fluids in deep-sea sediments. The model underestimates the deep ocean cooling thus biasing the comparison with benthic calcite δ^{18}O data. Nonetheless, our data-model comparison support a heterogeneous cooling of few degrees ($2-4 °C$) in the LGM Ocean.

1 Introduction

Oxygen stable isotopes (δ^{18}O) are among the most widely used/common tools in palaeoclimatology-palaeoceanography. δ^{18}O constitutes an important tracer of the hydrological cycle for the different components of the climatic system (ocean, atmosphere, ice sheets) but processes that control the recorded δ^{18}O signal are various and complex. Simulation of climate and its associated isotopic signal allow an investigation of these various and complex processes (e.g. Roche et al., 2004a; Lewis et al., 2010).

Water isotopes have been implemented in numerous atmospheric and oceanic general circulation models (Jouzel et al., 1987; Joussame and Jouzel, 1993; Hoffmann et al., 1998; Schmidt, 1998; Paul et al., 1999; Delaygue et al., 2000; Werner et al., 2000, 2011; Noone and Simmonds, 2002; Mathieu et al., 2002; Lee et al., 2007; Yoshimura et al., 2008; Zhou et al., 2008; Tindall et al., 2009; Risi et al., 2010; Xu et al., 2012). However, they have very seldom been used in coupled climate simulations with water isotopes in both the atmospheric and oceanic components, due to computational costs (Schmidt et al., 2007; LeGrande and Schmidt, 2011). We chose here to use an intermediate complexity model to circumvent that limitation, while retaining a full oceanic general circulation model to allow investigating the details of the oceanic response where numerous palaeodata are available.

Water isotopes have been implemented and validated against data for the present day climate in the global three-dimensional model of intermediate complexity
iLOVECLIM (Roche, 2013; Roche and Caley, 2013; Caley and Roche, 2013). In the present study, we focus on the Last Glacial Maximum (LGM) climate, a cold climatic extreme. We will refer to the LGM as the period around 21 thousand years before present because (1) it is coherent with the commonly used time period in previous climate simulations and (2) it has been defined as the period between 23 and 19 thousand years before present based on a thorough examination of palaeoclimatic data (Mix et al., 2001). To our knowledge, the present study is the first attempt at a global atmosphere–ocean coupled simulation of the Last Glacial Maximum with an oceanic general circulation model. One earlier coupled model study including oxygen isotopes used a spatially greatly simplified model (Roche et al., 2004b).

The LGM has become a standard target period to constrain climate sensitivity and evaluate model’s capability to simulate a climate that is drastically different from that of the present-day. Efforts have been made to improve multi-model intercomparisons under glacial boundary conditions to diagnose the range of possible responses, to a given change in forcing. These efforts have been realized by the pioneering work of the Palaeoclimate Modeling Intercomparison Project (PMIP). PMIP used Atmospheric General Circulation models (Joussaume and Taylor, 2000) in its first phase, and Coupled Atmospheric–Ocean models in its second phase (PMIP2) (Crucifix et al., 2005; Braconnot et al., 2007a, b). PMIP is now in its third phase (CMIP5/PMIP3 palaeo-simulations) and uses a coherent framework between past, present and future simulations to provide a systematic and quantitative assessment of the realism of the models used to predict the future (Braconnot, 2012; Schmidt et al., 2013).

The evaluations of model results are supported by environmental proxy data that have been compiled in several projects aimed at the reconstruction of the LGM surface conditions, like Climate Long-Range Investigation Mapping and Prediction (CLIMAP, 1981), Glacial Atlantic Mapping and Prediction (GLAMAP2000, Sarnthein et al., 2003) and more recently The Multiproxy Approach for the Reconstruction of the Glacial Ocean Surface (MARGO, Kucera et al., 2005; MARGO Project Members, 2009). However, all environmental proxies are influenced by non-climatic factors and/or
further climatic factors. A promising way of exploiting palaeo-environmental data for climate-model evaluation is to use models that explicitly simulate the sensor. A decisive advantage of isotope-enabled models is their ability to directly simulate measured quantities (in the present case, $\delta^{18}O$), so that their results can be directly compared with data from the different climatic archives.

In this study, we present a comparison between LGM simulated and measured oxygen isotopes. The results are presented in terms of anomaly between the LGM and the present. The use of anomaly renders absolute values irrelevant; it concerns a purely relative change. We can therefore ignore complications such as species-specific climate variable relationships, vital effect offsets, and calibrations of values measured relative to the VPDB standard to values on the VSMOW scale (Rohling and Cooke, 1999). We consider both the atmospheric and oceanic component and discuss the agreement between data and model results, as well as the processes driving the isotopic signal recorded.

2 Material and method

2.1 LGM boundary conditions

We use the boundary conditions defined in/by the PMIP2 protocol to simulate the LGM climate. Lowered levels of atmospheric greenhouse gas concentrations ($CO_2 = 185$ ppm, $CH_4 = 350$ ppb and $NO_2 = 200$ ppb) are used in agreement with ice-core measurements (Fluckiger et al., 1999; Dällenbach et al., 2000; Monnin et al., 2001). Ice-sheet topography changes are taken from Peltier (2004) and the surface albedo is set accordingly. Orbital parameters correspond to 21 000 yr before present (Berger and Loutre, 1992). To account for the ~ 130 m decrease in sea level relative to present day, the land-sea mask and the oceanic bathymetry are modified (Lambeck and Chappell, 2001). Some variations exist among the PMIP simulations, mainly for the Northern Hemisphere, in the handling of changes in the river basins (Weber et al.,
2007), i.e. changes in river routing due to the presence of ice-sheets. In our LGM simulation we included changes in the water routing from the Laurentide ice-sheet over North America and from the Fennoscandian ice sheet over Eurasia. We applied the above forcings to the model’s equilibrium state and integrated it until a new equilibrium was reached, after 5000 yr of integration.

Our choice of using the PMIP2 boundary conditions instead of the more recent PMIP3 protocol arise from several considerations: (1) having a state readily comparable to the already published LGM state of an earlier version of the model (Roche et al., 2007), (2) possibility in a future study to intercompare our atmospheric results to already published PMIP2 LGM atmospheric general circulation model, (3) the fact that the main difference between the PMIP2 and PMIP3 protocols is in the ice-sheet elevation (cf. PMIP, 2013) which, interpolated on our atmospheric coarse resolution grid, is not very large.

2.2 Global datasets compilation

Global oxygen isotopic datasets for the atmospheric and oceanic components have been already compiled for the Late Holocene (LH) and have been compared and discussed with iLOVECLIM results (Caley and Roche, 2013). Here we compiled \(\delta^{18}O \) data at sites for which the LGM interval is available in order to calculate signal anomalies. Table 1 is a compilation of \(\delta^{18}O \) data from 17 published records from Greenland and Antarctic ice cores. The ice \(\delta^{18}O \) anomalies are reported as the difference between averaged \(\delta^{18}O \) values computed over the period of 20 000–22 000 yr BP and over the last 1000 yr of each record, using published chronologies. For EPICA Dome C and Vostok sites the \(\delta D \) values were converted in \(\delta^{18}O \) values using the global meteoric water line \(\delta D = 8.2 \cdot \delta^{18}O + 11.27 \) (Rozanski et al., 1993). Table 1 also includes calcite \(\delta^{18}O \) data from 10 published speleothem records. Calcite \(\delta^{18}O \) anomalies are reported as the difference between averaged \(\delta^{18}O \) values computed over the period of 20 000–22 000 yr BP and over the last 1000 yr of each record, using published U/Th chronologies.
We compiled calcite $\delta^{18}O$ measurements from 116 pairs of deep-sea cores for which both LGM and LH planktic foraminifera $\delta^{18}O$ exist and from 114 pairs of deep-sea cores for which benthic foraminifera $\delta^{18}O$ exist. Anomalies are reported as the difference between averaged $\delta^{18}O$ values computed over the period of 19,000–23,000 yr BP and over the last 3,000 yr of each record (Tables S1 and S2). Working with anomalies instead of LGM and LH values would reduce uncertainties related to potential changes in planktic foraminifera seasonality or depth habitat (Waelbroeck et al., 2005). We selected marine cores for which the chronology is essentially based on radiogenic dating (^{14}C). Chronostratigraphic quality has been defined following the MARGO project definition (Kucera et al., 2005) (Tables S1 and S2).

Concerning planktic foraminifera, we worked with $\delta^{18}O$ data of the most commonly measured planktic foraminifer species: *Globigerinoides ruber white* and *pink*, *Globigerinoides sacculifer*, *Globigerina bulloides*, and *Neogloboquadrina pachyderma* sinistral for the majority of the sites. Two exceptions occur at sites MD96-2077 and OCE326-GGC5 for which *Globorotalia inflata* is used (Table S1). We extended our data set with 10 calcite $\delta^{18}O$ measurements of planktic foraminifera *Neogloboquadrina pachyderma* sinistral compiled by Meland et al. (2005). We only selected records for which the LGM level was determined by AMS ^{14}C and for which LH data (last 3,000 yr) was available. These authors used a definition for the LGM chronozone slightly different (18–21.5 ka) but the data allow comparison with model results in the Nordic seas, an area poorly documented in our compilation (Table S1).

Concerning benthic foraminifera $\delta^{18}O$, we extended our data set with 22 calcite $\delta^{18}O$ measurements compiled by Zarriess and Mackensen (2011). These authors used a definition for the LGM chronozone (18.3–23.5 ka) that encompasses the one we used (19–23 ka). We also considered four calcite $\delta^{18}O$ measurements from Adkins et al. (2002) and two calcite $\delta^{18}O$ measurements from Malone et al. (2004) that have been combined in the same cores with pore fluids measurements in deep-sea sediments to reconstruct deep ocean temperature.
3 Results and discussion

3.1 Atmospheric component

3.1.1 Oxygen stable isotopes in precipitation

In the following we only briefly discuss the annual mean distribution of $\delta^{18}O$ in precipitation, since a complete description and intercomparison with previously published LGM $\delta^{18}O$ in precipitation simulations will be undertaken in another study/article in preparation.

Isotopic values are expressed relative to a standard (Sharp, 2007):

$$\delta^{18}O = R\left(\frac{^{18}O}{^{16}O}\right)_p / R\left(\frac{^{18}O}{^{16}O}\right)_{std} - 1,$$

where R is the abundance ratio of the heavy and light isotopes (e.g., $N(^{18}O)/N(^{16}O)$) for substance P and δ is commonly reported in units of parts per thousand (‰). The standard for carbonate is Pee Dee Belemnite (PDB) (Craig, 1957) and that for water is Standard Mean Ocean Water (SMOW) (Baertschi, 1976).

Model results for the annual mean precipitation $\delta^{18}O$ anomaly show large negative values in the northern and southern high latitudes at the LGM compared to the present (Fig. 1). Particularly visible are the area of very depleted $\delta^{18}O$ precipitation over the imposed LGM ice-sheet in North America and northern Eurasia. In contrast, the mid-latitudes are only slightly depleted and the tropical regions slightly enriched. Over the oceans and with the notable exception of the North Atlantic, the anomaly is relatively symmetric with respect to the equator. Some areas over Siberia exhibit a surprisingly large positive anomaly, despite their increased continentality and the negative $\delta^{18}O$ anomaly in Western Europe. We do not consider this result as valid but rather, as a result of a model deficiency at very low moisture content, a deficiency that has already been noted for present-day (Roche, 2013).
To compare our model results with isotopic data, we use the precipitation δ^{18}O signal from ice cores. We focus on Greenland and Antarctic ice cores (Table 1).

For the Greenland ice-sheet, iLOVECLIM model result and data anomalies are in very good agreement ($R^2 = 0.7$) (Fig. 2). A gradient from weak negative δ^{18}O anomalies from the North-West (NEEM, Camp Century) through the centre (GRIP, NGRIP) towards large negative δ^{18}O anomalies in the South-East (Dye-3) is visible in both data and model results. The maximum depletion occurs in our model over Baffin Bay, with a strong effect of glacial/interglacial sea-ice changes.

Concerning Antarctica, iLOVECLIM results are not in good agreement ($R^2 = 0.19$) (Fig. 3, right panel) with the small data set used. Looking in more details at individual ice-core sites, we infer that the model does reproduce qualitatively the east–west gradient in Antarctica, with large negative precipitation δ^{18}O anomalies in western Antarctica (Epica Dronning Maud Land, Byrd, WDC, Siple Dome) and smaller negative anomalies in eastern Antarctica. The δ^{18}O anomaly at Talos Dome ice core record is well reproduced in the model. Similarly, the values simulated at the Vostok and Dome B sites are not regionally inconsistent. The only ice-core sites that are really at odd with our results are Dome Fuji and Epica Dome C/Dome C data (Table 1 and Fig. 3). Part of the mismatch between the model and the data at those sites may arise from the numerical humidity issue already outlined in Roche (2013).

Some tropical ice cores exist in the Himalayan (Dunde, Guliya) and Andes regions (Huascarán, Sajama and Illimani). The tropics are marked by slightly positive δ^{18}O anomalies or no change in iLOVECLIM (Fig. 1). The model fails to simulate the depletions ranging from -2 to -5% inferred from tropical ice cores (Thompson et al., 1989, 1995, 1998, 2000; Ramirez et al., 2003; Risi et al., 2010). Part of the explanation could reside in the extreme altitude (around 5000–6000 m) of tropical ice cores, hampering a good data-model comparison. Indeed, the altitude in our coarse resolution model for these regions is lower (300 m for the Andes and 4000 m for the Himalayas). Another reason might be the complex precipitation setting of the Andes,
with a combination of moisture from the Pacific and recycled moisture from inland regions (Risi et al., 2010).

3.1.2 Oxygen stable isotopes in continental carbonates (speleothems)

Under equilibrium conditions, the $\delta^{18}O$ of continental carbonates (speleothems) depends on both the temperature through its control on equilibrium fractionation between water and calcite (Hendy, 1971; Kim and O’Neil, 1997) and the isotopic composition of drip water, from the cave site in which the speleothem grew, itself linked to the $\delta^{18}O$ in precipitation. This relationship between the $\delta^{18}O$ of carbonates, the $\delta^{18}O$ of the water, and temperature is expressed by the equation of Kim and O’Neil (1997) for synthetic calcite:

$$\delta^{18}O_{\text{calcite}}(\text{speleothem}) = \delta^{18}O_{\text{water}} + (18.03 \cdot (1000/T) - 32.17),$$

(2)

where T is the temperature in Kelvin.

Although recent works suggest that calcite speleothems do not precipitate under equilibrium conditions (Mickler et al., 2006; Daeron et al., 2011), the use of anomaly calculations between the LGM and LH would limit such potential bias.

As the atmospheric temperature is an important control on the calcite $\delta^{18}O$ signal, we need to assess the modelled atmospheric temperature. To do so, we used the pollen-based continental climate reconstructions (Bartlein et al., 2011) (Fig. 4). A general cooling during the LGM is observed in both data and model results. Close to the Northern Hemisphere ice sheets the cooling is largest and well reproduced by the model. The LGM cooling indicated by pollen data is more pronounced in southern Europe in comparison to model results. This aspect was already noted (Vandenberghe et al., 2012) and was shown to reflect a too little southward extension of winter sea-ice along the western European coast. It could be attributed to (1) the low resolution of the atmospheric component and (2) the absence of Gibraltar in the oceanic part of the model (Roche and Caley, 2013), promoting warm waters from the Mediterranean along the European coast (Roche et al., 2007; Vandenberghe et al., 2012). In the tropics, the
cooling is reduced compared to the high northern latitudes. With the exception of South Africa where a lot of scatter is observed in the data from a large cooling of −10°C to a moderate −2°C cooling, iLOVECLIM reproduces very well the main features of atmospheric temperature between the LGM and present.

Simulated atmospheric temperature and precipitation δ¹⁸O are used to calculate calcite δ¹⁸O. The simulated annual mean anomaly between the LGM and present is then compared to speleothem data (Fig. 5). Considering the error bars on the data (Table 1), we observe overall positive calcite δ¹⁸O anomalies except for Solufar cave (Fig. 5). As shown previously, mean annual atmospheric temperature are globally cooler during the LGM (Fig. 4). Precipitation reconstruction derived from subfossil pollens and plant macrofossils for the LGM suggests a significant decrease in precipitation compared to present over the Eurasia, Africa and North America (Bartlein et al., 2011). Both the significant cooling and drying of the LGM climate can explain the overall pattern toward positive calcite δ¹⁸O anomalies. Overall, for nine sites over the ten compiled, there is a very good agreement between data and model results (Fig. 5). In a previous data model comparison study for the late Holocene (Caley and Roche, 2013), we concluded that limitation of the model together with the processes operating in the atmosphere, soil zone, epikarst and cave system hampered a good quantitative data model comparison for the continental calcite δ¹⁸O signal. The better agreement between data and model results in term of annual mean anomaly suggests that this approach allows us to reduce complications with the atmospheric, soil and cave processes and that the model is capable to reproduce the right amplitude of changes. This offers large perspectives for the understanding of speleothems records covering glacial-interglacial time scale. Indeed, long-term transient simulation of water isotopes with iLOVECLIM could be realized and the relationship between the δ¹⁸O precipitation signal and climate variables such as temperature and precipitation rates could be investigated.
3.2 Surface and deep ocean

3.2.1 Oxygen stable isotopes in surface ocean carbonates (planktic foraminifera)

The carbonate isotopic concentration from various organisms such as foraminifera is mainly controlled by temperature and by the isotopic composition of seawater (δ¹⁸Osw) during shell formation (Urey, 1947; Shackleton, 1974).

The temperature dependence of the equilibrium fractionation of inorganic calcite precipitation around 16.9 °C is given in Shackleton (1974) as:

\[T = 16.9 - 4.38(\delta^{18}O_{\text{carbonate(PDB)}} - \delta^{18}O_{\text{sw(SMOW)}}) \]

\[+ 0.1(\delta^{18}O_{\text{carbonate(PDB)}} - \delta^{18}O_{\text{sw(SMOW)}})^2 \] (3)

As the calcite δ¹⁸O signal is controlled by temperature and δ¹⁸Osw, it is important to discuss and assess these variables in our model. The assessment can be carried out for sea surface temperature (SST) using reconstruction of LGM SST derived from different microfossil proxies (MARGO Project Members, 2009). On the contrary, there is currently no method to directly reconstruct surface water δ¹⁸O in the past.

We observe a very good agreement between simulated and measured SST anomalies between the LGM and the present (Fig. 6). Figure 6b illustrates the data-model agreement or disagreement taking into accounts the uncertainties on LGM SST reconstructions (MARGO Project Members, 2009). Model results confirm that the strongest annual mean cooling occurred in the mid-latitude North Atlantic (MARGO Project Members, 2009). However, some discrepancies between SST reconstructions and model results occur south of Iceland and Greenland. We will discuss in detail this point later in the manuscript. In the tropical band (30° S–30° N) our model results are in excellent agreement with data and therefore confirm that the tropical cooling is more extensive than that proposed by CLIMAP (MARGO Project Members, 2009). Interbasin
differences as well as west-east gradients within each basin, although much weaker in the model, mark the equatorial oceans in agreement with MARGO reconstructions.

After subtraction of the LGM ice-sheets contribution (~1‰) (Schrag et al., 1996; Duplessy et al., 2002), modelled surface water $\delta^{18}O$ anomalies exhibit negative values in the North Atlantic region (between 30 and 60°N) (Fig. 7). This probably reflects the changes in ice-sheets distribution and their impact on surface water $\delta^{18}O$ through depleted water discharges from rivers. Both sides of the Greenland ice-sheet are marked by positive anomalies (Fig. 7) that reflect the change from present day seasonal sea-ice to LGM permanent sea ice condition in agreement with proxy reconstruction (De vernal et al., 2006). Changes in $\Delta \delta^{18}O_{sw}$ are null in the Southern Ocean and the rest of the oceans (tropical area) is mainly marked by slight positive anomalies, probably reflecting the more enriched $\delta^{18}O$ precipitation signal during the LGM (Fig. 1).

We computed annual mean calcite $\delta^{18}O$ anomalies from simulated $\delta^{18}O_{sw}$ and SST and compared the results with deep-sea core data (Fig. 8). We chose a depth habitat of 0–50 m to calculate calcite $\delta^{18}O$ anomalies as we previously demonstrated that it was suitable for a comparison with a global and varied dataset composed of different species of foraminifera (Caley and Roche, 2013). Although ecological effects can also play a role and are more expressed when individual species are considered (Caley and Roche, 2013) our strategy based on anomaly calculation limits such potential biases.

We observe a good qualitative agreement between data and model results (Fig. 8a). Figure 8b illustrates the data-model agreement or disagreement taking into accounts the uncertainties (2σ) on LGM and LH calcite $\delta^{18}O$ reconstructions (Table S1). Overall, we observe quantitative good agreement between data and model except in the North Indian region. Although calcite $\delta^{18}O$ anomalies are larger in the model than in the data, the sign of the latitudinal gradient observed in the Indian Ocean is correct (Fig. 8a).

Steep calcite $\delta^{18}O$ gradients between 30 and 90° N in the Atlantic Ocean are visible (Fig. 8). This is also expressed on a global latitudinal transect as the majority of data northward of 30° N are located in the Atlantic. The calcite $\delta^{18}O$ anomaly at 30° N is
1 ‰, then change to 2.5–3 ‰ between 40 and 60° N and finally decrease between 65 and 90° N (lower than 1 ‰) (Fig. 9a).

We compare these trends with a global latitudinal transect of ΔSST and the same latitudinal transect for the simulated Δδ¹⁸Osw (Fig. 9b and c). We conclude that observed calcite δ¹⁸O gradients in the north Atlantic are mainly an effect of SST changes with latitude. Indeed, large positive calcite δ¹⁸O anomalies are associated with negative δ¹⁸Osw anomalies and colder temperatures indicating the dominant role of SST in driving the calcite δ¹⁸O signal (Fig. 9).

The data-model comparison also reveals large positive calcite δ¹⁸O anomalies in the Southern Ocean, between 45 and 50° S (1.5–2 ‰). In a previous study, we argue that a data-model comparison for calcite δ¹⁸O in past climate could constitute an interesting way for mapping the potential shifts of the frontal systems and circulation changes through time, in particular in the Southern region (Caley and Roche, 2013). The large values observed are linked to a large negative SST anomaly in the region with weak changes in Δδ¹⁸Osw observed in our model (Fig. 9). The cooling could be directly linked to the reorganisation of frontal systems during glacial periods as documented in many studies (Peeters et al., 2004; Bard and Rickaby, 2009; Caley et al., 2012). However the driver of this potential fronts reorganisation is far from being understood. It could be related to SH westerlies changes, although recent data-model comparison works have no clear conclusion on the behaviour of westerlies during the LGM (Kohfeld et al., 2013; Sime et al., 2013). It is interesting to note that the Southern Ocean, subtropical South Atlantic and Pacific are regions where large disagreements occur among the latest coupled-GCM LGM simulations (Braconnot et al., 2007a). The fact that iLOVECLIM reproduces well the observed cooling and the main pattern of the calcite δ¹⁸O signal in the Southern region illustrates how data-model comparison for oxygen isotopes can serve to evaluate model’s capability to simulate a climate that is drastically different from that of the present-day.

The tropical regions (30° N–30° S) exhibit overall a large positive calcite δ¹⁸O anomaly of 1–2 ‰ that mainly reflects a negative SST anomaly (Figs. 9 and 10). An
exception occurs in the North Indian Ocean for which we observed a higher calcite \(\delta^{18}O \) anomaly (2–3‰). This anomaly can not be explained by the cooling observed in the region but rather by a higher \(\Delta \delta^{18}Osw \) (Figs. 9 and 10). Indeed, the cooling in the tropical Atlantic is more pronounced than in the north Indian Ocean but the calcite \(\delta^{18}O \) anomaly is not larger (Fig. 10). This large positive anomaly observed in data for the North Indian Ocean is overestimated in the model (Figs. 8, 9 and 10). This is probably due to the anomalously low \(\delta^{18}Osw \) signal simulated by the model for the present day in the North Indian region (Roche and Caley, 2013). Explanations for the observed North Indian Ocean enrichment in \(\delta^{18}Osw \) at the LGM could be (1) a contraction of the Indian subtropical gyre and reduction of Agulhas leakage salty water (Caley et al., 2011a) and/or (2) an overall reduction of the hydrological cycle over the western and northern Asian region, in agreement with numerous Indo-Asian monsoonal reconstructions (Schultz et al., 1998; Iwamoto and Inouchi, 2007; Cheng et al., 2009; Guo et al., 2009; Caley et al., 2011b, c; Chabangborn et al., 2013).

Also interesting is the low calcite \(\delta^{18}O \) anomaly observed in the China Sea (Figs. 8 and 10). This signal cannot be explained by a temperature effect as we observe a cooling more important in the China Sea in comparison to the North Indian Ocean (Figs. 6 and 10). Therefore, we hypothesize an important decrease of the \(\Delta \delta^{18}Osw \), a pattern exhibited in our model (Fig. 10c). The cause for such important decrease of the \(\Delta \delta^{18}Osw \) is not completely clear because the monsoon in East Asia is rather reduced during the LGM (Iwamoto and Inouchi, 2007; Cheng et al., 2009; Guo et al., 2009). Nonetheless, some studies argue for substantial precipitation during the LGM in South China sea (Sun et al., 2000; Colin et al., 2010; Chabangborn et al., 2013). Indeed, part of the explanation could reside in the negative \(\delta^{18}O \) anomaly observed in precipitation over the China Sea (Fig. 1).

The use of calcite \(\delta^{18}O \) anomalies in the tropical regions (30° N–30° S) do not allow the confirmation of the presence of west-east SST gradients within each basin as the amount of data is rather limited.
As discussed previously, the north Atlantic region exhibits steep calcite $\delta^{18}O$ gradients that are also reflected in SST conditions (Figs. 8 and 9). However, large discrepancies remain with respect to reconstructed glacial temperatures based on different microfossil proxies (dinocysts and planktic foraminifera transfer function, alkenones and Mg/Ca ratio measurement on planktic foraminifera) in this region and there was no objective way to reconcile the divergent proxy results (MARGO Project Members, 2009). Our data-model comparison study of the calcite $\delta^{18}O$ signal can shed light on these discrepancies. We therefore focussed on the North Atlantic and realized data-model comparison for calcite $\delta^{18}O$ and SST signals (Fig. 11). The main difference between MARGO SST reconstructions and iLOVECLIM results corresponds to proxy reconstructions showing a positive SST anomaly in the region located south of the Iceland and Greenland ice-sheet. This positive anomaly disagrees with our model results but also with other proxy reconstructions (foraminifera transfer function) indicating an important cooling in the region during the LGM (Fig. 11a).

The calcite $\delta^{18}O$ signal is strongly influenced by SST changes in the region and there is very good agreement between model and planktic foraminifera calcite data (Fig. 11). Gradients in calcite $\delta^{18}O$ thus mirror SST changes.

In the south Iceland and Greenland region, data and model indicate large positive calcite $\delta^{18}O$ anomalies (> 2‰) (Fig. 11b). These anomalies can solely be explained by a large negative SST anomaly. Therefore, the data indicating a positive anomaly or a weak cooling in the region are probably biased. After investigation, these data correspond to alkenones and, to a lesser extent, dinocyst reconstructions (Fig. 11a). Positive anomalies derived from dinocyst transfer functions have been interpreted as representing a “no-analogue” situation under partial sea ice coverage and glacial wind fields or a fine stratified layer that becomes warmer in summer (de Vernal et al., 2006). Concerning alkenones, several hypotheses can be proposed to explain the observed discrepancy. First, reconstructions are biased toward a specific season and can not be directly compared with our mean annual results (Rosell-Melé and Prahl, 2013). Second, culture studies of G. oceanica and E. huxleyi (Conte et al., 1998)
together with measurements of sinking particulate matter from Bermuda (Conte et al., 2001) suggest that the real shape of the alkenones-SST is probably sigmoidal, i.e. the calibration of the alkenone index converges asymptotically toward 0 and 1, for low and high temperatures, respectively (Conte et al., 2006). This could explain a bias with alkenone reconstructions at very low temperature. Finally, several early studies have noticed that alkenone-SST records are affected by laterally advected allochtonous input (Benthien and Müller, 2000; Mollenhauer et al., 2006; Rühlemann and Butzin, 2006). Anomalously warm SST during the last glacial period were observed in a marine sediment core recovered from the South East Indian Ridge (SEIR) at the location of the modern Subantarctic Front and attributed to a strong advection of detrital alkenones produced in warmer surface waters from the Agulhas region to SEIR (Sicre et al., 2005).

These different hypotheses require further investigation in the region. Based on data-model comparison for oxygen stable isotopes, we argue for a strong mean annual temperature anomaly between the LGM and present in the south of the Iceland and Greenland region (> 6 °C), supporting the foraminifera transfer function reconstruction.

3.2.2 Oxygen stable isotopes in deep ocean carbonates (benthic foraminifera)

Modelled results for δ^{18}Osw changes in the ocean are presented on Fig. 12 for the deep Atlantic and Pacific Oceans after correction of the LGM ice-sheet contribution (1‰) (Schrag et al., 1996; Duplessy et al., 2002). Spatial differences in term of δ^{18}Osw anomaly can be observed, suggesting that changes are not homogenous in the deep ocean. This is in agreement with reconstructions derived from pore fluids in deep-sea sediments (Adkins et al., 2002; Schrag et al., 2002; Malone et al., 2004) (Fig. 12a). Considering the uncertainties on pore fluids reconstructions (0.1‰) (Adkins et al., 2002; Schrag et al., 2002), the data point that exhibits a negative δ^{18}Osw anomaly in the deep Atlantic (~ 4500 m) is the only measurement in significant disagreement with the model results (Fig. 12a). The value of this data point is surprising as it would imply a vigorous and/or deeper extension of the north Atlantic deep water at the LGM, in
disagreement with reconstructions based on δ^{13}C and Cd/Ca proxies (Lynch-Stieglitz et al., 2007 and references therein) and with our model results.

Qualitative and quantitative comparison of calcite δ^{18}O anomaly, calculated with the model and benthic foraminifera data with associated error bars (2σ) (Table S2), are visible on Fig. 13a–d for the deep Atlantic and Pacific Oceans. Some discrepancies can be observed between data and model and are particularly marked in the equatorial Atlantic at \sim 1000 m, the deep Southern Ocean and central Pacific. The calcite δ^{18}O anomaly is influenced by temperature. The modelled deep-water temperature for the present is around 2°C lower than data, a pattern particularly marked in the Southern Ocean (Caley and Roche, 2013). This introduces bias in our data-model comparison. The uses of anomalies only slightly limit such bias because deep LGM temperatures are close to the freezing point of seawater at the ocean’s surface (Adkins et al., 2002).

Reconstructions of past deep temperature are rather rare and localised. The north Atlantic, South Indian and equatorial Pacific are marked by negative temperature anomalies of \sim 4, 3 and 2°C respectively between the LGM and present (Adkins et al., 2002; Waelbroeck et al., 2002; Siddall et al., 2010) (Fig. 13e and f). Similarly, reconstruction of deep temperature anomaly in the South Pacific yields \sim 2°C (Malone et al., 2004; Elderfield et al., 2012) (Fig. 13f). The modelled deep temperature anomalies are in good agreement for the North Atlantic at 2000 but not at 4500 m as for the δ^{18}Osw anomaly. For the Southern Ocean and deep equatorial Pacific, the negative anomalies between the LGM and present are about 1°C too weak in the model (Fig. 13f).

Although there are some discrepancies between modelled and measured deep-water temperature, our data model comparison support a heterogeneous cooling of few degrees (2–4°C) in the LGM Ocean.
4 Conclusions

We used the fully coupled atmosphere-ocean three-dimensional model of intermediate complexity iLOVECLIM to simulate the climate and oxygen stable isotopes (δ^{18}O) in the atmospheric and oceanic component during the LGM. We also realized a careful compilation of global oxygen isotopic datasets to assess the model performance and constrain the LGM climate. Model results for the annual mean precipitation δ^{18}O show more depleted values in the northern and southern high latitudes during the LGM than at present. The simulated spatial gradient in precipitation δ^{18}O over Greenland is in very good agreement with ice core records, whereas simulated values are in less good agreement with data over Antarctica. We observe a general pattern toward more enriched calcite δ^{18}O in the model over the continents at the LGM, in agreement with speleothem data. This can be explained by both a general atmospheric cooling in the tropical and subtropical regions and a reduction in precipitation, as confirmed by reconstructions derived from pollens and plant macrofossils (Bartlein et al., 2011). The good agreement between data and model results in term of annual mean calcite δ^{18}O anomaly offers large perspectives for the understanding of speleothems records covering glacial-interglacial time scale. Long-term transient simulations of water isotopes with iLOVECLIM are planned in the near future and the relationship between precipitation δ^{18}O and climate variables such as temperature and precipitation will be investigated.

Data-model comparison for sea surface temperature indicates that iLOVECLIM is capable to satisfyingly simulate oceanic surface conditions at the LGM, whereas the majority of AO-GCM simulations experience some difficulties (Braconnot et al., 2007a). Large discrepancies with respect to glacial temperatures recorded by different microfossil proxies remain in the North Atlantic region and there was no objective way to reconcile the divergent proxy results (MARGO Project Members, 2009). Our data-model comparison for planktic foraminiferal calcite δ^{18}O indicates that a strong mean annual cooling characterized the LGM with respect to the present (> 6 °C), supporting
the foraminifera transfer function reconstruction but in disagreement with alkenones and dinocyst reconstructions. The data-model comparison also reveals large positive calcite $\delta^{18}O$ anomalies in the Southern Ocean linked to an important cooling that could be linked to a reorganization of frontal systems during the LGM. Nonetheless, the exact driver of this pattern remains unclear. From our data-model comparison of planktic foraminifer oxygen stable isotopes and SST we deduced a large positive/negative $\delta^{18}O_{sw}$ anomaly for the north Indian Ocean/China Sea between the LGM and present which may be explained by changes in the hydrological cycle over the region.

Our simulation of the deep ocean suggests that changes in $\delta^{18}O_{sw}$ between the LGM and present are not spatially homogenous. This is supported by reconstructions derived from pore fluids in deep-sea sediments. The model underestimates the deep ocean cooling thus biasing the comparison with benthic calcite $\delta^{18}O$ data. Some experiments are planned in a near future to try modifying this aspect in the model. Nonetheless, our data model comparison support a heterogeneous cooling of few degrees (2–4°C) in the LGM Ocean.

$iLOVECLIM$ reproduces well the $\delta^{18}O$ signals between the LGM and present and therefore illustrates how data-model comparison for oxygen isotopes can serve to evaluate model’s capability to simulate a climate that is drastically different from that of the present-day.

Supplementary material related to this article is available online at http://www.clim-past-discuss.net/10/105/2014/cpd-10-105-2014-supplement.pdf.

Acknowledgements. T. Caley is supported by NWO through the VIDI/AC2ME project no 864.09.013. D. M. Roche is supported by NWO through the VIDI/AC2ME project no. 864.09.013 and by CNRS-INSU. Institut Pierre Simon Laplace is gratefully acknowledged for hosting the $iLOVECLIM$ model code under the LUDUS framework project (https://forge.ipsl.jussieu.fr/ludus). This is NWO/AC2ME contribution number 04.
References

CLIMAP: Seasonal reconstructions of the Earth’s surface at the last glacial maximum, Map and Chart Ser. #36 ed., Geological Society of America, 1981.

Constraining the LOVECLIM comparison using (δ^{18}O)

T. Caley et al.

Iwamoto, N. and Inouchi, Y.: Reconstruction of millennial-scale variations in the East Asian summer monsoon over the past 300 ka based on the total carbon content of sediment from Lake Biwa, Japan, Environ. Geol., 52, 1607–1616, 2007.

Roche, D. M. and Caley, T.: δ^{18}O water isotope in the iLOVECLIM model (version 1.0) – Part 2: Evaluation of model results against observed δ^{18}O in water samples, Geosci. Model Dev., 6, 1493–1504, doi:10.5194/gmd-6-1493-2013, 2013.

Table 1. $\delta^{18}O$ anomaly between the LGM and LH compiled for Greenland, Antarctic ice cores and speleothem records and compared to model (/LOVECLIM) results.

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation (m)</th>
<th>References</th>
<th>$\delta^{18}O$ Data LGM-LH (%)</th>
<th>Error Anomaly (2σ)</th>
<th>$\delta^{18}O$ /LOVECLIM LGM-LH (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camp century</td>
<td>77.18</td>
<td>-61.13</td>
<td>1887</td>
<td>Johnsen et al. (1972)</td>
<td>-12.87</td>
<td>-13.38</td>
<td></td>
</tr>
<tr>
<td>GISP</td>
<td>72.58</td>
<td>-38.48</td>
<td>3208</td>
<td>Grootes et al. (1997)</td>
<td>-5.4</td>
<td>1.74</td>
<td>-2.32</td>
</tr>
<tr>
<td>GRIP</td>
<td>72.57</td>
<td>-37.62</td>
<td>3232</td>
<td>Johnsen et al. (1997)</td>
<td>-5.73</td>
<td>2.90</td>
<td>-2.32</td>
</tr>
<tr>
<td>NGRIP</td>
<td>75.1</td>
<td>-42.32</td>
<td>2917</td>
<td>NGRIP Members (2004)</td>
<td>-7.18</td>
<td>2.06</td>
<td>-8.36</td>
</tr>
<tr>
<td>Renland</td>
<td>72</td>
<td>-25</td>
<td>2340</td>
<td>Johnsen et al. (1992)</td>
<td>-5</td>
<td></td>
<td>-2.75</td>
</tr>
<tr>
<td>Dye 3</td>
<td>65.18</td>
<td>-43.81</td>
<td>2480</td>
<td>Langway et al. (1985)</td>
<td>-4.5</td>
<td>1.96</td>
<td></td>
</tr>
<tr>
<td>NEEM</td>
<td>77.45</td>
<td>-51.006</td>
<td>2450</td>
<td>NEEM community members (2013)</td>
<td>-7.5</td>
<td>13.13</td>
<td></td>
</tr>
<tr>
<td>BYRD</td>
<td>-80</td>
<td>-120</td>
<td>1530</td>
<td>Blunier and Brook (2001)</td>
<td>-8</td>
<td>-13.59</td>
<td></td>
</tr>
<tr>
<td>DomeC</td>
<td>-74.65</td>
<td>124.17</td>
<td>3240</td>
<td>Lorus et al. (1979)</td>
<td>-8.2</td>
<td>1.57</td>
<td>-1.07</td>
</tr>
<tr>
<td>EDC</td>
<td>-75</td>
<td>123</td>
<td>3233</td>
<td>Jouzel et al. (2007)</td>
<td>-5.42</td>
<td>0.89</td>
<td>-0.42</td>
</tr>
<tr>
<td>EDML</td>
<td>-75</td>
<td>0</td>
<td>2892</td>
<td>EPICA Members (2006)</td>
<td>-7.47</td>
<td></td>
<td>-6.07</td>
</tr>
<tr>
<td>Talos Dome</td>
<td>-72.82</td>
<td>159</td>
<td>2315</td>
<td>Stenni et al. (2011)</td>
<td>-4</td>
<td>5.40</td>
<td></td>
</tr>
<tr>
<td>Siple Dome</td>
<td>-81.65</td>
<td>-148.81</td>
<td>621</td>
<td>Brook et al. (2005)</td>
<td>-7</td>
<td>16.00</td>
<td></td>
</tr>
<tr>
<td>WDC</td>
<td>-79.383</td>
<td>-111.239</td>
<td>1791</td>
<td>WAIS Divide Project Members (2013)</td>
<td>-7</td>
<td>-8.64</td>
<td></td>
</tr>
<tr>
<td>Vostok</td>
<td>-78</td>
<td>106</td>
<td>3488</td>
<td>Petit et al. (1999)</td>
<td>-4.69</td>
<td>1.49</td>
<td>0.88</td>
</tr>
<tr>
<td>Dome F</td>
<td>-77.32</td>
<td>39.7</td>
<td>3810</td>
<td>Kamawura (2007)</td>
<td>-4.46</td>
<td>0.62</td>
<td>-6.54</td>
</tr>
<tr>
<td>Dome B</td>
<td>-77.8</td>
<td>94.9</td>
<td></td>
<td>Vaikmae et al. (1993)</td>
<td>-5</td>
<td>-0.19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation (m)</th>
<th>References</th>
<th>$\delta^{18}O$ Data LGM-LH (%)</th>
<th>Error Anomaly (2σ)</th>
<th>$\delta^{18}O$ /LOVECLIM LGM-LH (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Botuverá Cave</td>
<td>-27.22</td>
<td>-49.16</td>
<td>230</td>
<td>Cruz et al. (2005)</td>
<td>-0.34</td>
<td>0.52</td>
<td>0.55</td>
</tr>
<tr>
<td>Cold Air Cave</td>
<td>-24.02</td>
<td>29.11</td>
<td>1375</td>
<td>Holmgren et al. (1999)</td>
<td>1.2</td>
<td>1.61</td>
<td>0.80</td>
</tr>
<tr>
<td>Gunung Buda National Park</td>
<td>4.03</td>
<td>114.8</td>
<td>150</td>
<td>Partin et al. (2007)</td>
<td>1.73</td>
<td>0.42</td>
<td>1.66</td>
</tr>
<tr>
<td>Jerusalem West Cave</td>
<td>31.78</td>
<td>35.15</td>
<td>700</td>
<td>Frumkin et al. (1999)</td>
<td>1.3</td>
<td>0.48</td>
<td>1.09</td>
</tr>
<tr>
<td>NWSI north-west of the South Island</td>
<td>-42</td>
<td>172</td>
<td>700</td>
<td>Williams et al. (2010)</td>
<td>0.29</td>
<td>0.46</td>
<td>1.02</td>
</tr>
<tr>
<td>Sofular Cave</td>
<td>41.42</td>
<td>31.93</td>
<td>700</td>
<td>Fleitmann et al. (2009)</td>
<td>-4.57</td>
<td>0.56</td>
<td>0.90</td>
</tr>
<tr>
<td>Soreq Cave</td>
<td>31.45</td>
<td>35.03</td>
<td>400</td>
<td>Bar-Matthews et al. (2003)</td>
<td>2.11</td>
<td>0.47</td>
<td>1.09</td>
</tr>
<tr>
<td>Kesang Cave</td>
<td>42.87</td>
<td>81.75</td>
<td>2000</td>
<td>Cheng et al. (2012)</td>
<td>1.72</td>
<td>1.81</td>
<td>5.19</td>
</tr>
<tr>
<td>Mt. Arthur</td>
<td>-41.28</td>
<td>172.63</td>
<td>390</td>
<td>Hellstrom et al. (1998)</td>
<td>0.93</td>
<td>0.50</td>
<td>1.31</td>
</tr>
<tr>
<td>Namibia</td>
<td>-25</td>
<td>18</td>
<td></td>
<td>Stute and Talma (1998)</td>
<td>1.5</td>
<td></td>
<td>1.50</td>
</tr>
</tbody>
</table>
Fig. 1. Simulated precipitation $\delta^{18}O$ anomaly (LGM-CT) in iLOVECLIM. Note the asymmetric non linear color scale.
Fig. 2. Comparison between simulated precipitation δ^{18}O anomaly (LGM-CT) in iLOVECLIM and ice cores data from Greenland (Table 1). Reported uncertainties on data are 2σ.

$R^2 = 0.7$
Fig. 3. Comparison between simulated precipitation δ¹⁸O anomaly (LGM-CT) in iLOVECLIM and ice cores data from Antarctica (Table 1). Reported uncertainties on data are 2σ.
Fig. 4. Comparison between simulated atmospheric temperature anomaly (LGM-CT) in iLOVECLIM and pollen-based continental climate reconstructions (Bartlein et al., 2011).
Fig. 5. Comparison between simulated continental calcite $\delta^{18}O$ anomaly (LGM-CT) in iLOVECLIM and global speleothem data (Table 1). Reported uncertainties on data are 2σ.

Solufar Cave
Fig. 6. (A) Comparison between simulated SST anomaly (LGM-CT) in iLOVECLIM and MARGO data (MARGO Project Members, 2009). (B) Quantitative agreement or disagreement between simulated SST anomaly (LGM-CT) in iLOVECLIM and MARGO data (MARGO Project Members, 2009), taking into account the uncertainties on SST reconstructions. Grey points (comparison not possible) denote the absence of error bars on data or denote locations where model results are not comparable to data (coastal sites).
Fig. 7. Simulated surface water $\delta^{18}O$ anomaly (LGM-CT) in iLOVECLIM. A correction of the LGM ice-sheet contribution (1‰) has been applied.
Fig. 8. (A) Comparison between simulated surface ocean calcite $\delta^{18}O$ calcite anomaly (LGM-CT) in iLOVECLIM (0–50 m) and global planktic foraminifera data (Table S1). (B) Quantitative agreement or disagreement between simulated surface ocean calcite $\delta^{18}O$ anomaly (LGM-CT) in iLOVECLIM (0–50 m) and global planktic foraminifera data (Table S1), taking into account the uncertainties on calcite $\delta^{18}O$ data (2σ). Grey points (comparison not possible) denote the absence of error bars on data or denote locations where model results are not comparable to data (coastal sites).
Fig. 9. Data-model (iLOVECLIM) comparison as a function of latitude for (A) the surface ocean (0–50 m) calcite δ^{18}O anomaly (LGM-CT) and (B) sea surface temperature anomaly (LGM-CT). (C) Simulated surface water δ^{18}O anomaly (LGM-CT) in iLOVECLIM as a function of latitude (model results are taken at the same location as sea surface temperature data). Grey bands denote large positive calcite δ^{18}O anomaly in (1) the north Atlantic, (2) the north Indian Ocean and (3) the Southern ocean as discussed in the text.
Fig. 10. Data-model (iLOVECLIM) comparison as a function of longitude in the tropical band (30° N–30° S) for (A) the surface ocean (0–50 m) calcite δ¹⁸O anomaly (LGM-CT) and (B) sea surface temperature anomaly (LGM-CT). (C) Simulated surface water δ¹⁸O anomaly (LGM-CT) in iLOVECLIM as a function of longitude in the tropical area (30° N–30° S) (model results are taken at the same location as sea surface temperature data). Grey bands denote large positive/negative calcite δ¹⁸O anomaly in (1) the north Indian Ocean (2) the China Sea as discussed in the text.
Fig. 11. A focus on the north Atlantic region with (A) the comparison between simulated SST anomaly (LGM-CT) in iLOVECLIM and MARGO reconstructions for each temperature proxy (MARGO Project Members, 2009). (B) The comparison between simulated surface ocean calcite δ^{18}O anomaly (LGM-CT) in iLOVECLIM (0–50 m) and planktic foraminifera δ^{18}O data (Table S1).
Fig. 12. (A) Atlantic and (B) Pacific zonal mean anomaly (LGM-CT) for simulated deep water δ¹⁸O in /LOVECLIM and water δ¹⁸O in pore fluids of deep-sea sediments (Adkins et al., 2002; Schrag et al., 2002; Malone et al., 2004). A correction of the LGM ice-sheet contribution (1 ‰) has been applied.
Fig. 13. Atlantic and Pacific zonal mean anomaly (LGM-CT) for (A) Atlantic and (B) Pacific simulated deep ocean calcite $\delta^{18}O$ in iLOVECLIM and global benthic foraminifera data (Table S2). (C) and (D) same as (A) and (B) but taking into account the uncertainties on calcite $\delta^{18}O$ data (2σ). Grey points (comparison not possible) denote the absence of error bars on data or denote locations where model results are not comparable to data (coastal sites). (E) and (F) simulated deep temperature in iLOVECLIM and deep temperature reconstructions for the Atlantic and for the Pacific Oceans respectively (Adkins et al., 2002; Waelbroeck et al., 2002; Malone et al., 2004; Siddall et al., 2010; Elderfield et al., 2012).