Clim. Past Discuss., 9, 217-244, 2013
www.clim-past-discuss.net/9/217/2013/
doi:10.5194/cpd-9-217-2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Review Status
This discussion paper has been under review for the journal Climate of the Past (CP). Please refer to the corresponding final paper in CP.
Multivariate statistic and time series analyses of grain-size data in Quaternary sediments of Lake El'gygytgyn, NE Russia
A. Francke1, V. Wennrich1, M. Sauerbrey1, O. Juschus2, M. Melles1, and J. Brigham-Grette3
1University of Cologne, Institute for Geology and Mineralogy, Cologne, Germany
2Eberswalde University for Sustainable Development, Eberswalde, Germany
3University of Massachusetts, Department of Geosciences, Amherst, USA

Abstract. Lake El'gygytgyn, located in the Far East Russian Arctic, was formed by a meteorite impact about 3.58 Ma ago. In 2009, the ICDP Lake El'gygytgyn Drilling Project obtained a continuous sediment sequence of the lacustrine deposits and the upper part of the impact breccia. Here, we present grain-size data of the past 2.6 Ma. General downcore grain-size variations yield coarser sediments during warm periods and finer ones during cold periods. According to Principal Component Analyses (PCA), the climate-dependent variations in grain-size distributions mainly occur in the coarse silt and very fine silt fraction. During interglacial periods, accumulation of coarser grain sizes in the lake center is supposed to be caused by redistribution of clastic material by a wind-induced current pattern during the ice-free period. Sediment supply to the lake is triggered by the thickness of the active layer in the catchment, and the availability of water as transport medium. During glacial periods, sedimentation at Lake El'gygytgyn is hampered by the occurrence of a perennial ice-cover with sedimentation being restricted to seasonal moats and vertical conducts through the ice. Thus, the summer temperature predominantly triggers transport of coarse material into the lake center. Time series analysis that was carried out to gain insight in the frequency of the grain-size data showed grain-size variations predominately on Milankovitch's eccentricity, obliquity and precession bands. Variations in the relative power of these three oscillation bands during the Quaternary imply that climate conditions at Lake El'gygytgyn are mainly triggered by global glacial/interglacial variations (eccentricity, obliquity) and local insolation forcing (precession), respectively.

Citation: Francke, A., Wennrich, V., Sauerbrey, M., Juschus, O., Melles, M., and Brigham-Grette, J.: Multivariate statistic and time series analyses of grain-size data in Quaternary sediments of Lake El'gygytgyn, NE Russia, Clim. Past Discuss., 9, 217-244, doi:10.5194/cpd-9-217-2013, 2013.
 
Search CPD
Discussion Paper
PDF XML
Citation
Share