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Abstract

Paleoclimate proxy data span seasonal to millennial time scales, and Earth’s climate
system has both high- and low-frequency components. Yet it is currently unclear how
best to incorporate multiple time scales of proxy data into a single reconstruction frame-
work and to also capture both high- and low-frequency components of reconstructed5

variables. Here we present a data assimilation algorithm that can explicitly incorporate
proxy data at arbitrary time scales. Through a series of pseudoproxy experiments, we
find that atmosphere–ocean states are most skilfully reconstructed by incorporating
proxies across multiple time scales compared to using proxies at short (annual) or long
(∼ decadal) time scales alone. Additionally, reconstructions that incorporate long time-10

scale pseudoproxies improve the low-frequency components of the reconstructions rel-
ative to using only high-resolution pseudoproxies. We argue that this is because time
averaging high-resolution observations improves their covariance relationship with the
slowly-varying components of the coupled-climate system, which the data assimila-
tion algorithm can exploit. These results are insensitive to the choice of climate model,15

despite the model variables having very different spectral characteristics. Our results
also suggest that it may be possible to reconstruct features of the oceanic meridional
overturning circulation based solely on atmospheric surface temperature proxies.

1 Introduction

Paleoclimate proxies range across widely different time scales. High resolution paleocli-20

mate proxies such as tree rings or corals have annual or seasonal resolution, whereas
lower resolution proxies such as sediment cores can provide anywhere from annual
to millennial scale information depending on the core and its location (Bradley, 2014).
Additionally, high resolution proxies tend to have short records and are mostly limited
to the past two millennia, whereas some low resolution proxies can reach back across25

the Cenozoic (e.g., Zachos et al., 2008). In addition to the many time scales of proxies,
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the climate system itself varies across a large range of time scales: from atmospheric
blocking to ocean overturning circulation to ice age cycles. Thus any faithful recon-
struction of past climate must account for as many of these time scales, captured by
both proxies and climate models, as possible.

Few paleoclimate reconstruction methods have been created that specifically incor-5

porate multiple proxy time scales. Most reconstructions use either low or high reso-
lution proxies alone. If multiple scales of proxy data are used together, researchers
often resort to coarsening high resolution proxies (e.g., PAGES 2k Consortium, 2013)
or linearly interpolating low resolution proxies to a “higher resolution” (e.g., Mann et al.,
2008). One major reason for this is that many traditional multivariate regression meth-10

ods are not easily constructed to calibrate in both low and high frequency domains.
Nevertheless, a few methods have been modified for such purposes (e.g., Mann et al.,
2005). Additionally, this is not entirely a methodological problem but partly a tem-
poral sampling issue: given that instrumental temperature data only span the past
∼ 150 years, low frequency reconstruction techniques have few degrees of freedom15

on which to be calibrated and validated if the time scale is longer than about a decade.
Only Li et al. (2010) (using a Bayesian hierarchical model approach) and Hanhijärvi
et al. (2013) (using an approach based on pairwise comparisons) present reconstruc-
tion methods that can specifically incorporate proxies at any time resolution without
linear interpolation of coarse proxies or coarsening high resolution proxies to some20

uniform time scale. These methods have thus far been used only for time series recon-
structions, not space-time reconstructions.

Data assimilation (DA) provides a flexible framework for combining information from
paleoclimate proxies with the dynamical constraints of climate models. In principle,
DA can provide reconstructions of any model variable, from surface temperature to25

sea water salinity to atmospheric geopotential height. Among DA techniques, we are
unaware of any method that incorporates proxies across any arbitrary range of time
scales. DA-based reconstructions have so far used only a single uniform time scale
(e.g., Goosse et al., 2012) or have performed separate reconstructions at different
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uniform time scales (Mathiot et al., 2013). Here we develop a DA-based algorithm for
space-time climate reconstructions that can assimilate proxies at any time resolution.
Because of the limited time span of observational data sets, we explore the features
and skill of this technique within a synthetic, pseudoproxy framework. This allows us to
test the algorithm over long time spans, perform carefully controlled experiments, and5

unambiguously define errors.
Multiproxy reconstructions can potentially overcome some limitations of single proxy

reconstructions, such as filling in for the missing frequency components of a particu-
lar proxy (Li et al., 2010). But besides this kind of benefit, it is possible that particular
reconstruction methods could benefit from multi-scale proxy data. Within a coupled10

atmosphere–ocean DA framework, Tardif et al. (2014) suggest that assimilating time-
averaged observations of atmospheric variables may improve present-day estimates of
ocean circulation. They argue that these improvements arise from the fact that time av-
eraging high-frequency observations improves the signal over noise in the covariance
relationship between the atmosphere and the slowly-varying ocean overturning circula-15

tion. We test this hypothesis within a paleoclimate context and assesses whether or not
atmosphere–ocean state estimates can be improved by including proxies and climate
states at multiple time scales.

2 Assimilation technique

Data assimilation refers to a mathematical technique of optimally combining observa-20

tions (or within this context, proxy data) with prior information, typically from a model.
The model, in this case a climate model, provides an initial, or prior, state estimate that
one can update in a Bayesian sense based on the observations and an estimate of
the errors in both the observations and the prior. The prior contains any climate model
variables of interest and the updated prior, called the posterior, is the best estimate25

of the climate state given the observations and the error estimates. The basic state
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update equations of DA (e.g., Kalnay, 2003) are given by

xa = xb +K[y −H(xb)] , (1)

and where K can be written as

K = cov(xb,H(xb))[cov (H(xb),H(xb))+R]−1 , (2)

with cov representing a covariance expectation. The prior (or “background”) estimate of5

the state vector is xb and xa is the posterior (or “analysis”) state vector. Observations
(or proxies) are contained in vector y. The true value of the observations are estimated
by the prior through H(xb), which is, in general, a nonlinear vector-valued observation
operator that maps xb from the state space to the observation space. For example,
tree-ring width may be estimated from grid-point values of temperature and moisture10

in the prior. Matrix K, the Kalman gain, weights y −H(xb), called the innovation, and
transforms it into state space. Matrix R is the error covariance matrix for the obser-
vations. The DA update process involves computing Eqs. (1) and (2) to arrive at the
posterior state; within the context of the climate reconstruction problem, the posterior
state is the reconstructed state for a given time. Space-time reconstructions are ob-15

tained by iteratively estimating the posterior state for each year or time segment of the
reconstruction.

From the numerator of Eq. (2), we can interpret K as “spreading” the information
contained in the observations through the covariance between the prior and the prior-
estimated observations. This implies that, other things being equal, larger values of20

cov(xb,H(xb)) will weight the innovation more heavily; thus this new information not
contained in the prior has a bigger influence. One way to improve this covariance rela-
tionship may be to use time-averaged observations, particularly if the model or climate
system has better covariance relationships at longer time scales.

For the update calculations we employ an ensemble square-root Kalman filter, ap-25

plied to time averages (see Steiger et al., 2014 for a detailed DA algorithm and fuller
discussion of DA terminology). We extend the technique of Dirren and Hakim (2005);
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Huntley and Hakim (2010), and Steiger et al. (2014) by iteratively applying the state-
update equations across multiple time scales by leveraging the serial observation pro-
cessing approach to the Kalman filter (Houtekamer and Mitchell, 2001). The following
general algorithm allows one to assimilate any collection of observation or proxy data,
including irregular time averages:5

1. Construct a prior (“background”) ensemble xb at the highest temporal resolution
of interest (e.g., monthly or annual), or a collection of them with one for each time
step (e.g., monthly or annual ensembles assigned to particular months or years).

2. Loop over observations and assimilate each at their own time scale:

a. Decompose the prior ensemble(s) that overlap in time with the observation10

y into time averages (overbar) and deviations from this average (prime) via
xb = xb +x′b, such that the time-average of xb matches the time scale of y .

b. Estimate the observation via the forward model, or “proxy system model”
(Evans et al., 2013) H(xb), and update (compute Eqs. 1 and 2) the time

averaged ensemble(s) xb
DA−−→ xa, with xa as the posterior (or “analysis”) time-15

mean ensemble(s).

c. Add back the time-deviations, xb = xa+x′b, which can serve as the prior(s) for
another observation.
Note that if y shares the same time scale as xb, then the method is the same,
but with x′b = 0.20

3. After all observations have been assimilated, the ensemble mean of xb provides
the best estimate of the state for each analysis time.

We now discuss an illustrative implementation of this general algorithm that we em-
ploy for the experiments in this paper. Consider a paleoclimatic situation where the
observations are a collection of annual proxy data and also proxy data representing ir-25

regularly averaged climatic information. Prior ensembles can be composed of annually
3734
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averaged climate states that have been randomly drawn from a long climate simulation
and initially assigned to each year of a reconstruction, Fig. 1. Following the steps out-
lined above, proxies representing differently averaged time intervals can be assimilated
by averaging over the prior ensembles for the time intervals defined by the proxy. For
example, a proxy value representing information over the years 1700–1720 would up-5

date the prior ensembles averaged in time over that same interval. Annual proxies can
simply be assimilated by updating the ensembles for each year of available proxy data,
Fig. 1. This approach proceeds by assimilating each proxy over its full time extent and
after every proxy is assimilated, one is left with an updated version of what one started
with: a time sequence of ensemble state estimates at annual resolution.10

In all of the experiments shown here we use a “no-cycling” or “off-line” DA approach,
where the prior ensembles are drawn from existing climate model simulations. This
approach has vast computational benefits over a “cycling” or “on-line” approach where
one must integrate an ensemble of climate model simulations forward in time after each
DA update step. Indeed, for the paleoclimate reconstruction problem, it is infeasible to15

cycle an ensemble of tens to hundreds of CMIP5-class coupled climate models (as
used here) for hundreds or thousands of years. Moreover, in the off-line case one may
use hundreds to thousands of ensemble members from multiple models and simula-
tions, reducing the potential for model bias and sampling error. It is also advantageous
to use an off-line approach when the predictability time limit of the model is shorter20

than the time scale of the observations: for example, if observations are only available
at annual resolution yet the model cannot skilfully forecast the climate state a year
into the future, then no useful information is gained by cycling the model. Matsikaris
et al. (2015) recently compared on-line and off-line approaches to paleoclimate DA
with a fully-coupled earth system model and found no improvement with the on-line25

method, suggesting that the model was unable to provide useful information at anal-
ysis times. Nevertheless, one way the approach outlined here can generalize to the
on-line approach is by cycling on the shortest time scale (e.g., annual or seasonal) and
updating longer time scales at the end of the appropriate interval without cycling.
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If the reconstructions use the off-line approach together with multiple time scales,
temporal consistency of the priors will need to be maintained in order to have co-
herent long-time-scale covariance relationships. Thus portions of these priors can be
randomly drawn in blocks of consecutive years from the employed climate model sim-
ulation, see Fig. 1. The length of these blocks can be determined based on the needs5

of the specific reconstruction problem (e.g., the length of the longest proxy time scale)
and the length of available model simulations. If multiple long simulations are available
(they need not be from the same model), different rows in Fig. 1 could be different
model simulations and the block length could be the length of the reconstruction; this
option avoids any discontinuities in time that result from small block lengths.10

Also note that for the sake of simplicity in the above example and throughout the
paper, we are assuming that an irregular, long-time-scale proxy is just an average of
some climate variable over a given time interval. Real proxies are nearly always more
complex than this and would necessitate a more sophisticated proxy system model
(H(xb) in Eqs. 1 and 2); however, the algorithm described above is general and covers15

the case when such models are available.

3 Experimental framework

3.1 Models and variable characterizations

For the experiments presented here, we are interested in (1) how the reconstruction
methodology proposed in Sect. 2 performs in both the atmosphere and ocean, (2) how20

the differing time scales of the atmosphere and ocean may be leveraged in the re-
construction process, and (3) how these results vary with two different models having
very different spectral characteristics in their coupled-climate systems. To this end we
choose two long pre-industrial control simulations (part of the Coupled Model Intercom-
parison Project Phase 5 available for download at http://www.earthsystemgrid.org/),25

one from the climate model GFDL-CM3 and the other from CCSM4. We also choose
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two illustrative reconstruction variables, global mean 2 m air temperature and the At-
lantic meridional overturning circulation (AMOC). Figures 2 and 3 characterize the
global mean temperature and an AMOC index for each simulation (defined here as
the maximum value of the overturning streamfunction in the North Atlantic between 25
and 70◦N and between depths of 500 and 2000 m), respectively. Note that even though5

these are only time series variables, the DA framework proposed here can trivially re-
construct spatial variables as well (Steiger et al., 2014). From Figs. 2 and 3 we see that
despite both being control simulations, these two models display very different spectral
characteristics for both global mean temperature and the AMOC index.

We next assess whether there are strong covariance relationships between the ob-10

servation variables and the reconstruction variables at different time averages. Recall
that the key covariance relationship in the DA update equations is between the prior
variables and the prior estimate of the observations, Eq. (2). For an experiment where
the pseudoproxies, y, are composed of atmospheric surface temperature (and thus
what H(xb) estimates), we would need to know the covariance between these and15

the state variables of global mean temperature and the AMOC index, contained in xb.
A simple assessment of this is shown in Fig. 4 with panels a and b showing box plot
summaries of the correlations between the global mean temperature time series and
all the surface temperature time series at every grid point for both climate simulations;
these correlations are then computed over a range of averaging times. Panels c and d20

in Fig. 4 are the same calculation but for the AMOC index instead of the global mean
temperature. (Note that the correlation of two time series is simply the covariance nor-
malized by the product of the standard deviations of the two time series.) Figure 4
indicates that there is increased covariance information (or more locations with higher
correlations) between surface temperature and the reconstruction variables at longer25

time scales. This information is leveraged by the equations of DA to potentially improve
the low-frequency components of the reconstructed variables. An important point about
computing correlations at increasing time averages is that the number of degrees of
freedom in the time series are also reduced, potentially spuriously inflating the correla-

3737

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

tions. A test of statistical significance accounting for the reduced degrees of freedom is,
however, not particularly germane: the DA equations do not “know” about 95% confi-
dence intervals, just the covariance information. If, after performing the reconstructions
and computing several different skill metrics, we see an increase in reconstruction skill,
then we can infer that the information was in fact useful for the reconstructions.5

3.2 Pseudoproxy construction

The pseudoproxy experiments employed here follow the general framework of many
previous studies (see Smerdon, 2012 for a summary and review) but with some impor-
tant modifications. Generally, after one or more climate model simulations are chosen
to represent nature, a pseudoproxy network is chosen that mimics real world proxy10

availability, similar to the network chosen here and shown in Fig. 5a; this particular
network is composed of a spatially thinned version of the proxy collection of PAGES 2k
Consortium (2013) (thinned over Asia and North America where the proxy density is
high) and all of the proxy locations in Shakun et al. (2012) and Marcott et al. (2013).
Pseudoproxies are typically generated by adding random white noise to the chosen15

network of climate model temperature series. The added noise is usually assumed to
be the same value for all proxy locations, with a common signal-to-noise ratio (SNR)

being 0.5 (where SNR ≡
√

var (X )/var (N), and where X is a grid-point temperature
series drawn from the true state and N is an additive noise series, and var is the vari-
ance). Following recent work by Wang et al. (2014), we instead randomly draw SNR20

values from a distribution characteristic of real proxy networks, Fig. 5b. This distribu-
tion is a shifted Gamma distribution (shape parameter=1.667, scale parameter=0.18,
shifted by 0.15) with a mean SNR of 0.45 and is modelled after Fig. 3 from Wang et al.
(2014).

Also in contrast to nearly all pseudoproxy experiments, we use pseudoproxies at25

two different time scales for each model. Importantly for the comparison of results,
we use the same SNR distribution for both time scales and add the noise to the time
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series after averaging. Within the DA framework, the additive error for each proxy is
accounted for in the entries of the diagonal matrix R. The SNR equation above is
related to R in that that each of these entries is equal to var (N) for a given proxy. The
process of adding the noise after averaging ensures that R is statistically identical for
each reconstruction. This process isolates the role of the covariance relationships in5

Eq. (2). By drawing from the same SNR distribution for all pseudoproxy time scales we
are also assuming that the distribution is an appropriate characterization of the error
in long time scale proxies; we assume this for simplicity and also because we are not
aware of a systematic assessment of SNR values for low-resolution proxies as Wang
et al. (2014) have done for annual-resolution proxies.10

We also note an important idealization of the present pseudoproxy experiments,
which we share with all pseudoproxy experiments heretofore published, is that we use
a perfect model approximation where the pseudoproxies from one model simulation are
used to reconstruct that same simulation (e.g., pseudoproxies from the CCSM4 simu-
lation are used to reconstruct the CCSM4 simulation, not the GFDL-CM3 simulation).15

In a real DA-based reconstruction, the climate model will never be a perfect description
of the real climate system, from which the assimilated observations are derived. Since
the purpose of the present work is to illustrate a novel algorithm, we therefore have
not considered this additional layer of complexity, which can only be fully assessed
within a study of real proxy climate reconstructions: using one simulation to reconstruct20

another can assess inter-model differences, but it is unclear how these results would
relate to model–nature differences.

3.3 Pseudoproxy experiments

The primary results of this paper are presented with a series of 12 experiments using
only atmospheric surface temperature pseudoproxies to reconstruct the global mean25

temperature and AMOC index of the two climate model simulations discussed previ-
ously. For each variable, and each model, three experiments are performed: (1) short
(annual) pseudoproxies only, (2) long (5 or 20 year time averages) pseudoproxies only,
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and (3) both short and long time averaged pseudoproxies. We have chosen the long
time-scale for the CCSM4 simulation to be 20 years, and we note that an alternative
choice of one to several decades gives similar results (not shown). The situation is
more complex with the GFDL-CM3 simulation because of the presence of an approx-
imate 22 year periodic signal in the AMOC, Fig. 3a and c. A choice of 20 years for5

GFDL-CM3 would effectively undersample the AMOC variability and so we have cho-
sen a long time scale of 5 years for GFDL-CM3. Unfortunately, a long time scale of
5 years for CCSM4 shows little difference in the results over the annual time scale re-
constructions (not shown), as would be suggested by the small difference in correlation
(covariance) between 1 and 5 years, Fig. 4b.10

Both the short only and long only reconstructions use 100 pseudoproxies randomly
drawn from the network of 274 proxy locations shown in Fig. 5a. For the mixed res-
olution reconstructions, 100 pseudoproxies are randomly drawn from the network for
each time scale, giving a total of 200. This is an approximation of the real world set-
ting where one usually has proxies at multiple time scales and would like to use all15

of them. Following the algorithm outlined in Sect. 2, for the multi-scale reconstructions,
we assimilate the long time-scale pseudoproxies first, followed by the annual time-scale
pseudoproxies; we also performed these reconstructions by swapping which time scale
was assimilated first and found statistically identical results (not shown), as would be
expected from the linearity of this approach. For these mixed resolution reconstruc-20

tions, we have also ensured that there is no overlap between locations associated with
the two time scales.

We have reconstructed the first 500 years of each simulation while randomly drawing
the prior, of size 500, in 20 year continuous blocks from the entire length of the simula-
tions (800 years for GFDL-CM3 and 1051 years for CCSM4); this uniform block length25

was chosen because it was the longest time scale of the pseudoproxies and because
the pseudoproxies were constructed over regular long intervals and thus discontinu-
ities at block edges were not a concern (see Fig. 1 and the discussion in Sect. 2).
Because of the large prior ensemble size, we did not employ covariance localization,
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a common DA practice for controlling sampling error. Each of the 12 reconstructions
are repeated 100 times in a Monte Carlo fashion where new SNR values are randomly
drawn from the distribution, Fig. 5b, for each pseudoproxy location and a new pseudo-
proxy network is also randomly drawn for each time scale from the original network. All
the reconstruction figures show the mean of 100 of these Monte Carlo reconstruction5

iterations.

4 Reconstruction results

The reconstructions of global mean temperature are shown in Fig. 6. The top panels
of a and b show the reconstructions with the annual pseudoproxies, the middle panels
show the reconstructions with the long time-scale proxies, and the bottom panels show10

the reconstructions for both time scales. Skill metrics, computed at annual resolution,
are shown for each reconstruction: correlation (r) and coefficient of efficiency (ce),
which for a data series comparison of length N is defined as

ce = 1−
∑N
i=1(xi − x̂i )2

∑N
i=1(xi −x)2

,

where x is the “true” time series, x is the true time series mean, and x̂ is the recon-15

structed time series. The metric ce has the range −∞ < ce ≤ 1, where ce = 1 corre-
sponds to a perfect match and ce < 0 indicates that the error variance is greater than
the true time series variance. Comparing the reconstructions in Fig. 6 we see that the
bottom panels with both time scales have the highest skill.

Note that the long-time scale reconstructions in the middle panels of Fig. 6a and20

b have sharp edges at 5 (for GFDL-CM3) or 20 year (for CCSM4) intervals. This is
due to the simplified experimental design we have employed where all the long-time
scale pseudoproxies are averages over a given 5 or 20 year period. As discussed in
Sect. 2, this experimental design is only a single illustrative example of the general
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algorithm. The data from real proxies are not apportioned into specific time frames,
but are scattered irregularly in time. Using many irregular proxies will act to smooth
the long time-scale reconstructions. As long as the time scales can be estimated and
an appropriate proxy system model is used, the algorithm of Sect. 2 can handle any
real proxy data. While not dealt with explicitly here, real long time-scale (low resolution)5

proxies also have dating uncertainty, which will also tend to smooth the reconstructions.
The algorithm can account for dating uncertainty through the Monte Carlo framework
by repeating the reconstructions many times and sampling from an ensemble of ages
dates for a given proxy.

One assessment of skill as a function of time scale is to compute the cross spectra10

of the reconstructed time series with the true time series (Fig. 7). The cross spectra
in this case reveals the relationship between the two time series as a function of fre-
quency or period. As a point of reference, the dashed gray lines in this figure indicate
the cross spectra of the true time series with itself, which is the same as its own power
spectrum.1 Considering Fig. 7b we see that the annual-only reconstruction does a bet-15

ter job of matching the power at short periods than the 20 year-only reconstruction;
however, the 20 year-only reconstruction performs better at longer periods. The mixed
time-scale reconstruction, 20+1, does better or just as well as the single time-scale re-
constructions at both short and long periods. This same general result holds for Fig. 7a,
though it is more difficult to see because of the much larger power at longer periods in20

the GFDL-CM3 simulation.
Figure 8 shows three time scale reconstructions of the AMOC index for the two

model simulations, similar to Fig. 6. In these AMOC index reconstructions, we see the
same general patterns as with the global mean temperature reconstructions, where the

1Following a common technique to reduce noise in the cross spectra, they are computed
using Welch’s averaged periodogram method, which samples segments of the time series and
averages the power spectra of these samples to arrive at the cross power spectral densities.
As a result, the gray line spectra in Figs. 7 and 9 should not be expected to precisely match up
with Figs. 2 and 3.
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multi-scale reconstructions provide the most skill (r and ce). Given that the pseudoprox-
ies are of surface air temperature, it is not surprising that the absolute skill values of
the AMOC reconstructions are reduced relative to the reconstructions of global mean
temperature. Figure 9 shows the corresponding cross spectra for the reconstructions
shown in Fig. 8. The most robust result from this figure is the improved low-frequency5

components of the AMOC reconstructions when time-averaged surface temperature
pseudoproxies are used. We argue that this result follows from the fact that the annual
observations of atmospheric surface temperature are essentially noise to the slowly
varying ocean. One may improve the information content relevant to the ocean by av-
eraging over the atmospheric noise. This interpretation may also be seen in Fig. 4,10

where the correlation (covariance) information between the atmosphere and the ocean
is particularly low at annual averages but improves at longer time averages.

We note that all the cross spectra of the reconstructions shown in Figs. 7 and 9 show
a decrease in power relative to the true state, though this need not always be the case.
In additional experiments we performed using global ocean heat content, we found that15

this reconstructed variable tended to have more power than the true state and was thus
higher than the respective gray lines (not shown). Therefore the reduced power relative
to the true state in Figs. 7 and 9 should not be interpreted as saying something general
about the nature of DA-based reconstructions or the particular approach employed
here.20

As an approximation of a real reconstruction scenario, the experiments shown in
Figs. 6 and 8 with two time scales use twice as many pseudoproxies as the single
time scale experiments (200 vs. 100). Therefore the improved skill might simply be
a consequence of having more observation information. We tested this idea by repeat-
ing all the experiments shown here but instead increasing the number of observations25

to 200 for each experiment: the single time scale reconstructions used 200 randomly
drawn pseudoproxies and the multi-scale reconstructions used 100 randomly drawn
pseudoproxies each for the two time scales (the same as in the previous multi-scale
reconstructions). Figure 10 is a characteristic example of the results of these additional
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tests. Figure 10a shows the reconstructions of the AMOC index with the CCSM4 model
output and Fig. 10b shows the respective cross spectra. In a, the skill is best for the
multi-scale reconstructions and in b the cross spectra shows the same general result
of improved low-frequency power for the time-averaged pseudoproxies. However, the
cross spectra for the 20+1 reconstruction is not always closest to the true spectrum,5

suggesting that the number of pseudoproxies does play a role in improving the spec-
trum of the reconstructions. However, we note that the r and ce skill metrics for the
single time scale reconstructions in Fig. 10a are hardly changed relative to those in
Fig. 8b even though the number of observations are doubled.

5 Conclusions10

This paper presents a data assimilation algorithm that can explicitly incorporate proxy
data on arbitrary time scales. This approach generalizes previous data assimilation
techniques in the sense that many scales of both proxies and climate states can be
included explicitly in a single reconstruction framework. This may be particularly useful
given the many inherent time scales of the climate system, such as the fast time scales15

of the atmosphere and the slow time scales of the ocean. We performed three types
of realistic atmosphere–ocean pseudoproxy reconstructions to assess the impact of
using observations at multiple time scales: (1) short (annual) pseudoproxies only, (2)
long (∼ decadal) pseudoproxies only, and (3) both short and long time-averaged pseu-
doproxies. We found that for both global mean temperature and an index of the Atlantic20

meridional overturning circulation, the reconstructions that incorporated proxies across
both short and long time scales were more skilful than reconstructions that used short
or long time scales alone (Figs. 6 and 8). This result holds even when the number of
pseudoproxies for the single time-scale reconstructions are doubled, Fig. 10a. Multi-
scale reconstructions would be expected to perform better than single-scale recon-25

structions because they can include information at multiple time scales and because
the prior can be better conditioned as it’s used from one time scale to the next.
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We found that reconstructions incorporating long time scale pseudoproxies improve
the low-frequency components of the reconstructions over reconstructions that only
use annual time-scale pseudoproxies, Figs. 7, 9, and 10b. This result may at first seem
surprising because the annual pseudoproxies should contain the low-frequency infor-
mation. It is helpful to recall that the data assimilation algorithm outlined here proceeds5

by sequentially finding the optimal state at each time segment of interest given the
prior, the observations, and their respective errors. This state update critically relies on
the covariance between the prior and the model estimate of the observations, Eq. (2).
If, for example, surface temperature observations do not covary well with the AMOC at
annual resolution, then the posterior AMOC estimate will be little changed compared10

to the prior (Tardif et al., 2014). But if the time average of surface temperatures has
a large covariance with the AMOC, the posterior will be more influenced by the obser-
vations. This result is not controlled by the noise added to the pseudoproxies because,
as noted in Sect. 3.2, we ensured that R from Eq. (2) remains fixed for both time scales.

These results indicate that data assimilation-based atmosphere–ocean state esti-15

mates may be improved by including proxies and climate states from multiple time
scales. The general results outlined above appear to be insensitive to the choice
of climate model simulation. These results also show, as suggested by Kurahashi-
Nakamura et al. (2014), that given a representative prior ensemble, features of the
Atlantic meridional overturning circulation may be reconstructed using observations of20

surface variables alone.

Acknowledgements. We acknowledge the Program for Climate Model Diagnosis and Intercom-
parison and the WCRP’s Working Group on Coupled Modelling for their roles in making avail-
able the CMIP5 data set. Support of the CMIP5 dataset is provided by the U.S. Department
of Energy (DOE) Office of Science. This work was supported by the National Science Foun-25

dation grant AGS-1304263 and the National Oceanic and Atmospheric Administration grant
NA14OAR4310176.

3745

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

References

Bradley, R. S.: Paleoclimatology, 3rd edn., Academic Press, Oxford, UK, 2014. 3730
Dirren, S. and Hakim, G. J.: Toward the assimilation of time-averaged observations, Geophys.

Res. Lett., 32, L04804, doi:10.1029/2004GL021444, 2005. 3733
Evans, M. N., Tolwinski-Ward, S., Thompson, D., and Anchukaitis, K. J.: Applications of proxy5

system modeling in high resolution paleoclimatology, Quaternary Sci. Rev., 76, 16–28, 2013.
3734

Goosse, H., Crespin, E., Dubinkina, S., Loutre, M.-F., Mann, M. E., Renssen, H., Sallaz-
Damaz, Y., and Shindell, D.: The role of forcing and internal dynamics in explaining the
“Medieval Climate Anomaly”, Clim. Dynam., 39, 2847–2866, 2012. 373110

Hanhijärvi, S., Tingley, M., and Korhola, A.: Pairwise comparisons to reconstruct mean temper-
ature in the Arctic Atlantic Region over the last 2,000 years, Clim. Dynam., 41, 2039–2060,
doi:10.1007/s00382-013-1701-4, 2013. 3731

Houtekamer, P. L. and Mitchell, H. L.: A sequential ensemble Kalman filter for atmospheric data
assimilation, Mon. Weather Rev., 129, 123–137, 2001. 373415

Huntley, H. S. and Hakim, G. J.: Assimilation of time-averaged observations in a quasi-
geostrophic atmospheric jet model, Clim. Dynam., 35, 995–1009, doi:10.1007/s00382-009-
0714-5, 2010. 3734

Kalnay, E.: Atmospheric Modeling, Data Assimilation and Predictability, Cambridge, Cambridge,
UK, 2003. 373320

Kurahashi-Nakamura, T., Losch, M., and Paul, A.: Can sparse proxy data constrain the
strength of the Atlantic meridional overturning circulation?, Geosci. Model Dev., 7, 419–432,
doi:10.5194/gmd-7-419-2014, 2014. 3745

Li, B., Nychka, D. W., and Ammann, C. M.: The value of multiproxy reconstruction of past
climate, J. Am. Stat. Assoc., 105, 883–895, 2010. 3731, 373225

Mann, M. E., Rutherford, S., Wahl, E., and Ammann, C.: Testing the fidelity of methods used in
proxy-based reconstructions of past climate, J. Climate, 18, 4097–4107, 2005. 3731

Mann, M. E., Zhang, Z., Hughes, M. K., Bradley, R. S., Miller, S. K., Rutherford, S.,
and Ni, F.: Proxy-based reconstructions of hemispheric and global surface temperature
variations over the past two millennia, P. Natl. Acad. Sci. USA, 105, 13252–13257,30

doi:10.1073/pnas.0805721105, 2008. 3731

3746



D
iscussion

P
aper

|
D

iscussion
P

a
per

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|

Marcott, S. A., Shakun, J. D., Clark, P. U., and Mix, A. C.: A reconstruction of re-
gional and global temperature for the past 11,300 years, Science, 339, 1198–1201,
doi:10.1126/science.1228026, 2013. 3738, 3752

Mathiot, P., Goosse, H., Crosta, X., Stenni, B., Braida, M., Renssen, H., Van Meerbeeck, C. J.,
Masson-Delmotte, V., Mairesse, A., and Dubinkina, S.: Using data assimilation to investigate5

the causes of Southern Hemisphere high latitude cooling from 10 to 8 ka BP, Clim. Past, 9,
887–901, doi:10.5194/cp-9-887-2013, 2013. 3732

Matsikaris, A., Widmann, M., and Jungclaus, J.: On-line and off-line data assimilation in palaeo-
climatology: a case study, Clim. Past, 11, 81–93, doi:10.5194/cp-11-81-2015, 2015. 3735

PAGES 2k Consortium: Continental-scale temperature variability during the past two millennia,10

Nature Geosci., 6, 339–346, doi:10.1038/ngeo1797, 2013. 3731, 3738, 3752
Schneider, T. and Neumaier, A.: Algorithm 808: ARfit a Matlab package for the estimation of

parameters and eigenmodes of multivariate autoregressive models, ACM T. Math. Software,
27, 58–65, 2001. 3749, 3750

Shakun, J. D., Clark, P. U., He, F., Marcott, S. A., Mix, A. C., Liu, Z., Otto-Bliesner, B., Schmit-15

tner, A., and Bard, E.: Global warming preceded by increasing carbon dioxide concentrations
during the last deglaciation, Nature, 484, 49–54, 2012. 3738, 3752

Smerdon, J. E.: Climate models as a test bed for climate reconstruction methods: pseudoproxy
experiments, WIREs Clim. Change, 3, 63–77, doi:10.1002/wcc.149, 2012. 3738

Steiger, N. J., Hakim, G. J., Steig, E. J., Battisti, D. S., and Roe, G. H.: Assimila-20

tion of time-averaged pseudoproxies for climate reconstruction, J. Climate, 27, 426–441,
doi:10.1175/JCLI-D-12-00693.1, 2014. 3733, 3734, 3737

Tardif, R., Hakim, G., and Snyder, C.: Coupled atmosphere–ocean data assimilation experi-
ments with a low-order model and CMIP5 model data, Clim. Dynam., doi:10.1007/s00382-
014-2390-3, 2014. 3732, 374525

Wang, J., Emile-Geay, J., Guillot, D., Smerdon, J. E., and Rajaratnam, B.: Evaluating climate
field reconstruction techniques using improved emulations of real-world conditions, Clim.
Past, 10, 1–19, doi:10.5194/cp-10-1-2014, 2014. 3738, 3739, 3752

Zachos, J. C., Dickens, G. R., and Zeebe, R. E.: An early Cenozoic perspective on greenhouse
warming and carbon-cycle dynamics, Nature, 451, 279–283, 2008. 373030

3747

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

�1,1 �1,2 �1,3 �1,4 · · · �1,n

�2,1 �2,2 �2,3 �2,4 · · · �2,n

...
...

...
...

. . .
...

�m,1 �m,2 �m,3 �m,4 · · · �m,n

Years 

En
se

m
bl

e 
m

em
be

rs
 

block 

Figure 1. Schematic of the general reconstruction method using an off-line approach. Prior
ensembles of m state vectors, χ , are assigned to each of the n years. To retain some temporal
coherency, the rows are composed of time-coherent blocks drawn from a climate model simu-
lation (arbitrarily illustrated here as a 3 year block, or 3 consecutive annual states). The method
updates prior ensembles for specific years corresponding to annual proxy data points, while
for long time-scale proxies prior ensembles are computed by time averaging across the rows
corresponding to the years of a proxy data point.
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Figure 2. Characterization of the global mean 2 m air temperature variables used in this pa-
per. Panels (a, b) show the global mean temperature time series for the pre-industrial control
simulations of GFDL-CM3 and CCSM4, respectively. Panels (c, d) show their respective power
spectra (GMT) with a best-fit red noise (RN) spectrum (computed as in Schneider and Neu-
maier, 2001) and an estimated 95 % confidence interval.
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Figure 3. Characterization of the Atlantic meridional overturning circulation (AMOC) index vari-
ables used in this paper. Panels (a, b) show the AMOC index time series (defined in the text)
for the pre-industrial control simulations of GFDL-CM3 and CCSM4, respectively. Panels (c, d)
show their respective power spectra with a best-fit red noise (RN) spectrum (computed as in
Schneider and Neumaier, 2001) and an estimated 95 % confidence interval.
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Figure 4. Correlation of global mean 2 m air temperature (GMT) with the spatial 2 m air surface
temperatures (T2m), panels (a, b), and correlation of the Atlantic meridional overturning circu-
lation (AMOC) index with the spatial 2 m air surface temperatures, panels (c, d), at a range of
time scales. The correlations are computed for each spatial grid point at a given averaging time
scale, with the spatial correlation information summarized with these box plots (outliers have
been omitted for clarity).
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Figure 5. (a) Pseudoproxy locations used in this study (n = 274), drawn from the predominantly
high resolution (annual) proxy collection of PAGES 2k Consortium (2013) and all the compara-
tively low resolution (decadal to centennial) proxy locations in Shakun et al. (2012) and Marcott
et al. (2013). (b) The signal to noise ratio (SNR) distribution for the pseudoproxies, based on
a real-world estimate of Wang et al. (2014). For a given Monte Carlo experiment, the SNR for
each pseudoproxy was randomly drawn from this distribution.
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Figure 6. Global mean temperature reconstructions (mean of 100 Monte Carlo iterations) for
the three types of experiments discussed in the text and for each climate model simulation.
Black lines indicate the true time series while red lines indicate the reconstructed time series
for only short time scale (annual) pseudoproxies, only long time scale (5 or 20 years) pseudo-
proxies, and both long and short time scale pseudoproxies. Skill metrics of the reconstructions,
correlation (r) and coefficient of efficiency (ce), are shown at the top of each subpanel.
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Figure 7. Cross spectra of the reconstructed global mean temperature time series with the true
global mean temperature time series, for the reconstructions shown in Fig. 6. For reference,
the dotted gray line indicates the cross spectra of the true time series with itself, or equivalently
its own power spectrum.
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Figure 8. AMOC index reconstructions (mean of 100 Monte Carlo iterations) for the three types
of experiments discussed in the text and for each climate model simulation. Black lines indicate
the true time series while red lines indicate the reconstructed time series for only short time
scale (annual) pseudoproxies, only long time scale (5 or 20 years) pseudoproxies, and both
long and short time scale pseudoproxies. Skill metrics of the reconstructions, correlation (r)
and coefficient of efficiency (ce), are shown at the top of each subpanel.
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Figure 9. Cross spectra of the reconstructed AMOC index time series with the true AMOC index
time series, for the reconstructions shown in Fig. 8. For reference, the dotted gray line indicates
the cross spectra of the true time series with itself, or equivalently its own power spectrum.
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Figure 10. AMOC index reconstructions (mean of 100 Monte Carlo iterations) and correspond-
ing cross-spectra similar to those shown in Figs. 8b and 9b but for the case where each exper-
iment uses 200 pseudoproxies: the single time scale reconstructions use 200 pseudoproxies
each, while the multi-time scale reconstructions use 100 pseudoproxies for the short time scale
and 100 pseudoproxies for the long time scale.
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