Clim. Past Discuss., 9, 3321-3370, 2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Climate of the Past (CP). Please refer to the corresponding final paper in CP.
Sources and transport of dust to East Antarctica: new insights from high-resolution terrestrial and marine aerosol records from the Talos Dome ice core
S. Schüpbach1,2,3, U. Federer1,2, S. Albani4, C. Barbante3,5, T. F. Stocker1,2, and H. Fischer1,2
1Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
2Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
3Environmental Sciences, Informatics and Statistics Department, University of Venice, Venice, Italy
4Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
5Institute for the Dynamics of Environmental Processes – National Research Council, Venice, Italy

Abstract. In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 thousand years. Our transport model applied on ice core data only so far is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean (SO) during the transition from the Last Glacial Maximum to the Holocene (T1). While the former estimate based on the EDC record only suggested 20 ppm, we find reduced dust induced iron fertilisation in the SO to be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EDML are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea ice extent in the Atlantic as well as the Indian Ocean sector of the SO. In contrast, Holocene ssNa+ flux in Talos Dome is about the same as during the last interglacial, indicating that there was similar ice cover present in the Ross Sea area during MIS 5.5 as during the Holocene.

Citation: Schüpbach, S., Federer, U., Albani, S., Barbante, C., Stocker, T. F., and Fischer, H.: Sources and transport of dust to East Antarctica: new insights from high-resolution terrestrial and marine aerosol records from the Talos Dome ice core, Clim. Past Discuss., 9, 3321-3370, doi:10.5194/cpd-9-3321-2013, 2013.
Search CPD
Discussion Paper
    Final Revised Paper