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Abstract

It has recently been suggested that non-random sampling and differences in mortal-
ity between trees of different growth rates is responsible for a widespread, systematic
bias in dendrochronological reconstructions of tree growth known as modern sample
bias. This poses a serious challenge for climate reconstruction and the detection of5

long-term changes in growth. Explicit use of growth models based on regional curve
standardization allow us to investigate the effects on growth due to age (the regional
curve), year (the standardized chronology or forcing) and a new effect, the produc-
tivity of each tree. Including a term for the productivity of each tree accounts for the
underlying cause of modern sample bias, allowing for more reliable reconstruction of10

low-frequency variability in tree growth.
This class of models describes a new standardization technique, fixed effects stan-

dardization, that contains both classical regional curve standardization and flat detrend-
ing. Signal-free standardization accounts for unbalanced experimental design and fits
the same growth model as classical least-squares or maximum likelihood regression15

techniques. As a result, we can use powerful and transparent tools such as R2 and
Akaike’s Information Criteria to assess the quality of tree ring standardization, allowing
for objective decisions between competing techniques.

Analyzing 1200 randomly selected published chronologies, we find that regional
curve standardization is improved by adding an effect for individual tree productivity20

in 99 % of cases, reflecting widespread differing-contemporaneous-growth rate bias.
Furthermore, modern sample bias produced a significant negative bias in estimated
tree growth by time in 70.5 % of chronologies and a significant positive bias in 29.5 %
of chronologies. This effect is largely concentrated in the last 300 yr of growth data,
posing serious questions about the homogeneity of modern and ancient chronologies25

using traditional standardization techniques.
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1 Introduction

Much of the work in dendrochronology, and dendroclimatology in particular, relies on
accurate, unbiased reconstructions of tree growth long into the past. As a result, a great
deal of effort has been put into trying to isolate important trends and identify potential
biases. However, one major bias called “modern sample bias”, first identified by Melvin5

(2004), is still largely neglected in applied studies, despite its potential impact on all
regional curve standardization chronologies (Brienen et al., 2012a).

Dendrochronologists observed that the older a tree was, the slower it tended to grow,
even after controlling for age- and time-driven effects. The result is an artificial down-
ward signal in the regional curve (as the older ages are only represented by the slower10

growing trees) and a similar artificial positive signal in the final chronology (as ear-
lier years are only represented by the slow growing trees), an effect termed modern
sample bias. When this biased chronology is used in climate reconstruction it then
implies a relatively unsuitable historic climate. Obviously, the detection of long term
trends in tree growth, as might be caused by a changing climate or carbon fertilization,15

is also seriously compromised (Brienen et al., 2012b). More generally, modern sample
bias can be viewed as a form of “differing-contemporaneous-growth-rate bias”, where
changes in the magnitude of growth of the tree ring series included in the chronology
over time (or age, in the case of the regional curve) skew the final curve, especially
near the ends of the chronology where series are rapidly added and removed (Briffa20

and Melvin, 2011).
Several attempts have been made to address this issue but none have proven fully

satisfactory. Melvin (2004) (see also Briffa and Melvin, 2011; Cooper et al., 2012, and
Melvin et al., 2012a) attempt to solve the problem by splitting the regional curve into
several smaller curves by growth rate as first introduced by Esper et al. (2002) but this25

approach offers only limited correction as the number of sub-RCS curves is neces-
sarily smaller than the number of levels of growth rate observed by the trees and the
reduction in sample size reduces the reliability of each sub-curve. Voelker (2011) took
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a different approach, first standardizing the chronologies with respect to age and an-
nual effects, then estimating the linear relationship between tree growth rate and tree
age for each species studied from binned growth and age data, which was then used
to scale the species (or in some case genus) level chronologies. Interestingly, while
the majority of the species/genera analyzed showed a negative relationship between5

tree age and growth rate, a positive relationship was observed in a few cases, contrary
to the predictions of (Briffa and Melvin, 2011). Whether this effect has an ecological
basis or simply represents a random quirk of the chronologies examined was not dis-
cussed. While revealing, this technique relies on large pre-existing chronologies for the
species of interest and assumes a simple common linear relationship between age and10

tree-specific productivity.
To develop an alternative approach, we make explicit the growth models already

used in regional curve standardization. From there, we examine the ecological effects
driving the persistent differences in growth rates between sampled trees of various
ages and then use regression to obtain an unbiased estimate of the inherent produc-15

tivity of each tree, the typical growth of the trees at a given age (the regional curve)
and the forcing at each year (the standardized chronology). The relationship between
this new technique, dubbed “fixed effects standardization”, regional curve standard-
ization (Briffa et al., 1992), flat detrending (Cook and Kairiukstis, 1990) and the more
recent signal-free standardization (Melvin and Briffa, 2008; Briffa and Melvin, 2011) is20

explored along the way.
We conclude with a brief sample of existing dendrochronological records, demon-

strating fixed effects standardization, selecting the most appropriate standardization
model for each data set and exploring the effects of accounting for tree-level productiv-
ity across the globe.25

4502



2 Growth models

Regional curve standardization makes two central assumptions about the typical
growth of trees used in dendrochronological analysis. First, that trees of the same
species within the same region follow a certain inherent pattern of growth as they age,
given by the regional curve. Second, the growth of each tree in a given year is the5

product of the expected growth at that age and the common forcing of that year (Melvin
et al., 2012a). This common forcing affects all trees equally in proportion to their ex-
pected growth, an assumption clearly visible in the division of the raw tree ring series
by the regional curve to obtain the standardized chronology, which is by design free
of age-driven effects. By doing so, regional curve standardization presumes a model,10

and hence can be treated as a model-fitting tool (a goal expressed, but not acheived,
in Bontemps and Esper, 2011).

Tree ring data can naturally be classified among two dimensions, the year in which
the ring was formed (t) and the age of the tree when the ring was formed (a). Each
chronology can be stored naturally in a growth matrix G, a form referred to as a “tree-15

ring array”, in contrast to the traditional form where each column holds the ring widths
observed for a single series and the row name denotes the year (a “tree ring table”).
Figure 1 shows a conceptual diagram and further explanation of these two alternate
organizations of tree-ring data.

If we consider the time effect (standardized chronology) and age trend (regional20

curve) as the effect vectors T and A respectively, we can write the implicit growth model
of regional curve standardization as follows:

Gta = TtAa (1)

Each element of the growth matrix G is a scalar, the product of the corresponding
elements of T and A. Looking at it from the perspective of the entire vectors, we can25

construct the tree ring-array as the outer product of the effect vectors.

G = T ⊗A (2)
4503

Obviously, real trees do not follow this growth model exactly, and should be thought
of as being drawn from a population described by a probability density function. The
product of the time and age effects is the expected value of growth for each ring, the
observed data includes an error term ε to account for stochastic noise and problems
with model fit. The simplest way to do so is to assume an additive, normal error term5

such that:

Gta = TtAa +εN
ta (3)

However, it is commonly observed that real tree ring width data is strongly het-
eroscedastic, with variability increasing as the observed growth values grow larger
(Biondi, 1993; Meko et al., 2001). Proportional log-normal variability has long been10

observed in measurements of plant growth (Evans, 1972; Pokharel and Dech, 2012)
and reported in dendrochronology (Van Den Brakel and Visser, 1996; Drobyshev and
Niklasson, 2010). Furthermore, tree-ring width data is naturally bounded by 0, a fact
for which a normal probability density function fails to account. Rather than a normal
probability density function, we suggest that most tree ring data may be drawn from15

a log-normal probability density function instead. A multiplicative log-normal error term
accounts for the observed heteroscedasticity while remaining tractable and is consis-
tent with the dendrochronological practice of log-transforming series before analysis.

Gta = TtAaε
L
ta (4)

To address differing-contemporaneous-growth-rate bias, and thus modern sample20

bias, we need to examine its cause. Many researchers have observed that during the
process of chronology construction, there are persistent differences in growth rates be-
tween trees (Brienen et al., 2006; Zuidema et al., 2010). Furthermore, Melvin (2004)
observed that the ratio between these series and the common signal (either the re-
gional curve or standardized chronology) is approximately constant. This ratio was25

termed “error” (later discussed as the ratio between multiple regional curves in Melvin
et al., 2012a). In the growth model framework, it can be considered the effect of each
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individual tree (Ii ), and thought of as the inherent productivity of tree i . Extending our
model to incorporate this concept:

G = I ⊗ T ⊗A (5)

Gita = IiTtAa +εN
ta (6)

Gita = IiTtAaε
L
ta (7)5

From this perspective, it is clear that differing-contemporaneous-growth-rate bias
(and thus modern sample bias) is an omitted variable bias! Note that in this case G
becomes a three-dimensional array, recording the tree i , age a and year t for which
each data point was recorded. I is a vector much like T and A but, unlike the others,10

lacks a natural ordering.
The model in Eq. (1) fails because the assumption that the error in each series is

unbiased by which tree the series belongs to is not supported by the data. As series
are added to and removed from the chronology, the mean value of I in the chronology
changes, biasing the observed chronology downwards if the trees were less productive15

than average and upwards if the trees were more productive than average. The mag-
nitude of this effect only changes when the series present in the chronology changes,
the bias observed takes the form of a step function by time and age and is typically
stronger near the ends of the chronology (Bowman et al., 2013). Seen from this per-
spective, I is a traditional nuisance parameter (as was A originally), whose effects must20

be accounted for to obtain a reliable estimate of T . If I is not identically and indepen-
dentally distributed across time and age (as in modern sample bias scenarios), the
resulting chronology is skewed.

The choice of mean (arithmetic/geometric) corresponds to the choice of probabil-
ity density function (normal/lognormal). In many cases, dendrochronologists choose25

to subtract, rather than divide, the estimated effect vector from the growth data. This
corresponds to an additive growth model, similar to:

Gita = Ii +Tt +Aa (8)
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For ring width data, this form of model is almost certainly inappropriate. Growth data
is by definition positive and typically multiplicative; the use of additive models can re-
sult in negative predicted growth. Note, of course, that the logaritmic transformation of
a multiplicative growth model with log-normal noise is equivalent to an additive model
with normal noise.5

Gita = IiTtAaε
L
ita (9)

log(Gita) ∝ Ii +Tt +Aa +εN
ita (10)

These models can still be fit and examined using the techniques throughout the
paper. In particular, they can be compared to their multiplicative counterparts using10

model selection tools (see Section 5 for an exploration of this on real data).
When using real data, it is almost impossible to find a tree-ring measurment for each

unique combination of age and year and as a result the tree-ring array is almost never
full. The observed array of growth values G can be discussed using a weighting array
W, which describes the number of data points present at each location. By definition,15

values can only be filled along a single t-a diagonal for each position of i , as the tree
ages by one year for each calendar year. Similarly, if only complete (pith to bark) tree-
ring series are used, the upper-right t-a triangle is always empty; if a tree is sufficiently
old at the appropriate point in the past, it extends the chronology backwards in time
a corresponding number of years, leaving the new upper triangle empty again. As dis-20

cussed in Sect. 4, this unbalanced design complicates analysis and accounts for the
improvement of signal-free standardization over traditional regional curve standardiza-
tion.

These models have a final interesting property: for each solution to a tree ring array,
there exist an infinite number of equivalent solutions. The system is singular, any scalar25

multiple of one of the effects vectors (I, T or A) does not change the predicted growth
G as long as it is counteracted by the reciprocal scaling of a different vector, producing
equally likely models with different coefficients. To address this, we fix the geometric
mean of the elements of I and the elements of T to 1 by convention and scale A
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to compensate. This allows, as is traditional, A to map directly to the typical ring-width
increment of a tree at a given age (as in the regional curve) and I and T to represent an
index of deviation from this expected growth. The chronologies in Melvin et al. (2012a)
are scaled in slightly different fashion to reach the same end: the simple comparison of
estimates produced by different techniques.5

3 Ecology of modern sample bias

It has long been known that the life expectancies of trees tend to be negatively cor-
related with their growth rate, both between and within species of trees (Huntington,
1913; Schulman, 1954; Black et al., 2008; Johnson and Abrams, 2009). Brienen et al.
(2012b) explain how this causes modern sample bias via productivity-survivorship bias10

(in that paper termed “slow-grower survivorship bias”): if slow-growing trees are more
likely to survive, they will be over-represented in the oldest sections of the standardized
chronology and regional curve, producing a positive skew. When trying to reproduce
this effect, it’s helpful to think of the problem in terms of survivorship curves. First,
assume each tree follows a particular survivorship curve conditional on its productiv-15

ity. Formally, the survivorship curve is the probability of surviving at a given age and
productivity level and can be written as P(S|a, I).

Using Bayes’ theorem, we can look at the distribution of surviving trees of a given
age for different values of I by considering the joint probability of this survivorship curve
and the initial distribution of productivity at birth, P(I).20

P(I |a,S) =
P(S|a, I) ·P(I)

P(S|a)
(11)

The this expression describes the typical productivity of trees of that age. The fluc-
tuation in the expected value of this expression results in modern sample bias. When I
is not accounted for, ages that are less likely to contain productive trees will be under-
estimated by the regional curve (Fig. 2). The effect this has on the final standardized25
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chronology depends on the arrangement of the data, but when all series are complete
and alive at the time of sampling (modern) the effect will be precisely opposite that on
the regional curve.

For our purposes, survivorship curves are discussed as fast-biased, in which case
fast-growing trees are more likely to survive, slow-biased (the reverse) or unbiased.5

It is of course possible for a survivorship curve to be fast-biased for some ages and
slow-biased at others depending on the ecological effects at play. We suggest that
there are four broad drivers of productivity-survivorship bias: competitive dominance,
the patchy resource effect, ecophysiological limitation and biased disturbances. Many
of these effects are both poorly quantified and complex, limiting our ability to predict10

the direction or magnitude of productivity-survivorship bias in general.
Competitive dominance is the basis of natural self-thinning. It has long been ob-

served that trees suffer increased mortality rates when growing more slowly than their
neighbours due to competitive exclusion (Peet and Christensen, 1987). Tree diameter
is both allometrically linked to tree height, an important determinant of light competition,15

and suffers directly when resources are limited by competition. As a result, competitive
dominance will increase the typical productivity of the population as competition occurs
and slow-growing trees are removed from the population. As Brienen et al. (2012b)
suggested, this effect is likely strongest in young trees, especially when the species is
shade-intolerant.20

The patchy resource effect acts on a larger scale, that of environmental variability
in fertility. Resources in a forest ecosystem (water, microclimate and nutrients in this
context) are inherently patchy, leading to low and high fertility sites and microsites. In-
creased site fertility is directly linked to increased competition and accelerated stand
closure; as soil nutrients (or microclimate) improve, more resources can be allocated25

to above-ground biomass and light competition per year (Vanninen and Makela, 1999).
Research into self-thinning empirically substantiates this claim and consistently shows
accelerated stand dynamics with increasing stand fertility (Elfving, 2010). To under-
stand the effects of this, we consider two stands with different fertility levels. Before
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canopy closure occurs, the productivity of trees is positively correlated with the site
fertility as expected and no bias occurs. What happens next depends on the sam-
pling protocol selected. The number of trees in the fast-growing population drops much
more rapidly than that of the slow-growing population, producing a decline in the typ-
ical productivity of the metapopulation as the weightings shift. Thus, increases in the5

patch-scale variability in fertility tend to increase the bias towards lower productivity
trees, producing an artificial positive trend in the time signal.

Ecophysiological limitation driving tree mortality is widespread and lead some to
suggest that senescence and physiological limitations may be delayed in slow-growing
trees or those on unproductive sites (Chao et al., 2008; Briffa and Melvin, 2011; Brienen10

et al., 2012b). Stephenson et al. (2011) presents an excellent overview of the major
effects of this type by dividing them into four relevant hypotheses: the enemies hypoth-
esis, the growth-defense hypothesis and the growth-hydraulic safety hypothesis and
the shade tolerance hypothesis. In the enemies hypothesis, natural enemies are more
common to highly productive trees due to their higher energy and nutrient concentra-15

tions. The growth-defense hypothesis use the idea of resource limitation; if a tree is
using resources to produce growth (especially above-ground biomass), it can’t spend
them on resource diversification or natural defenses and is thus more likely to die to
disturbances or environmental stress. The third hypothesis, the growth-hydraulic safety
hypothesis similarly suggests that resistance to hydraulic failure is costly due to in-20

creased resistance to water transport and thus trees which invest in proper hydraulic
architecture will survive longer than their peers, at least after competitive effects have
reduced. Finally, the shade tolerance hypothesis relies on the common trend of reduced
growth potential in shade-tolerant and shade-grown trees due to ontological choices in
leaf anatomy and biochemistry. While these effects are commonly discussed in terms25

of between-species differences, there is some evidence to suggest that the genetic
variability and phenotypic plasticity present within a species is sufficient to create small
effects of this sort (Rötheli et al., 2011).
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Ecological disturbances are the final effect shaping survivorship curves, although
their effects seem even more context-sensitive. Insect damage, disease, drought and
frost mortality, windthrow, herbivory, floods, landslides, fire and harvest are all exam-
ples. These events are stochastic and significantly more challenging to model and
their preference for trees of different ages and growth rates varies by disturbance type.5

Some of these events are fast-biased, either due to their disproportionate effect on
small trees like herbivory and ground fires. Others, principally windthrow, are more
likely to affect larger trees, biasing the survivorship curve towards slow-growing trees.
Still other events, catastrophic ones such as landslides, stand-replacing fire, floods and
land use conversion don’t discriminate at all in terms of growth rate, size or age. Finally,10

the frequency of disturbance, especially harvesting, may increase with site productivity,
limiting the availability of fast-growing old trees.

Big-tree selection bias

In this framework, big-tree selection bias is quite simple to explain. Large trees are
commonly selected for in dendrochronological sampling, in hopes of sampling old trees15

with long records and to avoid the logistical difficulties associated with coring very
small trees. In the case of a minimum diameter cutoff (ignoring the effects of temporal
forcing):

Ii ≥
Dmin∑ai
a=1Aa

(12)

As the tree grows with age, the required minimum value for I becomes less stringent,20

leading to higher I values observed for young trees. Even without a strict minimum
diameter, there is a bias towards the selection of highly productive young trees (or
simply old trees) as long as large total diameter is desired. Because diameter depends
on the inherent productivity of a given tree, high I values are still more important for
young trees than old ones, assuming that some fraction of local trees are sampled at25

each site or subsite.
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Big-tree selection bias is not, per se, a concern in even-aged stands. Even though
only the largest and most productive trees are selected, there is no bias by age as
the experimenter can only choose between trees of the same age at any given point in
time. As Brienen et al. (2012b) stated, big-tree selection bias can be eliminated through
careful experimental design. This is only a small part of the larger modern sample bias5

problem however, which must be corrected by accounting for the productivity of each
individual tree.

4 Estimating growth models

The models introduced in Sect. 2 are quite simple. In all cases, the observed growth
data is the product of some number of effects (individual, tree or age driven). Each10

effect vector is a latent categorical variable, with a seperate coefficient for each unique
tree, year or age. There are 8 possible models, each with a unique combination of
effects, increasing in complexity from the null model (Gita = εL

ita) to the complete model

(Gita = IiTtAaε
L
ita).

The simplest approach is to find the maximum likelihood solution to the growth model15

of choice. The error term corresponds to the probability density function used during
this process. Once an optimal family is found (using simulated annealing for example),
the effect vectors are rescaled to the desired form.

The other approach is to find an approximately optimal solution using the method
of moments. The simplest case is a model with only a single effect vector (say T ). For20

a normally distributed error term, we can estimate the coefficient Tt at each year by
taking the arithmetic mean of the observed growth values for that year. If we assume
a log-normal multiplicative error term, we need to use the geometric mean instead.

The problem of estimating growth models from tree ring data (standardization) can
be framed as a regression problem. For the additive normal error term, this is a nonlin-25

ear regression with multiplicative categorical variables. In the case of the multiplicative
log-normal error term, this is a generalized linear model with a log link function and
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no intercept (equivalent to log-transforming the growth model and using traditional lin-
ear regression). The “rescaling” that we discussed at the end of Sect. 2 is a dummy
variable trap. Because we have multiple latent categorical variables, we can shift the
(log)-intercept of each effect as long as it’s counterbalanced by a shift in another vari-
able. The choice to rescale the observed coefficients such that the typical value of I and5

T are 1 corresponds to a special type of contrast. Because this is a regression prob-
lem, estimating the coefficients by the methods of moments, least squares or maximum
likelihood will all give similar results.

A regression modelling perspective to tree-ring standardization immediately sug-
gests some helpful metrics. If we want to understand the goodness of fit, we can look10

at the likelihood or R2 of the model fit. To examine the noise level more directly, we can
examine the estimated variance parameters (σ) in our error term. This is equivalent to
the root-mean-square error (RMSE) for the additive normal error term. Comparing R2

or σ between error families (probability density functions) is not directly meaningful.
Instead, the most appropriate way to decide on the probability density function is15

to examine the residuals of the model. Using histograms, kernel density estimators
or quantile-quantile plots, the residuals should match the desired probability density
function. In most cases, visual inspection is the simplest and most reliable approach.

The final, and perhaps most important decision we need to make is which of our 8 (16
if we need to choose an error family as well) is the most appropriate for our data. Simple20

measurements of goodness of fit, such as likelihood, RMSE or R2 are not suited to this
task. Because the models are nested, adding an additional term will always improve
the goodness of fit. The use of these metrics for model selection leads to overfitting. In-
stead, we need to penalize the use of additional degrees of freedom, as in adjusted R2

or information criteria do this. Adjusted R2 has a familiar interpretation. It has the same25

behaviour as R2, in that it increases to a limit of 1 as the model explains all of the ob-
seved variability but includes a term penalising the use of additional linear predictors.
Adjusted R2 however obscures the relative strength of evidence for each competing
model (Burham and Anderson, 2002, p. 94–96). Information criteria (mostly Akaike’s
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information criteria and Bayesian information criteria) use an information-theoretic ap-
proach to model selection, balancing the likelihood of each model against the risk of
overfitting given a certain number of parameters. Information criteria can be converted
into models, which accurately convey the level of support for each competing model,
and should be used to understand the relative support of each model.5

In some cases, it’s not feasible to manually examine the residuals of each of the
fit models (as in the case of massive meta-analyses). We can use likelihood (and by
extension information criteria) to compare models drawn from competing probability
density functions. A model with the true probability density function will tend to have
a higher likelihood than the corresponding model with an incorrectly specified probabil-10

ity density function. The use of information criteria will reflect these differences in likeli-
hood, choosing the correctly specified model over competitors. In most cases though,
this approach should complement, rather than replace, the visual inspection of residu-
als. Likelihood approaches to error family selection does not reveal subtler distinctions
such as skew or heteroscedasticity which may suggest the use of more sophisticated15

probability density functions.
The final benefit of these models is the ease of obtaining confidence intervals for the

effects estimated. Frequentist confidence intervals, or likelihood based support inter-
vals can be easily extracted from various premade regression packages. One element
of each of the effect vectors (typically the first) will not have an estimated confidence20

interval due to the degree of freedom lost by rescaling the effects. In terms of tradi-
tional categorical regression, it is the baseline level. In the case of a normal error term,
these intervals need to be scaled with the effects vector as they are converted to their
standard form.

4.1 Regional curve standardization and flat detrending25

As intended, regional curve standardization fits nicely into this growth model frame-
work. When regional curve standardization is performed, we estimate the model (using
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a additive form and normal error term to demonstrate):

Gita = Tt +Aa +εN
ita (13)

Similarly, the raw chronology is constructed by fitting the following model:

Gita = Tt +εN
ita (14)

Less obviously, fixed effects standardization is also an extension of flat detrending5

techniques (Cook and Kairiukstis, 1990). If we divide by the mean of each series (the
flat detrending line) and then construct the standardized chronology, we’re estimating
the individual tree and time effects.

Gita = Ii +Tt +εN
ita (15)

The use of a normal error term implies the use of an arithmetic mean. If we want to10

assume a log-normal error term, a geometric mean should be used instead.
But if, for example, regional curve standardization follows a growth model, why must

we estimate the age effect first and then the time effect? Do we obtain the same result
if the process is reversed? Trivially, the answer is no, as they will be scaled differently.
But even when we account for that, the answer is typically no; the order in which the15

effects are estimated determines the family of effect vectors that is produced.
The reason for this is that standardization, by and large, is done sequentially, rather

than simultaneously. In the case of a balanced design (the weight matix W is constant),
sequential estimation of the effects works properly (Fig. 3). Removing an estimated
effect does not bias our estimation of the other effects because the changes are sym-20

metric across all levels of the other effects (see Appendix A). When the design is bal-
anced, sequential estimation of the effect vectors by taking the mean at each index
is an unbiased estimate of the true effect vectors. The family of solutions found is the
same regardless of which effects are estimated.

Unfortunately, this is virtually never the case when dealing with real tree ring data.25

In order to have a balanced design (for regional curve standardization), a chronology
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would need to have a completely uniform sample depth by age and time. Unbalanced
designs are a fact of life in dendrochronology. When analyzing an unbalanced design
sequentially (as in flat detrending or regional curve standardization), changes in one
effect vector (such as age), result in changes in the estimate of every other effect vector
(such as time). The signals are convoluted and cannot fully be seperated.5

In fact, this very problem was identified in the work on signal-free standardization
referred to as “trend-in-signal bias” (Melvin, 2004; Melvin and Briffa, 2008; Briffa and
Melvin, 2011). The solution they proposed was signal-free standardization. By repeat-
ing the standardization process, they eventually produces stable estimates of the ef-
fects that did not suffer from trend-in-signal bias and better retained low-frequency vari-10

ability. With slight modifications, signal-free standardization can be expanded to work
with models with more than two effects, estimating each in sequence repeatedly (Ap-
pendix A). When we do so, we can prove that signal-free standardization converges to
an unbiased estimate of the growth model, and properly handles unbalanced designs
(Fig. 3).15

The power of signal-free standardization comes from its effectively simultaneous es-
timation of the effects of interest. Because it converges on a unbiased solution to the
growth model, the results of signal-free standardization are approximately equivalent
to the growth models estimated using more conventional optimization techniques.

4.2 Smooth and parametric age effects20

Conspiciously absent from all the preceding discussion is the common practice of
smoothing the regional curve. In part, this was for convenience. The solutions are much
simpler and the symmetry more obvious when age is treated as a categorical variable
like time and individuals. But in truth, it is because a much more elegant solution ex-
ists. Rather than fit a smooth curve (paramateric or nonparametric) to the raw regional25

curve each time it is estimated, we can simply include a smooth age effect in our model
directly (see Bontemps and Esper, 2011 for an example of this principle). A modified
negative exponential regional curve for example (Fritts, 1976), would be included by
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fitting the following model to your data:

Gita = IiTt (k1e−k2a + k3)εL
ita (16)

In the case of a log-normal probability density function, a smooth flexible age trend
can be fit using generalized additive models (see Beck and Jackman, 1998 for a gentle
introduction). Generalized additive models use either splines or kernels to ensure that5

the fitted curve is locally smooth. The model used can be represented as:

Gita = Ii ·Tt · s(a) ·εL
ita (17)

Where s(a) is a smooth function of age. As before, we can distinguish between
these competing models of standardization using model selection criteria such as AIC.
Breadth of imagination and biological plausibility are the only constraints, so long as10

an appropriate optimization algorithm can be found.

4.3 Likelihood ridges in three-effect models

A final complication arises when we attempt to estimate the three-effect (individual,
time and age effects) for real tree-ring data. Realistic tree ring data is arranged along
time-age diagonal lines in the tree-ring array. Each year that the tree ages, the calen-15

dar year advances by one. Because of this structure, a peculiar ridge emerges in the
likelihood of three-effect models (Appendix B). For each potential set of parameters (̂I,

T̂ and Â) there exists a log-linearly related family of solutions (
X

I,
X

T and
X

A) that produces

the same set of expected values (Ĝ =
X

G), and hence has the same likelihood. When all
three effects are included, each element of the effects vector is scaled by a constant20

effect m is raised to a power related to the age (a), year (t) or birth year of the tree
(b). Our tree-ring data is stored in a tree ring-array so we can think of this in terms of
columns (C, corresponding to age) and rows (R, corresponding to time).

X

Ii = mb Îi = mR−C Îi (18)
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X

Tt = m−t T̂t = m−RT̂t (19)

X

Aa = maÂa = mCÂa (20)

5 X

Gita = Ĝita (21)

By making a priori decisions about the expected distribution of effects, we can distin-
guish between the “equivalent” solutions by likelihood. In practice, this post-hoc correc-
tion seems to work quite well but further investigation and parametrization of plausible
effect distributions is still needed.10

5 Explored published ring-width data

The technniques above leave us with four major questions as to their real world impact:

1. What growth model is most appropriate for tree-ring width data? Which effects
(individual, time and age), form (additive or multiplicative) and error term (normal
or log-normal) should be used?15

2. How common is differing-contemporaneous-growth-rate bias?

3. What is the typical effect of modern sample bias? How much variability is there?

To answer these questions, we turn to the extensive International Tree-Ring Data
Bank, version 702 (Grissino-Mayer and Fritts, 1997). 6997 tree ring width data sets
were available, of which 5609 (80.2 %) could be read into R. From the remaining 560920

data sets, 1200 were selected at random for analysis. 2 of these were excluded from
the analysis due to computational constraints (not enough RAM to fit GAM models
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on these extremely large data sets). In total, these data sets contained 33 657 series,
6 905 445 unique measurements and spanned from 476–2008 AD, with the bulk of the
data occuring after 1500 (see Fig. 4 for an illustration of sample depth across time).
Information on the data sets themselves, code used and individual results is available
on request.5

From our discussion above, we can already rule out sequential standardization tech-
niques, as they are strictly worse than their signal-free (or maximum likelihood or least
squares) equivalents. Furthemore, we know that an additive model suggests a normal
error term, while a multiplicative model suggests a log-nromal error term. In fact, fitting
a model with a poor match of form and error term often results in a computation error,10

such as taking the log of a negative value! Thus, we are left with 16 candidate models
(23 combinations of effects times 2 model forms), ranging from the null model to the
three effect growth model.

Each of these data sets was analysed using fixed effects standardization under each
of the 16 competing growth models. As pith offset data was missing for most of the15

data sets, it was assumed that the first year recorded for each series was the pith of
the tree. Because of the inaccuracy in the ages of each ring-width record, this analysis
presents an overly pessimistic outlook on the value of including an age effect in tree-
ring standardization and may impart an additional negative trend in the time effects of
models that do not include an individual effect (Esper et al., 2003; Briffa and Melvin,20

2011).
The average goodness-of-fit and model selection criteria were computed for each

model and are listed in Table 1. Goodness-of-fit was fairly high, with the average R2

for the best model for a particular chronology of 0.63±0.10 dropping to 0.57±0.11
for adjusted R2. Noise (in terms of the variance geometric standard deviation of the25

residuals) was around 0.39±0.12 for the best model.
The competing model selection criteria (σ, R2, adjusted R2, likelihood, AIC, AICc

and BIC) were somewhat consistent, with σ, R2 and likelihood preferring the most
complex models, BIC preferring less complex models with adjusted R2, AIC and AICc
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intermediate (Fig. 5). By and large, it seems that σ, R2 and likelihood are too liberal
(as they have no penalty for added complexity) while BIC may be too conservative
in many cases. Of the remaining three choices, adjusted R2 is neither as powerful or
interpretable for model selection purposes as AIC, and AICc is simply a more correct
version of AIC. R2, adjusted R2 and σ are also inconsistent across model forms, as5

they are calculated in different ways depending on the assumed probability density
function for the error term. In general, we recommend that model selection in tree ring
standardization should be carried out using AICc or BIC (or AIC, as the correction as
neglible for typical sample sizes) to allow for the use Akaike model weights. R2 and σ
are still useful and interesting descriptive statistics though, and should be reported for10

each model as well.
For tree-ring width data, it appears that a multiplicative log-normal error term and

model form is far more realistic than the additive normal equivalent. The fair likelihood-
based model selection criteria preferred a multiplicative model over the additive equiv-
alent 100 % of the time. On a smaller scale, this fact is easily confirmed by viewing his-15

tograms and quantile-quantile plots of the residuals of the fitted standardization model.
The choice of probability density function is essential when significance tests, confi-
dence or support intervals are desired.

Within these log-normal models, the flat detrending model was the most popu-
lar choice (G = IT , P(AICc) = 83.5%, P(BIC) = 53.8%), followed by the full model20

(G = ITA, P(AICc) = 14.4%, P(BIC) = 0.4%), and a productivity-only model (G = I,
P(AICc) = 2%, P(BIC) = 45%). The traditional regional curve standardization model,
G = TA was selected only once by AICc, and never by BIC. BIC also selected the
unstandardized chronology (G = T ) 5 times, and a strange time-insensitive model
(G = IA) 10 times. To investigate the effects of modern sample bias, we generated two25

competing chronologies. In the first (uncorrected) case, the growth model accounted
for the effects of time and age using a smoothed age effect and a log-normal error
term: The null model was never selected by any model selection criteria, suggesting
that null hypothesis tests of tree-ring standardization are almost certainly a foregone
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conclusion. Overall, the individual effect had the strongest support, followed by the time
effect, with the age effect being weakest across the chronlogies as a whole.

Gita = Tts(a)εL
ita (22)

The second (corrected) model used adds an effect for the individual productivity of
each tree:5

Gita = IiTts(a)εL
ita (23)

This model was estimated using a generalized additive model with a gamma family
and a log-link in mgcv (Wood, 2001). Smoothing was performed using thin-plate basis
splines, with stiffness automatically selected using generalized cross-validation.

The corrected model was preferred 99.9% of the time by AICc, with even BIC prefer-10

ring it 99.3% of the time (Fig. 6). Model fit statistics were substantially improved for the
corrected three-effect model (Table 2).

We can detect the effect of modern sample bias by comparing the ratio of the un-
corrected to the corrected age and time effects. For the chronologies sampled, it ap-
pears that the sign of modern sample bias varies by chronology. For 355 chronologies15

(29.5 %), the ratio between the uncorrected and corrected time effects had a positive
trend (by Spearman’s ρ test for trend), reflecting a bias towards increasing growth by
time. The remaining 847 chronologies (70.5 %), displayed a negative trend, indicating
a systematic underestimate of growth rates in more modern years (Fig. 7). Plotting the
typical values of this ratio by time confirms this, revealing a slow, persistent negative20

bias in uncorrected chronologies over time, accelerating after about 1700 (Fig. 8).

6 Discussion and conclusions

Modern sample bias has been shown before (Briffa and Melvin, 2011; Voelker, 2011;
Cooper et al., 2012; Melvin et al., 2012b) but the techniques developed in this paper
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allow a more detailed and comprehensive examination and correction. Contrary to pre-
vailing opinion (Brienen et al., 2012a), modern sample bias does not always impart
a positive bias on the standardized chronology but depends instead on the complex
ecological interactions dictating survival and the vagaries of sampling. In fact, in 70.5 %
of the chronologies analysed, it had a negative effect instead. The ecology and sam-5

pling design behind these patterns is interesting in its own right and deserves much
finer scale, context-specific study than given here.

D’Arrigo et al. (2008) suggest that modern sample bias may be responsible for the
“divergence problem” in dendroclimatology, the widespread reduction in temperature
sensitivity of tree-ring chronologies in recent decades. The generally negative trend10

induced by modern sample bias in recent years certainly suggests that this may be at
least part of the problem.

More generally, the theoretical results of this paper clarify, simplify and extend re-
gional curve standardization. Regional curve standardization is a biased implementa-
tion of signal-free standardization, while signal-free standardization is itself equivalent15

to the new effect regression standardization. Working within a regression framework
improves the transparency of the standardization process, allows investigators to use
classical regression tools such as AIC and, as demonstrated, facilitates investigation
of alternate underlying models of tree growth.

The estimates of I are interesting in their own right, as measurements of tree-level20

productivity, independent of the effects of tree age and time period. This metric pos-
sesses several large advantages over traditional metrics of forest productivity such as
site index or direct measurements of annual net primary productivity. While tree ring
data may be more laborious than simple DBH and height measurements, it is still rela-
tively cheap and simple to collect and analyze. Most importantly, it is free of confound-25

ing age- and time-related effects, a major challenge in most attempts to qualify site or
tree quality. Integration of dendrochronological data into more traditional investigations
of forest productivity (cf. Pokharel and Dech, 2012) could help control for these con-
founding effects. Intriguingly, I describes the productivity of individual trees. As a result,
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questions that are cost-prohibitive or impossible to answer using alternate productiv-
ity indexes are now feasible. The spatial structure of tree productivity, the effects of
microtopography, or the success of tree breeding programs could all be readily quanti-
fied from tree ring data using the techniques outlined in this paper.

More extensive empirical validation and testing of the assumptions discussed in this5

paper is still needed and requires the detailed investigation of many real chronologies.
To this end, R source code is available as Supplement and is planned for inclusion
in dplR, the main dendrochronology package in R shortly (Bunn, 2008). Much of the
existing work surrounding variance stabilization and chronology construction (Boreux
et al., 2009; Cook and Peters, 1997; Nicault et al., 2010; Bontemps and Esper, 2011)10

may be significantly clearer in this model-based likelihood framework.
The tools presented in this paper may be useful in other areas of dendrochronol-

ogy. Tree-specific differences in isotope values have been observed (Hangartner et al.,
2012), and while maximum latewood density and other tree-ring proxies are relatively
stable with age (Melvin et al., 2012a), microclimatic differences between trees may15

still drive persistent trends. The growth model presented here suggests that these ef-
fects may be segregated, even when using measurements other than ring width, so
long as there is reason to believe that persistent effects due to individual trees, cal-
endar year and age are present. Hangartner et al. (2012) encountered this problem,
although it was not recognized as such, when attempting to combine partially overlap-20

ping tree ring isotope series of differing contemporaneous magnitude, observing the
characteristic “jumps” in the final chronology when series began or ended. The ap-
proaches examined in that paper are not entirely applicable here; the first three suffer
from “segment-length curse” (Cook et al., 1995), masking much of the low-frequency
variability, and the fourth is difficult to extend to more than two overlapping series.25

Brienen et al. (2012a) show that modern sample bias presents a real challenge to
the use of modern tree ring chronologies in climate reconstruction and the detection
of long-term shifts in growth, such as those that may result from climate change or
carbon fertilization. Differences in productivity are at the root of these problems, and the
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techniques introduced here allow us to control for this heterogeneity and thus eliminate
this bias.

Fixed effects standardization builds on a long history of dendrochronological stan-
dardization techniques but is at once simpler and more flexible. Sequential estimation
techniques (classical regional curve standardization or individual series detrending) are5

grossly and needlessly ineffecient and need to be replaced by their signal-free, max-
imium likelihood or least-squares equivalents in every case. We recommend the use
of fixed effects standardization that accounts for differences in productivity in place of
classical regional curve standardization in virtually all cases, removing trend-in-signal
bias, differing-contemporaneous-growth-rate bias and modern-sample bias.10

Appendix A

Sequential and alternating standardization algorithms

This appendix aims to clarify and precisely define sequential and alternating methods
of estimating tree ring standardization models. In the first section, we show the parallels
between flat detrending and regional curve standardization, and show why they fail to15

produce reliable estimates of the proposed growth models in real world scenarios. The
second section precisely defines and revises the signal-free standardization algorithm
for categorical effects, and proves that it always produces an unbiased estimate of the
underlying growth model.

A1 Sequential standardization algorithms20

Regional curve standardization (unsmoothed) (Briffa et al., 1992) and flat detrending
(Cook and Kairiukstis, 1990) both use sequential estimation of categorical effect vec-
tors to estimate a categorical time effect that is “free” of the effects of age (regional
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curve standardization) or individual productivity (flat detrending). The symmetry in the
algorithms with respect to I ↔ A can be seen when we state their steps:

1. Take the mean of the growth data (G) for each [age/series]. This is the estimated
effect vector for [age/individuals] ([Â/̂I])

2. Remove the the estimated effect vector for [age/individuals] from the growth data.5

3. Take the mean of the growth data for each time (year). This is the estimated effect
vector for time (T̂ ).

4. Rescale the effect vectors to a standard form.

The choice of mean (arithmetic/geometric) corresponds to the choice of error term
(normal/log-normal). Similarly, the method of removing effects (subtracting/dividing)10

corresponds to the form of the model (additive/multiplicative). To limit the tedium of
parallel derivations and make the proof as simple to follow as possible, the remainder
of this appendix will use additive regional curve standardization with normal noise. The
equivalent proofs for multiplicative models and/or log-normal noise are easily found by
log-transforming the data and model or using a geometric mean, then applying the15

same techniques.
We can compare the estimates produced using this technique to the true growth

model. In that case, the observed growth data is given by:

Gita = Tt +Aa +εN
ita (A1)

We convert the algorithm above into an algebraic expression. Because the data is20

not necessarily evenly distributed across each cell, we need to take into account the
weight array W which describes the sample depth at each combination of time and age.
We frequently need to iterate over the entire set of observed individuals/ages/years. For
this purpose, we define t to be the set of observed calendar years, such that t ∈ t means
to iterate over each observed year. i and a are defined similarly for individuals and ages.25
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The first step of the algoritm above, estimating the age effect (regional curve), can be
written as:

Âa =

∑
t∈tGtaWta∑

t∈tWta
(A2)

Removing the regional curve from the growth data (in this case subtracting as the
assumed model is additive), we obtain an updated version of the growth matrix G that5

we can denote G̃:

G̃ita = Gita − Âa (A3)

We then estimate the time effect (construct the standardized chronology) from the
updated growth data (standardized series):

T̂t =

∑
a∈aG̃taWta∑

a∈aWta
(A4)10

Putting the steps together, we can describe the estimated effect vectors in terms of
the true effect vectors.

Âa =

∑
t∈t(Tt +Aa +εN

ita)Wta∑
t∈tWta

(A5)

T̂t =

∑
a∈a

(
Tt +Aa +εN

ita −
∑

j∈t(Tt+Aa+ε
N
ita)Wta∑

j∈jWja

)
Wta∑

a∈aWta
(A6)

15
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When the weight matrix is a constant (C) at every position of t and a, these equations
simplify considerably. First, we can condense our estimate of A.

Âa =
C
∑

t∈t(Tt +Aa +εN
ita)

C|t|
(A7)

Âa =

∑
t∈tTt

|t|
+

∑
t∈tAa

|t|
+

∑
t∈tε

N
ita

|t|
(A8)

Âa = T +
|t|Aa

|t|
+εN

ita (A9)5

Âa = Aa + T +εN
ita (A10)

Where x indicates the average over the elements of x . The estimated age effect
vector is the sum of the true age effect and independent, identically normally distributed
noise. As expected, only the relationship between the elements of the effects vector are10

well estimated, rather than their magnitude as the original growth model is singular. For
additive models, we can accurately estimate the difference between any two elements
of the effects vector, while for multiplicative models we can accurately estimate the ratio.
If and only if the weight matrix is balanced, regional curve standardization produces
unbiased estimates of the regional curve using the method of moments. Now that we15

have a simpler expression for the estimate of the age effect vector (regional curve, Â),
we can examine the updated growth matrix (standardized series, G̃).

G̃ita =
(

Tt +Aa +εN
ita

)
−
(

Aa + T +εN
ita

)
(A11)

G̃ita = Tt − T +εN
ita −εN

ita (A12)
20

As desired, the standardized series contain only information about time effects and
noise. As most dendrochronologists have probably observed, the resulting standard-
ized series are centered. In this case, because the model used is additive, they are
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centered around 0 but in the multiplicative case they will be (multiplicatively) centered
around 1 instead. We can find the estimated time effect by substituting the updated
growth matrix into Eq. (A4), remembering that the weight matrix is a constant (C) in
this scenario.

T̂t =
C
∑

a∈aG̃ta

C|a|
(A13)5

T̂t =

∑
a∈aTt − T +εN

ita −εN
ita

|a|
(A14)

T̂t =

(
Tt − T

)
|a|

|a|
+

∑
a∈aε

N
ita −εN

ita

|a|
(A15)

T̂t = Tt − T +εN
ita −εN

ita (A16)

Because we can never know the true values for the effect vectors, we can take the10

total (and thus average) error over the entire growth array (εN
ita) to be 0.

T̂t = Tt − T +εN
ita (A17)

The estimate of the time effect is again centered and looks very similar to the es-
timate of the age effect. It is related to the true time effect vector by an unknowable
constant offset and contains noise from the data in the corresponding year. As above15

for the regional curve, the standardized chronology produced using regional curve stan-
dardization is an unbiased estimate of the time effect if and only if the weight matrix
is balanced. Furthermore, in this case switching the order in which the effects are es-
timated makes no difference to the family of effect vectors estimated. We can confirm
that we’ve obtained reasonable estimates of the effect vectors by substituting them20
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back into the growth model to generate predicted values (Ĝ).

Ĝita = T̂t + Âa (A18)

Ĝita =
(

Tt − T +εN
ita

)
+
(

Aa + T +εN
ita

)
(A19)

Ĝita = Tt +Aa +εN
ita +εN

ita (A20)
5

Examining the residuals (G− Ĝ) can tell us if our estimator is biased.

Gita − Ĝita =
(

Tt +Aa +εN
ita

)
−
(

Tt +Aa +εN
ita +εN

ita

)
(A21)

Gita − Ĝita = εN
ita −εN

ita −εN
ita (A22)

Because the noise is assumed to be identically and independentally distributed, the10

expected error is 0, meaning that for uniformly weighted designs, regional curve stan-
dardization (and flat detrending) is an unbiased estimator of a fixed effects growth
model.

A2 Alternating standardization algorithms

The signal-free standardization algorithms put forward by (Melvin, 2004; Melvin and15

Briffa, 2008) and in particular, (Briffa and Melvin, 2011) can be thought of as algorithms
to alternately estimate orthogonal effects on growth. These techniques are powerful,
removing trend-in-signal bias, but their theoretical foundation is somewhat unclear. In
this section, we argue that signal-free-standardization can be reframed as an algorithm
which serves to find a least-squares solution to the growth model as a whole.20

The algorithm for signal-free (unsmoothed) regional curve standardization is given
roughly as:

1. Align all series by their common age and find the mean value at each age.
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2. Divide the raw growth data by the regional curve at the same age to produce
signal-free series.

3. Find the mean values at each year to produce the signal-free chronology.

4. Repeat steps 1 through 3 until convergence is reached (defined as an approxi-
mately zero-variance signal-free chronology).5

5. Use this final signal-free regional curve to produce the standardized chronology
by dividing the original growth data by the final regional curve.

Instead, we argue that signal-free standardization (as a whole) can be performed
using this simpler algorithm:

1. Initialize the working growth data as the original growth data and the estimated10

effects as the null value (0 for additive models, 1 for multiplicative models).

2. Estimate an effect (via method of moments (taking the mean), least squares or
maximum likelihood) and combine it with the previously estimated effect of that
type (by adding for additive models and multiplying for multiplicative models).

3. Remove the change in the effect from the working growth data (by subtracting or15

dividing it from the growth data).

4. Repeat steps 2 and 3 for each orthogonal effect (orthogonal effects have inde-
pendent sets of predictor variables).

5. Repeat steps 2–4 until convergence is reached, as defined by a zero-signal work-
ing growth data (all values of growth are ≈ 0 for additive models or ≈ 1 for multi-20

plicative models).

Rather than retaining only a single estimated effect at a time (the regional curve/age
effect above), we can store our updated estimates of each of the effects and skip the
final step where we derive the second effect from the first estimated effect and the
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growth data. In this way, we can extend signal-free standardization to include more
than two orthogonal effects.

For an additive regional curve standardization growth model with normal noise, we
can write the algorithm more concretely.

1. Initialize the working growth data as the original growth data and the estimated5

effects as 0. Start the step counter at 0.

sA := 0; sE = 0 (A23)

G̃
sG=0
ita = Gita (A24)

Â
sE=0
a = 0 (A25)

T̂
sE=0
t = 0 (A26)10

2. Estimate the age effect by taking the average of the working growth data by age
and add it with the previously estimated effect age effect.

Â
sE+1
a = Â

sE
a +

∑
t∈tG̃

sG

ita Wita∑
t∈tWita

(A27)

3. Remove the change in the age effect from the working growth data by subtraction.15

Increment the step counter by 1.

G̃
sG+1
ita = G̃

sG

ita − (Â
sE+1
a − Â

sE
a ) = G̃

sG

ita −
∑

k∈tG̃
sG

ikaWita∑
k∈tWita

(A28)

sG := sG +1 (A29)
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4. Estimate the time effect by taking the average of the working growth data by time
and add it with the previously estimated effect time effect.

T̂
sT+1
t = T̂

sT
t +

∑
a∈aG̃

sG

ita Wita∑
a∈aWita

(A30)

sT := sT +1 (A31)
5

5. Remove the change in the time effect from the working growth data by subtraction.
Increment the step counter by 1.

G̃
sG+1
ita = G̃

sG

ita − (T̂
sE+1
t − T̂

sE
t ) = G̃

sG

ita −

∑
j∈aG̃

sG

itj Wita∑
j∈aWita

(A32)

sG := sG +1; sE := sE +1 (A33)
10

6. Repeat steps 2–5 until convergence is reached, as defined by the working growth
data reaching 0 in every locations.

G∗
ita = 0 (A34)

Sequential standardization (regional curve standardization, flat detrending) simply
stops this process after one loop through. At each step, the working growth data and15

the most recent effects combine to produce the original growth data.

Gita = T̂
sT
t + Â

sA
a + G̃

sG

ita (A35)

All information is retained at each step. We can confirm that the effect vectors stabi-
lize at our convergence condition by substituting G̃ = 0 into the updating equations.

Â
sA+1
A = Â

sA
a +

∑
t∈t0 ·Wita∑

t∈tWita
= Â

sA

A (A36)20

T̂
sT+1
t = T̂

sT
t +

∑
a∈a0 ·Wita∑

a∈aWita
= T̂

sT
t (A37)
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The next question is whether the proposed algorithm actually converges to the stop-
ping point. Unfortunately we have not managed, to date, to prove this and welcome
proofs to this effect. In practice, the algorithm converges to a stable family of solutions
(as determined by comparing the residuals at each step) relatively quickly. Small mod-
els and data sets typically take only a 2–5 iterations to stabilize while large models and5

particularly sparse data sets can take up to 20. Model fit statistics confirm our intu-
ition that the modified signal-free algorithm is a good estimator of the growth model,
producing values of likelihood and R2 extremely close to those obtained via maximum
likelihood or least squares optimizers.

Finally, by Eq. (A35), we know that if the working growth data is 0, the estimated10

effect vectors are an unbiased estimator of the true effect vectors (with an unknowable
constant offset).

Tt +Aa +εN
ita = T̂ ∗

t + Â∗
a +0 (A38)(

Tt − T̂ ∗
t

)
+
(

Aa − Â∗
a

)
= −εN

ita (A39)

Gita − Ĝ∗
ita = −εN

ita (A40)15

E [Gita − Ĝ∗
ita] = 0 (A41)

Note that the family of solutions found does not depend on the order in which the
effects are estimated, unlike in sequential standardization. Because this process is
guaranteed to converge (at least for categorical effects), signal-free standardization20

results in an unbiased least-squares estimate of the original growth model, even in
cases where the weight matrix is unbalanced. Signal-free standardization produces
least squares estimate for first one effect then the next, to finally converge on a least
squares solution for the full model.
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Appendix B

Likelihood ridges in three-effect models

As we saw before, the fixed effects growth models are singular. There is no single best
solution, but instead a family of them. We can deal with this problem by rescaling the
coefficients into a standard form. But a similar, less trivial difficulty arises when fitting5

three-effect (individuals, time and age) models to real tree ring data.
Because each sequential tree ring is both one year older and one year later in time

than the preceding one, the tree-ring data for each tree follows a single diagonal along
time and age. As a result, the estimated effect vectors can shift away from the true
effect vectors in a peculiar way. In this section, we’ll use an additive model with no10

noise for clarity.

Gita = Ii +Tt +Aa (B1)

We can think of the slice of the tree-ring array in which a single tree is found as
a matrix, with calendar years as rows (R) and ages as columns (C). Each tree was
born in a particular year, determining the diagonal (k ) in which the data is found. The15

oldest tree will be found along the main diagonal, starting at (t1,a1), while younger
trees will be found in the lower left triangle. The upper right triangle will always be
empty unless the chronology contains trees that were born before the oldest complete
tree but are missing data near the pith. The relative birth year of tree i (bi ) can be
related to the year and age (counting from the beginning of the chronology) in which20

any particular ring is found.

bi = ti −ai (B2)

The diagonal of the data is clearly related to the rows and columns in which the data
is found.

k = R −C (B3)25
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And so then we can link the two perspectives:

ti = C; ai = R; bi = −ki (B4)

We can change the coefficient of Ii without affecting any of the other diagonals, the
coefficient of Tt without affecting any of the other columns and the coefficient of Aa
without affecting any of the other rows. Suppose there is a demonic intrusion (Hurlbert,5

1984), that results in each of our estimates of the effect vectors being linearly offset
from the best estimate of our effect vectors by an amount related to the birth year,
calendar year or age they represent. Let us describe these perturbed effect vectors as
X

I,
X

T and
X

A for individuals, time and age respectively. These perturbed effect vectors
would look like:10

X

Ii = Îi +miBi (B5)
X

Tt = T̂t +mt t (B6)
X

Aa = Âa +maa (B7)

Which can of course be converted into the matrix perspective:15

X

Ii = Îi +mi (−k ) = Îi −mi (R −C) (B8)
X

Tt = T̂t +mtC (B9)
X

Aa = Âa +maR (B10)

We can detect this intrusion using least-squares, maximum likelihood or similar if it20

results in a poor model fit. We can compare the pure predicted growth values (Ĝ) to

the corrupted predicted growth values (
X

G) by looking at the difference between them.
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Ĝita −
X

Gita =
(̂

Ii + T̂t + Âa

)
−
(X

Ii +
X

Tt +
X

Aa

)
(B11)

Ĝita −
X

Gita =
(̂

Ii + T̂t + Âa

)
−
(̂

Ii +miBi + T̂t +mt t + Âa +maa
)

(B12)

Ĝita −
X

Gita =
(̂

Ii + T̂t + Âa

)
−
(̂

Ii −mi (R −C)+ T̂t +mtC + Âa +maR
)

(B13)

The best unbiased estimates of our effect vectors cancel:5

Ĝita −
X

Gita = −mi (R −C)+mtC +maR (B14)

We can detect the perturbance if the true and corrupted predictions of growth are
different, as the corrupted effect vectors will (by definition) provide a worse fit to the
data. Now, if the intruding demon was particularly malicious, it would add precisely
the right amount to each element of the effect vectors such that the predictions of the10

two model fits were indistinguishable in every cell of the growth data. In that case, the

difference between the predictions (Ĝ−
X

G) would be 0.

0 = −mi (R −C)+mtC +maR (B15)

0 = (mt +mi )C + (ma −mi )R (B16)
15

It turns out, that if you set the slopes of the perturbations up just so, the intrusion is
undetectable.

mt = −mi ; ma = mi ; mt = −ma (B17)

Setting m to be the arbitrary slope of the perturbation as a whole, we can confirm
that the predicted values are identical.20

X

Gita = Îi +m(R −C)+ T̂t +mC + Âa −mR (B18)
X

Gita = Îi + T̂t + Âa = Ĝita (B19)
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Solutions to the three-effect growth model of the form given in Eq. (B18) all have
the same likelihood, regardless of the value of m chosen. This creates a likelihood
ridge in our solution space. Any residual-based optimizer we choose to use cannot
distinguish between the “true” and “corrupted” solutions, leaving us unable to interpret
the reported effects. Residual-driven metrics of model fit for these models are however5

perfectly valid, the R2, likelihood, AIC and BIC for these malformed models are all
correct, allowing us to perform model selection even in the face of demonic intrusions.

Similar models, including flexible GAM standardizations and many parametric alter-
natives (including constant basal area increment and negative exponential age trends)
fall prey to the same problem as they must ultimately generate predictions at the same10

points. Resolving this problem is vexing, but we can use the sheer implausability of the
reported outcomes in our favour.

In many cases, we can assume that the true effect vectors themselves arise from
a specified distribution (in this case normal). The demonic intrusion dramatically skews
these distributions, leaving clear proof of its visit. The three effects vectors are each15

generated through a different process and thus deserve a seperate random process,
with different levels of variability. From the corrupted effect vectors, we can obtain can-
didate corrected effect vectors (̃I, T̃ , Ã) for any hypothesized level of corruption (m̃).

Ĩi =
X

Ii − m̃(R −C) (B20)

T̃t =
X

Tt + m̃C (B21)20

Ãa =
X

Aa − m̃R (B22)

When m̃ = m, we will have successfully removed the effects of the demonic intrusion,
even though the likelihood of all the models are equivalent. For a given value of m, we
can estimate the likelihood of a single corrected effect coefficient according to which25

class it belongs to:

L(̃Ii ) ∝ P (̃Ii | N (µĨ ,σĨ)) (B23)
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L(T̃t ) ∝ P(T̃t | N (µT̃ ,σT̃ )) (B24)

L(Ãa) ∝ P(Ãa | N (µÃ,σÃ)) (B25)

Allowing the mean of each normal distribution to be flexible with the estimated effect5

lets us accomadate the arbitrary scale of any one effect vector. We can compute the
overall likelihood of the model as the product of the likelihood of each of the compo-
nents of the effect vectors. By maximizing this quantity, or rather its logarithm, we can
obtain reasonable values for each of our effect vectors that match our distributional ex-
pectations. At this point, all that remains is a fairly trivial one-dimensional optimization.10

In practice, this post hoc correction appears to work fairly well. It performs admirably
on data sets in which the true effect vectors follow the expected distribution. Its appli-
cation to real data is rather more approximate, the use of more specialized or empirical
distributions for individual, time and age effects would help to ensure its reliability.
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Table 1. Average model fit statistics for the signal-free-standardization models fit to the anal-
ysed chronologies. ∆∗IC values are calculated relative to the full multiplicative model.

Model σ R2 Adjusted R2 ∆AIC ∆AICc ∆BIC

G = I ·T ·A ·εL 0.39±0.12 0.60±0.10 0.54±0.12 0±0 0±0 0±0
G = I ·T ·εL 0.48±0.15 0.40±0.13 0.35±0.14 1800±2300 1800±2300 −300±1900
G = I ·A ·εL 0.41±0.13 0.56±0.11 0.53±0.12 −80±300 −210±700 −2100±1200
G = T ·A ·εL 0.46±0.13 0.44±0.14 0.35±0.16 2000±2600 2000±2600 1800±2500
G = I ·εL 0.56±0.18 0.22±0.12 0.21±0.12 2500±2800 2400±2800 −1500±2500
G = T ·εL 0.51±0.16 0.32±0.13 0.27±0.14 2500±2800 2400±2800 300±2500
G = A ·εL 0.56±0.16 0.20±0.13 0.15±0.14 3400±3700 3400±3700 1200±2900
G = εL 0.63±0.19 0±0 0±0 394 000±366 000 394 000±366 000 390 000±366 000
G = I +T +A+εN 65±102 0.62±0.1 0.56±0.12 49 000±41 000 49 000±41 000 49 000±41 000
G = I +A+εN 68±107 0.57±0.11 0.54±0.12 49 000±41 000 49 000±41 000 47 000±40 000
G = I +T +εN 79±121 0.42±0.14 0.38±0.15 50 000±42 000 50 000±42 000 48 000±42 000
G = T +A+εN 78±122 0.44±0.14 0.36±0.17 51 000±43 000 51 000±43 000 51 000±43 000
G = I +εN 93±143 0.23±0.13 0.23±0.13 51 000±42 000 51 000±42 000 47 000±41 000
G = T +εN 88±138 0.32±0.14 0.27±0.15 51 000±44 000 51 000±44 000 49 000±43 000
G = A+εN 93±142 0.21±0.14 0.16±0.15 52 000±44 000 52 000±44 000 49 000±43 000
G = εN 107±165 0±0 0±0 82 000±61 000 82 000±61 000 77 000±59 000
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Table 2. Average model fit statistics for the GAM models fit to the analysed chronologies. ∆∗IC
values are calculated relative to the full multiplicative model.

Model σ R2 Adjusted R2 ∆AIC ∆AICc ∆BIC

G = I ·T · s(a) ·εL 0.50±0.18 0.52±0.14 0.48±0.14 0±0 0±0 0±0
G = T · s(a) ·εL 0.57±0.2 0.37±0.15 0.32±0.16 1600±2300 1600±2400 1400±2200
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Fig. 1. Tree ring data is traditionally stored in a two-dimensional table (top left), with each
column representing a different core and each row a different year. When dendrochronologists,
wanted to look at the values by age, as when constructing the regional curve, the series need to
be realigned so that the rows now match with the age of the rings (bottom left). Instead, we can
store information about both time (calendar year) and age of the data in a three-dimensional
tree ring array, here shown in slices by core (right).
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Fig. 2. An artificial modern sample bias scenario. The points in black show the true effects
vector for synthetic data generated by a slow-biased survivorship curve. The points shown in
colour are estimated effect vectors, estimated using signal-free standardization, with uncor-
rected estimates (Gita = TtAa) shown in blue and corrected estimates (Gita = IiTtAa) shown in
red.
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Fig. 3. Comparing regional curve standardization and signal-free standardization with different
data locations. In all cases, the same time and age effect vectors were used to generate the
data. The points in black show the true effects vectors, while the points in colour show the
estimated effects vector, estimated via regional curve standardization (blue) and signal-free re-
gional curve standardization (red). (a) A complete, balanced design, (b) a randomly unbalanced
design, data points were retained entirely at random and (c) a realistic unbalanced design, data
points were retained according to a negative exponential survivorship simulation with uniform
random birth years.
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Fig. 4. Sample depth of the analysis across time (number of series analysed in each year).
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R2 Adj. R2 LLH AIC AICc BICσ R2 Adj. R2 LLH AIC AICc BICσ

Fig. 5. Frequency of model selection over the analysed data set by each of the various model
selection criteria. Additive models are shown on the left, and multiplicative models are shown
on the right while the y-axis shows which terms are included in the growth model.
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Fig. 6. Frequency of model selection over the analysed data set for the corrected (G = ITA) and
uncorrected (G = TA) GAM standardization models by various model selection criteria. The
y-axis shows which terms are included in the growth model.
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Fig. 7. Kernel density plot of the Spearman’s ρ test statistic for trend of the ratio between the
time effects of the G = TA and G = ITA standardizations. A negative value means that modern
sample bias induces a spurious negative trend in the data with time while a positive value
means that modern sample bias produces an overly positive estimate of the trend in the data
over time.
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Fig. 8. Ratio between the time effects of the G = TA and G = ITA standardizations vs. time.
The sign of this ratio corresponds to the direction of bias induced by modern sample bias in
each year. The black line show the median value while the dark and light grey bands show the
40–60 % and 20–80 % quantiles respectively. This captures the typical values and their spread
in a way that is consistent as the number of chronologies changes.
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