Clim. Past Discuss., 9, 4807-4853, 2013
www.clim-past-discuss.net/9/4807/2013/
doi:10.5194/cpd-9-4807-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Climate of the Past (CP). Please refer to the corresponding final paper in CP.
Modelling global-scale climate impacts of the late Miocene Messinian Salinity Crisis
R. F. Ivanovic1,2, P. J. Valdes2, R. Flecker2, and M. Gutjahr3
1School of Earth & Environment, University of Leeds, Leeds, UK
2School of Geographical Sciences, University of Bristol, Bristol, UK
3GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany

Abstract. Late Miocene tectonic changes in Mediterranean–Atlantic connectivity and climatic changes caused Mediterranean salinity to fluctuate dramatically, including a ten-fold increase and near-freshening. Recent proxy- and model-based evidence suggests that at times during this Messinian Salinity Crisis (MSC, 5.96–5.33 Ma), highly-saline and highly-fresh Mediterranean water flowed into the North Atlantic Ocean, whilst at others, no Mediterranean Outflow Water (MOW) reached the Atlantic. By running extreme, sensitivity-type experiments with a fully-coupled ocean–atmosphere general circulation model, we investigate the potential of these various MSC MOW scenarios to impact global-scale climate.

The simulations suggest that MOW had a greater influence on North Atlantic Ocean circulation and climate than it does today. We also find that depending on the presence, strength and salinity of MOW, the MSC could have been capable of cooling mid-high northern latitudes by more than 1.2 °C, with the greatest cooling taking place in the Labrador, Greenland–Iceland–Norwegian and Barents Seas. With hypersaline-MOW, a component of North Atlantic Deep Water formation shifts to the Mediterranean, strengthening the Atlantic Meridional Overturning Circulation (AMOC) south of 35° N by 3–7 Sv. With hyposaline-MOW, AMOC completely shuts down, inducing a bipolar climate anomaly with strong cooling in the North (up to −10.5 °C) and weaker warming in the South (up to +2.5 °C).

These simulations identify key target regions and climate variables for future proxy-reconstructions to provide the best and most robust test cases for (a) assessing Messinian model performance, (b) evaluating Mediterranean–Atlantic connectivity during the MSC and (c) establishing whether or not the MSC could ever have affected global-scale climate.


Citation: Ivanovic, R. F., Valdes, P. J., Flecker, R., and Gutjahr, M.: Modelling global-scale climate impacts of the late Miocene Messinian Salinity Crisis, Clim. Past Discuss., 9, 4807-4853, doi:10.5194/cpd-9-4807-2013, 2013.
 
Search CPD
Discussion Paper
    XML
    Citation
    Final Revised Paper
    Share