Journal cover Journal topic
Climate of the Past An interactive open-access journal of the European Geosciences Union
© Author(s) 2011. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
27 Jun 2011
Review status
A revision of this discussion paper for further review has not been submitted.
Synchronicity of the East Asian Summer Monsoon variability and Northern Hemisphere climate change since the last deglaciation
T. Shinozaki1,2,3, M. Uchida2, K. Minoura1, M. Kondo2, S. F. Rella2, and Y. Shibata2 1Institute of Geology and Paleontology, Tohoku University, Sendai, Japan
2Environmental Chemistry Division, National Institute for Environmental Studies (NIES), Tsukuba, Japan
3Life and Environmental Science, University of Tsukuba, Tsukuba, Japan
Abstract. Understanding of the mechanism of the East Asian Summer Monsoon (EASM) is required for the prediction of climate change in East Asia in a scenario of modern global warming. In this study, we present high-resolution climate records from peat sediments in Northeast Japan to reconstruct the EASM variability based on peat bulk cellulose δ13C since the last deglaciation. We used a 8.8 m long peat sediment core collected from the Tashiro Bog, Northeast Japan. Based on 42 14C measurements, the core bottom reaches ~15.5 ka. δ13C, accumulation rate and accumulation flux time-series correlate well to Greenland ice core δ18O variability, suggesting that the climate record in Northeast Japan is linked to global climate changes. The δ13C record at Tashiro Bog and other paleo-EASM records at Northeast and Southern China consistently demonstrate that hydrological environments were spatially different in mid-high and mid-low latitude regions over the last 15.5 kyr. During global cooling (warming) periods, mid-high and mid-low latitude regions were characterized by wet (dry) and dry (wet) environments, respectively. We suggest that these climatic patterns are related to the migration of the EASM-related rain belt during global climate changes, as a consequence of variations in intensity and location of both the Intertropical Convergence Zone (ITCZ) and the Western Pacific Subtropical High (STH). The location of the rain belt largely influences the East Asian hydrological environment. Our δ13C time-series are characterized by a 1230 yr throughout the Holocene and a 680 yr periodicity during the early Holocene. The 1230 yr periodicity is in agreement with North Atlantic ice-rafted debris (IRD) events, suggesting a teleconnection between the Northeast Japan and the North Atlantic during the Holocene. In addition, it is the first evidence that the Bond events were recorded in terrestrial sediment in Japan. On the other hand, the 680 yr periodicity between 10.0 and 8.0 kyr is consistent with a prominent 649 yr solar activity cycle, suggesting that solar activity affected EASM precipitation during the Hypsithermal, when orbital-scale solar insolation was at a maximum in the Northern Hemisphere.

Citation: Shinozaki, T., Uchida, M., Minoura, K., Kondo, M., Rella, S. F., and Shibata, Y.: Synchronicity of the East Asian Summer Monsoon variability and Northern Hemisphere climate change since the last deglaciation, Clim. Past Discuss., 7, 2159-2192, doi:10.5194/cpd-7-2159-2011, 2011.
T. Shinozaki et al.
T. Shinozaki et al.


Total article views: 790 (including HTML, PDF, and XML)

HTML PDF XML Total BibTeX EndNote
337 386 67 790 23 52

Views and downloads (calculated since 01 Feb 2013)

Cumulative views and downloads (calculated since 01 Feb 2013)



Latest update: 28 Apr 2017
Publications Copernicus