Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
doi:10.5194/cp-2016-128
© Author(s) 2017. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
19 Jan 2017
Review status
This discussion paper is under review for the journal Climate of the Past (CP).
Evolution and forcing mechanisms of ENSO over the last 300,000 years in CCSM3
Zhengyao Lu1, Zhengyu Liu1,2, Guangshan Chen2, and Jian Guan1 1Lab. Climate, Ocean and Atmosphere Studies, School of Physics, Peking Univ., Beijing, 100871, P. R. China
2Dept. Atmospheric and Oceanic Sciences & Nelson Center for Climatic Research, Univ. of Wisconsin-Madison, Madison, WI53706, USA
Abstract. The responses of El Niño-Southern Oscillation (ENSO) and the equatorial Pacific annual cycle to external forcing changes are studied in three 3,000-year-long NCAR-CCSM3 model simulations. The simulations represent the period from 300 thousand years before present (ka BP) to present day. The first idealized simulation is forced only with accelerated orbital variations, and the rest are conducted more realistically by further adding on the time-varying boundary conditions of greenhouse gases (GHGs) and continental ice sheets.

It is found that orbital forcing dominates slow ENSO evolution, while the effects of GHGs and ice-sheet forcing tend to compensate each other. On the orbital time scales, ENSO variability and annual cycle amplitude change in-phase and both have pronounced precessional cycles (~ 21,000 years) modulated by variations of eccentricity. Orbital forced ENSO intensity is dominated linearly by the change of the coupled ocean-atmosphere instability, notably the Ekman upwelling feedback and the thermocline feedback; and is also possibly affected during ENSO intrinsic developing season by the remote (or extratropical) influences of the short-scale stochastic weather noises. The acceleration technique is found to dampen the precessional signal in ENSO intensity.

In glacial-interglacial cycles, additionally, the weakening/strengthening of ENSO owning to a more concentrated/depleted GHGs level leaves little net signal as compensated by the effect coherent change of decaying/expanding ice sheets. They influence the ENSO variability through changes in annual cycle amplitude via a common nonlinear frequency entrainment mechanism while the GHGs effect might has an additional linear part.


Citation: Lu, Z., Liu, Z., Chen, G., and Guan, J.: Evolution and forcing mechanisms of ENSO over the last 300,000 years in CCSM3, Clim. Past Discuss., doi:10.5194/cp-2016-128, in review, 2017.
Zhengyao Lu et al.
Zhengyao Lu et al.
Zhengyao Lu et al.

Viewed

Total article views: 392 (including HTML, PDF, and XML)

HTML PDF XML Total Supplement BibTeX EndNote
280 65 47 392 8 2 48

Views and downloads (calculated since 19 Jan 2017)

Cumulative views and downloads (calculated since 19 Jan 2017)

Viewed (geographical distribution)

Total article views: 392 (including HTML, PDF, and XML)

Thereof 392 with geography defined and 0 with unknown origin.

Country # Views %
  • 1

Saved

Discussed

Latest update: 26 May 2017
Publications Copernicus
Download
Short summary
We use complex climate model simulations to study how the intensity of El Niño-Southern Oscillation (ENSO) changed for the last 300 thousand years. We consider external climatic forcings like orbital variations, greenhouse gases and ice-sheets. We find that orbital forcing dominates slow ENSO evolution by modulating the change of the coupled ocean-atmosphere instability, while the effects of GHGs and ice-sheet forcing tend to compensate each other.
We use complex climate model simulations to study how the intensity of El Niño-Southern...
Share